首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have reported that (1) the synthesis of GSA, a uremic toxin, increases depending on the urea concentration and (2) GSA is formed from argininosuccinic acid (ASA) and the hydroxyl radical or SIN-1 which generates superoxide and NO simultaneously. However, an excess of NO, which also serves as a scavenger of the hydroxyl radical, inhibited GSA synthesis. We also reported that arginine, citrulline or ammonia plus ornithine, all of which increase arginine, inhibit GSA synthesis even in the presence of urea. To elucidate the mechanism for increased GSA synthesis by urea, we investigated the effect of urea on ASA and arginine, the immediate precursor of NO.Isolated rat hepatocytes were incubated in 6 ml of Krebs-Henseleit bicarbonate buffer containing 3% bovine serum albumin, 10 mM sodium lactate, 10 mM ammonium chloride and with or without 36 mM of urea and 0.5 or 5 mM ornithine at 37°C for 20 min. In vivo experiments, 4 ml/100 g body weight of 1.7 M urea or 1.7 M NaCl were injected intra-peritoneally into 5 male Wistar rats. Two hours after the intra-peritoneal injection of urea or 1.7 M NaCl, blood, liver and kidney were obtained by the freeze cramp method and amino acids were determined by an amino acid analyzer (JEOL:JCL-300).ASA in isolated hepatocytes was not detected with or without 36 mM (200 mgN/dl) urea, but the arginine level decreased from 36 to 33 nmol/g wet cells with urea. Ornithine which inhibits GSA synthesis, increased ASA markedly in a dose dependent manner and increased arginine. At 2 h after the urea injection the rat serum arginine level decreased by 42% (n = 5), and ornithine and citrulline levels increased significantly. Urea injection increased the ASA level in liver from 36–51 nmol/g liver but this was not statistically significant.We propose that urea inhibits arginine synthesis in hepatocytes, where the arginine level is extremely low to begin with, which decreases NO production which, in turn, increases hydroxyl radical generation from superoxide and NO. This may, also, be an explanation for the reported increase in oxygen stress in renal failure.  相似文献   

2.
Diabetes mellitus (DM) is a worldwide disease characterized by metabolic disturbances, frequently associated with high risk of atherosclerosis and renal and nervous system damage. Here, we assessed whether metabolites reflecting oxidative redox state, arginine and nitric oxide metabolism, are differentially distributed between serum and red blood cells (RBC), and whether significant metabolism of arginine exists in RBC. In 90 patients with type 2 DM without regular treatment for diabetes and 90 healthy controls, paired by age and gender, we measured serum and RBC levels of malondialdehyde (MDA), nitrites, ornithine, citrulline, and urea. In isolated RBC, metabolism of L-[14C]-arginine was also determined. In both groups, nitrites were equally distributed in serum and RBC; citrulline predominated in serum, whereas urea, arginine, and ornithine were found mainly in RBC. DM patients showed hyperglycemia and increased blood HbA1C, and increased levels of these metabolites, except for arginine, significantly correlating with blood glucose levels. RBC were observed to be capable of catabolizing arginine to ornithine, citrulline and urea, which was increased in RBC from DM patients, and correlated with an increased affinity for arginine in the activities of putative RBC arginase (Km = 0.23±0.06 vs. 0.50±0.13 mM, in controls) and nitric oxide synthase (Km = 0.28±0.06 vs. 0.43±0.09 mM, in controls). In conclusion, our results suggest that DM alters metabolite distribution between serum and RBC, demonstrating that RBC regulate serum levels of metabolites which affect nitrogen metabolism, not only by transporting them but also by metabolizing amino acids such as arginine. Moreover, we confirmed that urea can be produced also by human RBC besides hepatocytes, being much more evident in RBC from patients with type 2 DM. These events are probably involved in the specific physiopathology of this disease, i.e., endothelial damage and dysfunction.  相似文献   

3.
Allosteric regulation of beef liver arginase activity by L-ornithine   总被引:1,自引:0,他引:1  
Inhibition of beef liver arginase by L-ornithine was investigated with two sets of independent experiments. Progress curves of the production of urea were simulated with two integrated Michaelis-Menten equations for competitive and non-competitive inhibition by ornithine. Both fitted the curves well, but failed to correctly predict the inhibition when the reaction was started with ornithine already present. Measurement of initial rates of reaction enabled an allosteric model to be built in accordance to Monod-Wyman-Changeux: arginine preferentially binds to the active state R and ornithine preferentially binds to the inactive state T. In the absence of both ligands, the R in equilibrium T equilibrium slightly favours the active state and both states bind ornithine more strongly than arginine. No great variation was observed in the 6 parameters of the model by assuming the enzyme to be a trimer or a tetramer. The model was able to predict not only the initial rate curves, from which it was derived, but also the progress curves independently obtained.  相似文献   

4.
Because L-arginine is degraded by hepatic arginase to ornithine and urea and is transported by the regulated 2A cationic amino acid y(+) transporter (CAT2A), hepatic transport may regulate plasma arginine concentration. Groups of rats (n = 6) were fed a diet of either low salt (LS) or high salt (HS) for 7 days to test the hypothesis that dietary salt intake regulates plasma arginine concentration and renal nitric oxide (NO) generation by measuring plasma arginine and ornithine concentrations, renal NO excretion, and expression of hepatic CAT2A, and arginase. LS rats had lower excretion of NO metabolites and cGMP, lower plasma arginine concentration (LS: 83 +/- 7 vs. HS: 165 +/- 10 micromol/l, P < 0.001), but higher plasma ornithine concentration (LS: 82 +/- 6 vs. HS: 66 +/- 4 micromol/l, P < 0.05) and urea excretion. However, neither the in vitro hepatic arginase activity nor the mRNA for hepatic arginase I was different between groups. In contrast, LS rats had twice the abundance of mRNA for hepatic CAT2A (LS: 3.4 +/- 0.4 vs. HS: 1.6 +/- 0.5, P < 0.05). The reduced plasma arginine concentration with increased plasma ornithine concentration and urea excretion during LS indicates increased arginine metabolism by arginase. This cannot be ascribed to changes in hepatic arginase expression but may be a consequence of increased hepatic arginine uptake via CAT2A.  相似文献   

5.
The effects of lysine administration on arginine and ornithine liver levels were studied in normal and urease-treated rats. L-Arginine injections produced a rise in liver arginine with a parallel increase in liver ornithine. Pretreatment with L-lysine resulted in an elevation in liver arginine. Administration of lysine to urease treated rats induced a significant increase in liver arginine content with a parallel drop in ornithine/arginine ratio. A similar decrease in ornithine/arginine ratio due to lysine administration was observed in animals, in which arginine and ornithine levels had been raised by loading with arginine. The mechanism of the lysine effect is most likely by inhibition of liver arginase activity in vivo.  相似文献   

6.
The amino acid ornithine (Orn) acts as a vital part in the physiologically fundamental urea cycle. As such, it is a main intermediate in the catabolic breakdown as well as in the synthesis of arginine and is involved in many other metabolic pathways with potential clinical implications. We here describe a LC-MS-MS method for the detection of Orn in human plasma which is fast, easy and precise. The sample preparation comprises only protein precipitation and the addition of the isotopic labeled I.S. The analytes are separated by hydrophilic interaction chromatography (HILIC) in less than 4min on a silica column with an isocratic mobile phase consisting of 0.1% trifluoroacetic acid in water and acetonitrile in the ratio of 25:75. Orn and its I.S. are detected and quantified by APCI tandem mass spectrometry. The calibration function is linear from 7.5 to 205 micromol/l and covers the range of concentrations found in patients undergoing different clinical interventions. The quantification results are independent with regard to the biological matrix analyzed. The intra-day and inter-day relative standard deviations are 1.1% and 3.5%, respectively. As an application of the described method in clinical investigations, we report arginine and ornithine plasma concentration results from an arginine supplementation study enrolling healthy volunteers and patients suffering from hypercholesterolemia. After oral dosing of 110 mg/kg arginine, ornithine plasma concentrations rose from 54 to 148 micromol/l after 2h and were back to baseline after 24h. However, arginine to ornithine ratios kept constant during the complete observation time.  相似文献   

7.
In Agrobacterium tumefaciens and Rhizobia arginine can be used as the sole nitrogenous nutrient via degradation by an inducible arginase. These microorganisms were found to exhibit arginine inhibition of ornithine carbamoyltransferase activity. This inhibition is competitive with respect to ornithine (Km for ornithine = 0.8 mM; Ki for arginine = 0.05 mM). This type of urea cycle regulation has not been observed among other microorganisms which degrade arginine via an arginase. The competitive pattern of this inhibition leads to its being inoperative in ornithine-grown cells, where the intracellular concentration of ornithine is high. In arginine-grown cells, however, the intracellular arginine and ornithine concentrations are compatible with inhibition and ornithine recycling appears to be effectively blocked in vivo.  相似文献   

8.
Urea comprises 7·7 per cent of the total nitrogen excretion of Nezara viridula. The bug is capable of oxidizing uric acid to allantoin, which is also excreted, but the uricolytic pathway is not active beyond this point. Of the enzymes of the ornithine cycle, arginase and ornithine transcarbamalase are active, but there is no evidence for the arginine synthetase system. Carbamyl phosphate synthetase has a low activity detectable only by the use of radioactive substrates. Confirmation of the operation of only part of the ornithine cycle is seen in the incorporation of bicarbonate carbon into citrulline, but not into arginine or urea, by homogenates of bug tissue. It is concluded that urea in the excreta is derived from excess arginine in the diet by the action of the enzyme arginase. Free arginine is present in the cell sap of the bean pods on which the bugs feed in amounts sufficient to account for the urea excreted.  相似文献   

9.
Recent studies indicate that urea excretion is responsive to protein intake and that turbot, Psetta maxima, appear to differ from other species by their urea excretion pattern and levels. This study was undertaken to evaluate the influence of dietary nitrogen and arginine on ureagenesis and excretion in turbot. Juvenile turbot (29 g) were fed semi-purified diets containing graded levels of nitrogen (0-8% dry matter) and arginine (0-3% dry matter) for 6 weeks. Growth data showed that turbot have high dietary nitrogen (123 mg/kg metabolic body weight/day) and very low dietary arginine (9.3 mg/kg metabolic body weight/day) requirements for maintenance. Requirements for unit body protein accretion were 0.31 g and 0.15 g for nitrogen and arginine respectively. Post-prandial plasma urea levels and urea excretion rates showed that urea production was significantly (P<0.05) influenced by dietary arginine levels. While hepatic arginase (EC 3.5.3.1) activity increased significantly (P<0.05) with increasing dietary arginine levels, activities of other enzymes of the ornithine urea cycle were very low. Our data strongly suggest that the ornithine urea cycle is not active in the turbot liver and that dietary arginine degradation is a major pathway of ureagenesis in turbot.  相似文献   

10.
The main goal of the current study was to elucidate the role of mitochondrial arginine metabolism in the regulation of N-acetylglutamate and urea synthesis. We hypothesized that arginine catabolism via mitochondrially bound arginase augments ureagenesis by supplying ornithine for net synthesis of citrulline, glutamate, N-acetylglutamate, and aspartate. [U-(15)N(4)]arginine was used as precursor and isolated mitochondria or liver perfusion as a model system to monitor arginine catabolism and the incorporation of (15)N into various intermediate metabolites of the urea cycle. The results indicate that approximately 8% of total mitochondrial arginase activity is located in the matrix, and 90% is located in the outer membrane. Experiments with isolated mitochondria showed that approximately 60-70% of external [U-(15)N(4)]arginine catabolism was recovered as (15)N-labeled ornithine, glutamate, N-acetylglutamate, citrulline, and aspartate. The production of (15)N-labeled metabolites was time- and dose-dependent. During liver perfusion, urea containing one (U(m+1)) or two (U(m+2)) (15)N was generated from perfusate [U-(15)N(4)]arginine. The output of U(m+2) was between 3 and 8% of total urea, consistent with the percentage of activity of matrix arginase. U(m+1) was formed following mitochondrial production of [(15)N]glutamate from [alpha,delta-(15)N(2)]ornithine and transamination of [(15)N]glutamate to [(15)N]aspartate. The latter is transported to cytosol and incorporated into argininosuccinate. Approximately 70, 75, 7, and 5% of hepatic ornithine, citrulline, N-acetylglutamate, and aspartate, respectively, were derived from perfusate [U-(15)N(4)]arginine. The results substantiate the hypothesis that intramitochondrial arginase, presumably the arginase-II isozyme, may play an important role in the regulation of hepatic ureagenesis by furnishing ornithine for net synthesis of N-acetylglutamate, citrulline, and aspartate.  相似文献   

11.
During intense exercise there is an augmented production of ammonia and IMP in the exercised muscle that could be related to the establishment of peripheral fatigue. In order to prevent this accumulation, the urea cycle in the liver eliminates ammonia in the form of urea and the skeletal muscle buffers the increase of ammonia via transamination reactions. In the present study we evaluated the effect of arginine, citrulline and ornithine supplementation, intermediates of the urea cycle, on the performance of sedentary and swimming-trained rats submitted to a single bout of exhaustive exercise. We also measured the glycogen content of the soleus and gastrocnemius muscles and of the liver, as well as the plasma concentrations of ammonia, urea, glutamine, glucose and lactate. The results indicate that arginine, citrulline and ornithine supplementation increased the flux of substrate through the reaction catalysed by glutamine synthetase, leading to increased glutamine production after an exhaustive bout of exercise, and of the mechanism involved in ammonia buffering.  相似文献   

12.
The yeast "H" of the genus Candida guilliermondii can grow on hydrocarbons as the only source for carbon. Urea can serve as a nitrogen source for this yeast which lacks detectable urease activity. During urea metabolism ammonia has never been accumulated in the culture medium. However, transferring the yeast from complete urea-medium into an urea containing phophate-buffer, the degradation of urea continues and ammonia is accumulated as well as CO2 evolved. In cell-free extracts of the yeast urea amidolyase activity was detected in the presence of ATP, biotin and specific cations. Obviously, the synthesis of urea amidolyase is induced by urea and arginine and repressed by the catabolite ammonia. Similarly the synthesis of arginase is regulated by arginine and ammonia. The analytical data of the arginase action differ significantly in relation to the carbon source of the culture medium. Both the level of arginase and ornithine carbamyl-transferase change in a characteristic way during the batch-culture. From the lower level of arginase in relation to ornithine carbamyltransferase it can be concluded that especially in alkane-metabolizing yeast the arginine catabolism is not very intensive.  相似文献   

13.
The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and γ-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra × maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and γ-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.  相似文献   

14.
He Q  Kong X  Wu G  Ren P  Tang H  Hao F  Huang R  Li T  Tan B  Li P  Tang Z  Yin Y  Wu Y 《Amino acids》2009,37(1):199-208
Arginine plays an important role regulating nutrient metabolism, but the underlying mechanisms are largely unknown. This study was conducted to determine the effect of dietary arginine supplementation on the metabolome in serum of growing pigs using (1)H nuclear magnetic resonance spectroscopy. Sixteen 120-day-old pigs (48 +/- 1 kg) were randomly assigned to one of two groups, representing supplementation with 0 or 1.0% L: -arginine to corn- and soybean meal-based diets. Serum was collected after a 46-day period of treatment. Dietary arginine supplementation decreased fat deposition and increased protein accretion in the body. Principal component analysis showed that serum concentrations of low density lipoprotein, very low density lipoprotein, and urea were lower, but concentrations of creatinine, tricarboxylic acid cycle metabolites, ornithine, lysine and tyrosine were greater in arginine-supplemented than in control pigs. Additionally, the arginine treatment affected serum concentrations of nitrogenous and lipid signaling molecules (glycerophosphorylcholine and myo-inositol) and intestinal bacterial metabolites (formate, ethanol, methylamine, dimethylamine, acetate, and propionate). These novel findings suggest that dietary arginine supplementation alters the catabolism of fat and amino acids in the whole body, enhances protein synthesis in skeletal muscle, and modulates intestinal microbial metabolism in growing pigs.  相似文献   

15.
Cells of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 supplemented with micromolar concentrations of L-[(14)C]arginine took up, concentrated, and catabolized this amino acid. Metabolism of L-[(14)C]arginine generated a set of labeled amino acids that included argininosuccinate, citrulline, glutamate, glutamine, ornithine, and proline. Production of [(14)C]ornithine preceded that of [(14)C]citrulline, and the patterns of labeled amino acids were similar in cells incubated with L-[(14)C]ornithine, suggesting that the reaction of arginase, rendering ornithine and urea, is the main initial step in arginine catabolism. Ornithine followed two metabolic pathways: (i) conversion into citrulline, catalyzed by ornithine carbamoyltransferase, and then, with incorporation of aspartate, conversion into argininosuccinate, in a sort of urea cycle, and (ii) a sort of arginase pathway rendering glutamate (and glutamine) via Delta(1)pyrroline-5-carboxylate and proline. Consistently with the proposed metabolic scheme (i) an argF (ornithine carbamoyltransferase) insertional mutant was impaired in the production of [(14)C]citrulline from [(14)C]arginine; (ii) a proC (Delta(1)pyrroline-5-carboxylate reductase) insertional mutant was impaired in the production of [(14)C]proline, [(14)C]glutamate, and [(14)C]glutamine from [(14)C]arginine or [(14)C]ornithine; and (iii) a putA (proline oxidase) insertional mutant did not produce [(14)C]glutamate from L-[(14)C]arginine, L-[(14)C]ornithine, or L-[(14)C]proline. Mutation of two open reading frames (sll0228 and sll1077) putatively encoding proteins homologous to arginase indicated, however, that none of these proteins was responsible for the arginase activity detected in this cyanobacterium, and mutation of argD (N-acetylornithine aminotransferase) suggested that this transaminase is not important in the production of Delta(1)pyrroline-5-carboxylate from ornithine. The metabolic pathways proposed to explain [(14)C]arginine catabolism also provide a rationale for understanding how nitrogen is made available to the cell after mobilization of cyanophycin [multi-L-arginyl-poly(L-aspartic acid)], a reserve material unique to cyanobacteria.  相似文献   

16.
Channeling of urea cycle intermediates in situ in permeabilized hepatocytes   总被引:2,自引:0,他引:2  
Preferential use of endogenously generated intermediates by the enzymes of the urea cycle was observed using isolated rat hepatocytes made permeable to low molecular weight compounds with alpha-toxin. The permeabilized cells synthesized [14C]urea from added NH4Cl, [14C]HCO3-, ornithine, and aspartate, using succinate as a respiratory substrate; with all substrates saturating, about 4 nmol of urea were formed per min/mg dry weight of cells. Urea usually accounted for about 40-50% of the total (NH3 + ornithine)-dependent counts, arginine for less than 10%, and citrulline for about 30%. Very tight channeling of arginine between argininosuccinate lyase and arginase was shown by the fact that the addition of a 200-fold excess of unlabeled arginine to the incubations did not decrease the percentage of counts found in urea or increase that found in arginine, even though a substantial amount of the added arginine was hydrolyzed inside the cells. The channeling of argininosuccinate between its synthetase and lyase was demonstrated by similar observations; unlabeled argininosuccinate added in 200-fold excess decreased the percentage of counts in urea by only 25%. Channeling of citrulline from its site of synthesis by ornithine transcarbamylase in the mitochondrial matrix to argininosuccinate synthetase in the cytoplasmic space was also shown. These results strongly suggest that the three "soluble" cytoplasmic enzymes of the urea cycle are grouped around the mitochondria and are spatially organized within the cell in such a way that intermediates can be efficiently transferred between them.  相似文献   

17.
Sinefungin, an antifungal and antiparasitic antibiotic, is produced efficiently from ammonium citrate by prototrophic strains of Streptomyces incarnatus. The regulation of the biosynthesis of this nucleoside, composed of adenosine and ornithine, was studied by using auxotrophic mutants and a resting-cell system. Mutants blocked in arginine synthesis were not able to produce sinefungin. A uridine-negative mutant produced sinefungin in the presence of ATP, but this production was strongly inhibited when amino acids of the urea cycle were added. The same mutant produced sinefungin from aspartic acid, and this production was enhanced by ornithine. Our results show that the ornithine part of the molecule originates from arginine, liberated by either anabolic or catabolic processes.  相似文献   

18.
K. Yamamoto  A. Niwa 《Amino acids》1996,10(3):263-271
Summary A subline growing in medium without arginine and ornithine was established from a rat Reuber hepatoma cell line (R-Y121B·cho). The subline designated R-Y117B·cho was able to grow in glutamine, arginine and ornithine-free, glutamate-supplemented medium. Arginine synthesis from glutamate requires four urea cycle enzymes and another two enzymes, glutamate semialdehyde dehydrogenase and ornithine aminotransferase. Since R-Y121B·cho cells have all the urea cycle enzymes, two other enzyme activities were determined. The activities of ornithine aminotransferase and glutamate semialdehyde dehydrogenase were similar in R-Y117B·cho and its parental R-Y121B·cho cells, but R-Y117B·cho cells had higher conversion of glutamate to arginine than parental cells.  相似文献   

19.
Sinefungin, an antifungal and antiparasitic antibiotic, is produced efficiently from ammonium citrate by prototrophic strains of Streptomyces incarnatus. The regulation of the biosynthesis of this nucleoside, composed of adenosine and ornithine, was studied by using auxotrophic mutants and a resting-cell system. Mutants blocked in arginine synthesis were not able to produce sinefungin. A uridine-negative mutant produced sinefungin in the presence of ATP, but this production was strongly inhibited when amino acids of the urea cycle were added. The same mutant produced sinefungin from aspartic acid, and this production was enhanced by ornithine. Our results show that the ornithine part of the molecule originates from arginine, liberated by either anabolic or catabolic processes.  相似文献   

20.
STUDIES ON PRIMARY CULTURES OF DIFFERENTIATED FETAL LIVER CELLS   总被引:30,自引:7,他引:23  
A method for culturing non- or slowly growing, differentiated fetal rat liver cells is described. It involves the use of collagenase as a digesting agent and of a selective medium deficient in arginine which suppresses the growth of nonparenchymal liver cells. Evidence is presented that surviving cells (a) retain liver-specific urea cycle functions measured by their capacity to transform ornithine into arginine, (b) synthesize DNA in glucose-deficient medium, and (c) synthesize and secrete albumin. This primary cell culture responds to partially hepatectomized rat serum and may be an appropriate assay system for the study of mechanisms which regulate liver regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号