首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heme methyl and vinyl α-proton signals have been assigned in low-spin ferric cyanide and azide ligated derivatives of the intact tetramer of hemoglobin A, as well as the isolated chains, by reconstituting the proteins with selectively deuterated hemins. For the hemoglobin cyanide tetramer, assignment to individual subunits was effected by forming hybrid hemoglobins possessing isotope-labeled hemins in only one type of subunit. The heme methyl contact shift pattern has 1-methyl and 5-methyl shifts furthest downfield in both chains and the individual subunits of the intact hemoglobin in both the cyanide- and azide-ligated species, which is consistent with a dominant rhombic perturbation due to the proximal His-F8 imidazole π bonding in the known structure for human adult hemoglobin. The individual chain and subunit assignments confirm that the detailed electronic/magnetic properties of the heme pocket are essentially unaltered upon assembling the R-state tetramer from the isolated subunits.  相似文献   

2.
The g values from low-spin ferric hemes can be related through the t2g hole model to rhombic (V/lambda) and tetragonal (delta/lambda) ligand field components and to the lowest Kramer's doublet energy (E/lambda). The latter is also a measure of unpaired electron sharing among the iron 3d (t2g) orbitals. For a series of ligands (X), there is a monotonic increase in myoglobin complex (Mb . X) [E/lambda] values with nonheme hexacoordinate metal complex (M . X6) [eg-t2gPg] orbital separations. As the aqueous solution pKa values of the sulfurous or nitrogenous ligands in model heme complexes increase, values of V/lambda and delta/lambda increase linearly, but those of [E/lambda] decrease linearly. The greater the electron-acceptor ability of the ligand, as suggested by its position in the spectrochemical series or its pKa, the more the unpaired electron sharing among the heme t2g orbitals increases. The rate of change of [E/lambda] with V/lambda and the pKa is different with sulfurous and nitrogenous ligands, and the magnitude of both rates increases with two sulfurs less than sulfur and nitrogen less than two nitrogens bound to the heme. The maximum magnitude of this rate with V/lambda for cytochrome P-450 is four times less than that for myoglobin, which may explain, in part, the differences in ligand binding between these two hemeproteins. The perturbation of [E/lambda], V/lambda, and delta/lambda induced by strain of iron-ligand bonds is quantitated for several hemeproteins and heme models. In addition, energy level comparisons suggest that the largest-magnitude g value falls approximately along the iron-chlorin ring normal. This suggestion implies that the electron distribution of the iron at the catalytic sites of cytochrome P-450 and certain chlorin-containing enzymes is in some way similar, but distinct from that at the transport site of myoglobin.  相似文献   

3.
The proton signals for the coordinated axial imidazoles in a series of low-spin ferric bis-imidazole complexes with natural porphyrin derivatives have been located and assigned. The methyl signals of several methyl-substituted imidazoles have also been resolved for the mixed ligand complexes of imidazole and cyanide ion. The imidazole spectra for the bis complexes are essentially the same as those reported earlier for synthetic porphyrins, with the hyperfine shifts exhibiting comparable contributions from the dipolar and contract interactions. The contact contribution reflects spin transfer into a vacant imidazole π orbital. The spectra of both the mono- and bis-imidazole complex concur in predicting that only the 2-H and 5CH2 signals of an axial histidine are likely to resonate clearly outside the diamagnetic 0 to ?10 ppm from TMS region in hemoproteins. However, both the 2-H and 4-H imidazole peaks are found to be too broad to detect in a hemoprotein. Hence, it is suggested that the pair of non-heme, single proton resonances in low-spin met-myoglobin cyanides arise from the non-equivalent methylene protons at the 5-position of the histidyl imidazole. Both the resonance positions and relative linewidths in the model compounds are consistent with the data for this pair of protons in myoglobins. The possible interpretations of the average downfield bias of these signals as well as the magnitude of their spacing, are discussed in terms of the conformation of the proximal histidine relative to the heme group.  相似文献   

4.
I Morishima  M Hara 《Biochemistry》1983,22(17):4102-4107
In order to gain an insight into nonbonded interactions in the heme microenvironments of hemoproteins, proton NMR spectra of the cyanide and methylamine complexes of metmyoglobin and its derivatives reconstituted with deutero- and meso-hemins in H2O were studied under high pressures. The exchangeable NH proton of distal histidyl imidazole exhibits substantial pressure-induced shift while the proximal histidyl NH proton shows no pressure effect for the cyanide complexes. The heme peripheral proton signals, especially 5- and 8-methyl and vinyl C alpha H resonances, were also affected by pressure. These observations are interpreted as arising from pressure-induced structural changes in the heme crevice in which the pressure effects are localized to the distal side rather than the proximal side and from possible changes in the van der Waals contacts at the heme periphery with nearby amino acid residues.  相似文献   

5.
The proton signals for the coordinated axial imidazoles in a series of low-spin ferric bis-imidazole complexes with natural porphyrin derivatives have been located and assigned. The methyl signals of several methyl-substituted imidazoles have also been resolved for the mixed ligand complexes of imidazole and cyanide ion. The imidazole spectra for the bis complexes are essentially the same as those reported earlier for synthetic porphyrins, with the hyperfine shifts exhibiting comparable contributions from the dipolar and contact interactions. The contact contribution reflects spin transfer into a vacant imidazole pi orbital. The spectra of both the mono- and bis-imidazole complex concur in predicting that only the 2-H and 5-CH2 signals of an axial histidine are likely to resonate clearly outside the diamagnetic 0 to --10 ppm from TMS region in hemoproteins. However, both the 2-H and 4-H imidazole peaks are found to be too broad to detect in a hemoprotein. Hence, it is suggested that the pair of non-heme, single-proton resonances in low-spin met-myoglobin cyanides arise from the non-equivalent methylene protons at the 5-position of the histidyl imidazole. Both the resonance positions and relative linewidths in the model compounds are consistent with the data for this pair of protons in myoglobins. The possible interpretations of the average downfield bias of these signals as well as the magnitude of their spacing, are discussed in terms of the conformation of the proximal histidine relative to the heme group.  相似文献   

6.
Three of the four paramagnetically shifted heme methyl nuclear magnetic resonance peaks of cyanometmyoglobin could be assigned by comparing the proton nuclear magnetic resonance spectra of myoglobins reconstituted from selectively deuterated hemes. These spectra indicate that the fourth methyl nuclear magnetic resonance peak has to be looked for outside the region ?9 to ?43 parts per million.  相似文献   

7.
Previous spectroscopic studies of chloroperoxidase have provided evidence for endogenous thiolate sulfur donor ligation to the central heme iron of the enzyme. This conclusion is further supported by recent DNA sequence data which revealed the existence of a third cysteine residue (in addition to a disulfide pair detected earlier) in the protein available for coordination to the heme iron. Thus, chloroperoxidase shares many spectroscopic properties with cytochrome P-450, the only other known thiolate-ligated heme protein. Surprisingly, a previous electron paramagnetic resonance (EPR) study of low-spin ferric chloroperoxidase-ligand complexes (Hollenberg, P.F., Hager, L.P., Blumberg, W.E. and Peisach, J. (1980) J. Biol. Chem. 255, 4801-4807) was unable to provide clear support for the presence of a thiolate ligand, although sulfur coordination was implicated. This was, in part, because an insufficient number of complexes was examined. In this work, we have significantly expanded upon the previous EPR study by using an extensive variety of over twenty exogenous ligands including carbon, nitrogen, oxygen, phosphorus and sulfur donors. Crystal field analysis, using the procedure of Blumberg and Peisach, of the present data in comparison with data for analogous complexes of cytochrome P-450-CAM, thiolate-ligated heme model systems, and myoglobin, is clearly indicative of endogenous thiolate ligation for chloroperoxidase. In addition, the UV-visible absorption and EPR spectral data suggest that a carboxylate ligand is a possible candidate for the endogenous sixth ligand to the heme iron that is responsible for the reversible conversion of ferric chloroperoxidase from high-spin to low-spin at low temperatures (less than 200 K).  相似文献   

8.
An 1H-NMR study of ferric cytochrome P450cam in different paramagnetic states was performed. Assignment of three heme methyl resonances of the isocyanide adduct of cytochrome P450 in the ferric low-spin state was recently performed using electron exchange in the presence of putidaredoxin [Mouro, C., Bondon, A., Jung, C., Hui Bon Hoa, G., De Certaines, J.D., Spencer, R.G.S. & Simonneaux, G. (1999) FEBS Lett. 455, 302-306]. In this study, heme methyl protons of cytochrome P450 in the native high-spin and low-spin states were assigned through one-dimensional and two-dimensional magnetization transfer spectroscopy using the paramagnetic signals enhancement (PASE) method. The order of the methyl proton chemical shifts is inverted between high-spin and low-spin states. The methyl order observed in the ferric low-spin isocyanide complexes is related to the orientation of the cysteinate ligand.  相似文献   

9.
1H-NMR stereospecific assignments by conformational data-base searches   总被引:4,自引:0,他引:4  
A search procedure is described for making stereospecific assignments at prochiral centers in proteins on the basis of nuclear Overhauser enhancement and coupling constant data derived from nmr experiments. A data base comprising torsion angles, associated 1H-1H coupling constants and interproton distances is searched by a computer algorithm for sets of values that match the experimental data within specified error limits. Two different data bases are used. The first is a crystallographic data base derived from 34 well-refined crystal structures; the second is a systematic data base derived from conformations of a short peptide fragment with idealized geometry by systematically varying the phi, psi, and chi 1 torsion angles. Both approaches are tested for beta-methylene groups with model data obtained from 20 crystal structures. The results for the two methods are similar though not identical, so that a combination of the two methods appears to be useful. With an appropriate choice of error estimates, around 80% of the beta-methylene groups could be assigned in the test calculations. In addition, results with experimental nmr data indicate that a similar percentage of stereospecific assignments can be made in practical situations.  相似文献   

10.
Specific heme protons for the majority of resonances in the downfield resolved region of equine met-azido myoglobin have been assigned using solely the two-dimensional 1H NMR experiments NOESY and COSY. Metazido myoglobin provides a useful test case for the applicability of these techniques to paramagnetic proteins for the following reasons. First met-azido myoglobin is a mixed spin-state protein, with significantly shorter relaxation times and broadened lines relative to pure low-spin systems (eg., met-cyano myoglobin). Second, met-azido hemoglobin and met-azido myoglobin are important as models for the physiological forms of hemoglobin. Third, a few sperm whale met-azido myoglobin resonances have been previously assigned, which permits a comparison of assignments for these similar proteins, and a check of the method presented here.  相似文献   

11.
The complete sequence-specific assignment of the 1H nuclear magnetic resonance spectrum of a major subform of rabbit liver metallothionein-2 is presented. The sequential assignment procedures revealed a number of differences with regard to results obtained by earlier partial chemical sequencing of a preparation now known to be microheterogeneous. In particular, the present data indicate a polypeptide chain length of 62 amino acid residues as compared to the occurrence of 61 amino acids in all other known mammalian metallothioneins. In the new sequence, which was also fully confirmed by chemical means, the additional amino acid residue was identified as Ala8' inserted between Ala8 and Ala9 of the standard amino acid numeration. In addition to the predominant protein species all preparations contained a minor component, for which the two-dimensional 1H-nuclear magnetic resonance features are compatible with a chemically different, homologous metallothionein.  相似文献   

12.
1H NMR spectra of low-spin cyanide-ligated bacterial hemoglobin from Vitreoscilla (VtHb-CN) are reported. The assignments of the 1H NMR spectra of VtHb-CN have been made through MCOSY, NOESY, 1D TOE and SUPERWEFT experiments. Almost all resonance peaks of heme and ligated His85 are identified. The spin-lattice relaxation time T1's and the variation relationships of chemical shifts of these peaks with temperature have been acquired, from which the distances between the measured protons and Fe3 , and the diamagnetic chemical shifts have been acquired, respectively. The ionization constants of pKa's of ligated His85 are determined through pH titration of chemical shift, which is 4.95 for ligated His85 C2H proton. The lower pKa is attributed to the influence of the Fe3 of carrying positive charge and the coordination of His85 and Fe3 of heme.  相似文献   

13.
Circular dichroism (CD) spectroscopy has been used to probe the active site of bacterial ferric cytochrome P-450CAM. The endogenous sixth ligand to the heme iron has been displaced by an extensive series of exogenous oxygen, nitrogen, sulfur and other neutral and anionic donor ligands in an attempt to examine systematically the steric and electronic factors that influence the coupling of the heme chromophore to its protein environment. General trends for each ligand class are reported and discussed. Both the wavelengths and the intensities of the CD bands vary with ligand type and structure. All but one of the complexes exhibit negative CD maxima in their delta and Soret bands. Comparison to ferric myoglobin-thiolate complexes indicates that the negative sign observed for the cytochrome P-450 spectra is not a property of the thiolate fifth ligand, but rather arises from a different interaction of the cytochrome P-450 heme with its protein environment. Complexes with neutral oxygen donors display CD spectra that most closely resemble the spectrum of the native low-spin enzyme. Hyperporphyrin (split Soret) cytochrome P-450 complexes with thiolates, phosphines and cyanide trans to cysteinate have complex CD spectra, reflecting the intrinsic non-degeneracy of the Soret pi pi transitions. The extensive work presented herein provides an empirical foundation for use in analyzing the interaction of heme chromophores with their protein surroundings, not only for the cytochrome P-450 monooxygenases but also for heme proteins in general.  相似文献   

14.
Thirty-three metabolites were observed in perchloric acid extracts of four different tissues by in vitro 1H-NMR, GC-MS and alcohol dehydrogenase assay, and the information was used to interpret an in vivo two-dimensional nuclear Overhauser effect 1H-NMR spectrum. The metabolite profiles of the different tissues indicate a number of potential tissue-specific markers: N-acetylaspartate and gamma-aminobutyric acid for rat brain, glutamine/glutamic acid ratio for dog heart, arginine and sucrose for carrot, and t-aconitate, sucrose, asparagine/aspartic acid concentration ratios for corn roots. gamma-Aminobutyric acid and malate can be regarded as metabolic indicators for stressed corn roots. Concentrations of threonine and valine in corn roots were constant under hypoxic and salt stress, and can serve as internal standards for both in vivo and in vitro NMR studies. The in vitro information was further used to identify 12 compounds from the in vivo 1H-NMR spectra (including the two-dimensional nuclear Overhauser effect spectrum) of a carrot cylinder by correlating the chemical shift and nuclear Overhauser effect information. Thus, our choice of methods with a capability for structural determination allows the characterization of complex tissue extracts with minimum sample preparation, and supports, as well as complements, in vivo 1H-NMR investigations of metabolism.  相似文献   

15.
16.
Frozen solution electron paramagnetic resonance spectra of the aquo, methanol, and ethanol complexes of ferric myoglobin and hemoglobin are quantitatively analyzed in terms of the rhombic to tetragonal symmetry ratio and the admixture of quartet states, both with regard to central values of these parameters and the widths of their distributions. In both the methanol and ethanol complexes of ferric myoglobin the main change from the aquo complex is a narrowing of the spread in the rhombic to tetragonal symmetry ratio (reduction in structural variation). The alcohol complexes of both the alpha- and beta-chains within the tetramer of ferric hemoglobin are characterized by a lowering of symmetry (as compared with the aquo complex). Qualitative differences in distribution widths among the complexes are consistent with an origin in molecular structure and dynamics rather than in ice matrix-induced strain.  相似文献   

17.
1H NMR spectra of low-spin cyanide-ligated bacterial hemoglobin fromVitreoscilla (VtHb-CN) are reported. The assignments of the1H NMR spectra of VtHb-CN have been made through MCOSY, NOESY, 1D TOE and SUPERWEFT experiments. Almost all resonance peaks of heme and ligated His85 are identified. The spin-lattice relaxation timeT 1’s and the variation relationships of chemical shifts of these peaks with temperature have been acquired, from which the distances between the measured protons and Fe3+, and the diamagnetic chemical shifts have been acquired, respectively. The ionization constants of pK a’s of ligated His85 are determined through pH titration of chemical shift, which is 4.95 for ligated His85 C2H proton. The lower pK a is attributed to the influence of the Fe3+ of carrying positive charge and the coordination of His85 and Fe3+ of heme.  相似文献   

18.
The essentially complete assignment of the 1H-NMR spectrum of the Cu(i) form of spinach plastocyanin has been achieved using two-dimensional NMR techniques and sequence-specific resonance assignment procedures. A variety of pH and temperature conditions was utilised to overcome the problems of resonance overlap in the spectrum, degeneracy of C alpha H and solvent H2O chemical shifts, and cross-saturation of labile NH resonances. A qualitative analysis of the long-range nuclear Overhauser effects observed indicates that the backbone fold of spinach plastocyanin is very similar to that of poplar plastocyanin, whose structure has been solved by X-ray crystallography and differs in 22 of its 99 amino acid residues. The assignments provide a basis for further investigations into the structural and ion- and protein-binding properties of plastocyanin in solution.  相似文献   

19.
The low temperature optical spectra in the region of the Q00 (α-band) and Q01 (β-band) transitions of model heme complexes for b- and c-type cytochromes were measured and the results discussed in terms of the similarities and differences to the spectra of horse heart cytochrome c and other hemeproteins. Comparisons of the resolved vibronic components of the Q01 and β′ bands were made to the recent resonance Raman spectra of hemeproteins. Tentative assignment of the β′ band to Q02 type transitions has been proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号