首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PhosphoBase, a database of phosphorylation sites: release 2.0.   总被引:16,自引:0,他引:16       下载免费PDF全文
PhosphoBase contains information about phosphorylated residues in proteins and data about peptide phosphorylation by a variety of protein kinases. The data are collected from literature and compiled into a common format. The current release of PhosphoBase (October 1998, version 2.0) comprises 414 phosphoprotein entries covering 1052 phosphorylatable serine, threonine and tyrosine residues. The kinetic data from peptide phosphorylation assays for approximately 330 oligopeptides is also included. The database entries are cross-referenced to the corresponding records in the Swiss-Prot protein database and literature references are linked to MedLine records. PhosphoBase is available via the WWW at http://www.cbs.dtu. dk/databases/PhosphoBase/  相似文献   

2.
O-GLYCBASE is a database of glycoproteins with O-linked glycosylation sites. Entries with at least one experimentally verified O-glycosylation site have been compiled from protein sequence databases and literature. Each entry contains information about the glycan involved, the species, sequence, a literature reference and http-linked cross-references to other databases. Version 4.0 contains 179 protein entries, an approximate 15% increase over the last version. Sequence logos representing the acceptor specificity patterns for GalNAc, GlcNAc, mannosyl and xylosyl transferases are shown. The O-GLYCBASE database is available through the WWW at http://www.cbs.dtu.dk/databases/OGLYCBASE/  相似文献   

3.
O-GLYCBASE is a revised database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the sequence databases. Entries include information about species, sequence, glycosylation sites and glycan type and is fully cross-referenced. Compared to version 2.0 the number of entries has increased by 20%. Sequence logos displaying the acceptor specificity patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through the WWW at http://www.cbs.dtu. dk/databases/OGLYCBASE/  相似文献   

4.
Edman phosphate ((32)P) release sequencing provides a high sensitivity means of identifying phosphorylation sites in proteins that complements mass spectrometry techniques. We have developed a bioinformatic assessment tool, the cleavage of radiolabeled protein (CRP) program, which enables experimental identification of phosphorylation sites via (32)P labeling and Edman degradation of cleaved proteins obtained at femtomole levels. By observing the Edman cycle(s) in which radioactivity is found, candidate phosphorylation sites are identified by determining which residues occur at the observed number of cycles downstream from a peptide cleavage site. In cases where more than one residue could be responsible for the observed radioactivity, additional experiments with cleavage reagents having alternative specificities may resolve the ambiguity. Given a protein sequence and a cleavage site, CRP performs these experiments in silico, identifying resolved sites based on user-supplied experimental data, as well as suggesting combinations of reagents for additional analyses. Analysis of the PhosphoBase protein sequence database suggests that CRP data from two cleavage experiments can be used to identify unambiguously 60% of known phosphorylation sites. Data from additional cleavage experiments may increase the overall coverage to 70% of known sites. By comparing theoretical data obtained from the CRP program with (32)P release data obtained from an Edman sequencer, a known phosphorylation site was identified unambiguously and correctly. In addition, our results show that in vivo phosphorylation sites can be determined routinely by differential proteolysis analysis and Edman cycling with less than 1 fmol of protein and 1000 cpm.  相似文献   

5.
EXProt is a non-redundant protein database containing a selection of entries from genome annotation projects and public databases, aimed at including only proteins with an experimentally verified function. In EXProt release 2.0 we have collected entries from the Pseudomonas aeruginosa community annotation project (PseudoCAP), the Escherichia coli genome and proteome database (GenProtEC) and the translated coding sequences from the Prokaryotes division of EMBL nucleotide sequence database, which are described as having an experimentally verified function. Each entry in EXProt has a unique ID number and contains information about the species, amino acid sequence, functional annotation and, in most cases, links to references in MEDLINE/PubMed and to the entry in the original database. EXProt is indexed in SRS at CMBI (http://www.cmbi.kun.nl/srs/) and can be searched with BLAST and FASTA through the EXProt web page (http://www.cmbi.kun.nl/EXProt/).  相似文献   

6.
MetaFam is a comprehensive relational database of protein family information. This web-accessible resource integrates data from several primary sequence and secondary protein family databases. By pooling together the information from these disparate sources, MetaFam is able to provide the most complete protein family sets available. Users are able to explore the interrelationships among these primary and secondary databases using a powerful graphical visualization tool, MetaFamView. Additionally, users can identify corresponding sequence entries among the sequence databases, obtain a quick summary of corresponding families (and their sequence members) among the family databases, and even attempt to classify their own unassigned sequences. Hypertext links to the appropriate source databases are provided at every level of navigation. Global family database statistics and information are also provided. Public access to the data is available at http://metafam.ahc.umn.edu/.  相似文献   

7.
O-GLYCBASE is a comprehensive database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the SWISS-PROT and PIR databases as well as directly from recently published reports. Nineteen percent of the entries extracted from the databases needed revision with respect to O-linked glycosylation. Entries include information about species, sequence, glycosylation site and glycan type, and are fully referenced. Sequence logos displaying the acceptor specificity for the GaINAc transferase are shown. A neural network method for prediction of mucin type O-glycosylation sites in mammalian glycoproteins exclusively from the primary sequence is made available by E-mail or WWW. The O-GLYCBASE database is also available electronically through our WWW server or by anonymous FTP.  相似文献   

8.
Babnigg G  Giometti CS 《Proteomics》2006,6(16):4514-4522
In proteome studies, identification of proteins requires searching protein sequence databases. The public protein sequence databases (e.g., NCBInr, UniProt) each contain millions of entries, and private databases add thousands more. Although much of the sequence information in these databases is redundant, each database uses distinct identifiers for the identical protein sequence and often contains unique annotation information. Users of one database obtain a database-specific sequence identifier that is often difficult to reconcile with the identifiers from a different database. When multiple databases are used for searches or the databases being searched are updated frequently, interpreting the protein identifications and associated annotations can be problematic. We have developed a database of unique protein sequence identifiers called Sequence Globally Unique Identifiers (SEGUID) derived from primary protein sequences. These identifiers serve as a common link between multiple sequence databases and are resilient to annotation changes in either public or private databases throughout the lifetime of a given protein sequence. The SEGUID Database can be downloaded (http://bioinformatics.anl.gov/SEGUID/) or easily generated at any site with access to primary protein sequence databases. Since SEGUIDs are stable, predictions based on the primary sequence information (e.g., pI, Mr) can be calculated just once; we have generated approximately 500 different calculations for more than 2.5 million sequences. SEGUIDs are used to integrate MS and 2-DE data with bioinformatics information and provide the opportunity to search multiple protein sequence databases, thereby providing a higher probability of finding the most valid protein identifications.  相似文献   

9.
O-GLYCBASE is an updated database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the SWISS-PROT database. Entries include information about species, sequence, glycosylation sites and glycan type. O-GLYCBASE is now fully cross-referenced to the SWISS-PROT, PIR, PROSITE, PDB, EMBL, HSSP, LISTA and MIM databases. Compared with version 1.0 the number of entries have increased by 34%. Revision of the O-glycan assignment was performed on 20% of the entries. Sequence logos displaying the acceptor specificity patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through WWW or by anonymous FTP.  相似文献   

10.
The Protein Circular Dichroism Data Bank (PCDDB) [https://pcddb.cryst.bbk.ac.uk] is an established resource for the biological, biophysical, chemical, bioinformatics, and molecular biology communities. It is a freely-accessible repository of validated protein circular dichroism (CD) spectra and associated sample and metadata, with entries having links to other bioinformatics resources including, amongst others, structure (PDB), AlphaFold, and sequence (UniProt) databases, as well as to published papers which produced the data and cite the database entries. It includes primary (unprocessed) and final (processed) spectral data, which are available in both text and pictorial formats, as well as detailed sample and validation information produced for each of the entries. Recently the metadata content associated with each of the entries, as well as the number and structural breadth of the protein components included, have been expanded. The PCDDB includes data on both wild-type and mutant proteins, and because CD studies primarily examine proteins in solution, it also contains examples of the effects of different environments on their structures, plus thermal unfolding/folding series. Methods for both sequence and spectral comparisons are included.The data included in the PCDDB complement results from crystal, cryo-electron microscopy, NMR spectroscopy, bioinformatics characterisations and classifications, and other structural information available for the proteins via links to other databases. The entries in the PCDDB have been used for the development of new analytical methodologies, for interpreting spectral and other biophysical data, and for providing insight into structures and functions of individual soluble and membrane proteins and protein complexes.  相似文献   

11.
A strategy has been developed for the construction of a validated, comprehensive composite protein sequence database. Entries are amalgamated from primary source data bases by a largely automated set of processes in which redundant and trivially different entries are eliminated. A modular approach has been adopted to allow scientific judgement to be used at each stage of database processing and amalgamation. Source databases are assigned a priority depending on the quality of sequence validation and commenting. Rejection of entries from the lower priority database, in each pairwise comparison of databases, is carried out according to optionally defined redundancy criteria based on sequence segment mismatches. Efficient algorithms for this methodology are embodied in the COMPO software system. COMPO has been applied for over 2 years in construction and regular updating of the OWL composite protein sequence database from the source databases NBRF-PIR, SWISS-PROT, a GenBank translation retrieved from the feature tables, NBRF-NEW, NEWAT86, PSD-KYOTO and the sequences contained in the Brookhaven protein structure databank. OWL is part of the ISIS integrated data resource of protein sequence and structure [Akrigg et al. (1988) Nature, 335, 745-746]. The modular nature of the integration process greatly facilitates the frequent updating of OWL following releases of the source databases. The extent of redundancy in these sources is revealed by the comparison process. The advantages of a robust composite database for sequence similarity searching and information retrieval are discussed.  相似文献   

12.
13.
The Exon/Intron (ExInt) database incorporates information on the exon/intron structure of eukaryotic genes. Features in the database include: intron nucleotide sequence, amino acid sequence of the corresponding protein, position of the introns at the amino acid level and intron phase. From ExInt, we have also generated four additional databases each with ExInt entries containing predicted introns, introns experimentally defined, organelle introns or nuclear introns. ExInt is accessible through a retrieval system with pointers to GenBank. The database can be searched by keywords, locus name, NID, accession number or length of the protein. ExInt is freely accessible at http://intron.bic.nus.edu.sg/exint/exint.html  相似文献   

14.
MINT: a Molecular INTeraction database   总被引:26,自引:0,他引:26  
  相似文献   

15.
There is an increasing recognition that detailed nucleic acid sequence information will be useful and even required in the diagnosis, treatment and surveillance of many significant pathogens. Because generating detailed information about pathogens leads to significantly larger amounts of data, it is necessary to develop automated analysis methods to reduce analysis time and to standardize identification criteria. This is especially important for multiple pathogen assays designed to reduce assay time and costs. In this paper, we present a successful algorithm for detecting pathogens and reporting the maximum level of detail possible using multi-pathogen resequencing microarrays. The algorithm filters the sequence of base calls from the microarray and finds entries in genetic databases that most closely match. Taxonomic databases are then used to relate these entries to each other so that the microorganism can be identified. Although developed using a resequencing microarray, the approach is applicable to any assay method that produces base call sequence information. The success and continued development of this approach means that a non-expert can now perform unassisted analysis of the results obtained from partial sequence data.  相似文献   

16.
A web-based version of the RLIMS-P literature mining system was developed for online mining of protein phosphorylation information from MEDLINE abstracts. The online tool presents extracted phosphorylation objects (phosphorylated proteins, phosphorylation sites and protein kinases) in summary tables and full reports with evidence-tagged abstracts. The tool further allows mapping of phosphorylated proteins to protein entries in the UniProt Knowledgebase based on PubMed ID and/or protein name. The literature mining, coupled with database association, allows retrieval of rich biological information for the phosphorylated proteins and facilitates database annotation of phosphorylation features.  相似文献   

17.
Serum albumin (SA) is a circulating protein providing a depot and carrier for many endogenous and exogenous compounds. At least seven major binding sites have been identified by structural and functional investigations mainly in human SA. SA is conserved in vertebrates, with at least 49 entries in protein sequence databases. The multiple sequence analysis of this set of entries leads to the definition of a cladistic tree for the molecular evolution of SA orthologs in vertebrates, thus showing the clustering of the considered species, with lamprey SAs (Lethenteron japonicum and Petromyzon marinus) in a separate outgroup. Sequence analysis aimed at searching conserved domains revealed that most SA sequences are made up by three repeated domains (about 600 residues), as extensively characterized for human SA. On the contrary, lamprey SAs are giant proteins (about 1400 residues) comprising seven repeated domains. The phylogenetic analysis of the SA family reveals a stringent correlation with the taxonomic classification of the species available in sequence databases. A focused inspection of the sequences of ligand binding sites in SA revealed that in all sites most residues involved in ligand binding are conserved, although the versatility towards different ligands could be peculiar of higher organisms. Moreover, the analysis of molecular links between the different sites suggests that allosteric modulation mechanisms could be restricted to higher vertebrates.  相似文献   

18.
UniRef: comprehensive and non-redundant UniProt reference clusters   总被引:2,自引:0,他引:2  
MOTIVATION: Redundant protein sequences in biological databases hinder sequence similarity searches and make interpretation of search results difficult. Clustering of protein sequence space based on sequence similarity helps organize all sequences into manageable datasets and reduces sampling bias and overrepresentation of sequences. RESULTS: The UniRef (UniProt Reference Clusters) provide clustered sets of sequences from the UniProt Knowledgebase (UniProtKB) and selected UniProt Archive records to obtain complete coverage of sequence space at several resolutions while hiding redundant sequences. Currently covering >4 million source sequences, the UniRef100 database combines identical sequences and subfragments from any source organism into a single UniRef entry. UniRef90 and UniRef50 are built by clustering UniRef100 sequences at the 90 or 50% sequence identity levels. UniRef100, UniRef90 and UniRef50 yield a database size reduction of approximately 10, 40 and 70%, respectively, from the source sequence set. The reduced redundancy increases the speed of similarity searches and improves detection of distant relationships. UniRef entries contain summary cluster and membership information, including the sequence of a representative protein, member count and common taxonomy of the cluster, the accession numbers of all the merged entries and links to rich functional annotation in UniProtKB to facilitate biological discovery. UniRef has already been applied to broad research areas ranging from genome annotation to proteomics data analysis. AVAILABILITY: UniRef is updated biweekly and is available for online search and retrieval at http://www.uniprot.org, as well as for download at ftp://ftp.uniprot.org/pub/databases/uniprot/uniref. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

19.
SCPD: a promoter database of the yeast Saccharomyces cerevisiae.   总被引:14,自引:0,他引:14  
  相似文献   

20.
Many bioinformatic databases and applications focus on a limited domain of knowledge federating links to information in other databases. This segregated data structure likely limits our ability to investigate and understand complex biological systems. To facilitate research, therefore, we have built HIVToolbox, which integrates much of the knowledge about HIV proteins and allows virologists and structural biologists to access sequence, structure, and functional relationships in an intuitive web application. HIV-1 integrase protein was used as a case study to show the utility of this application. We show how data integration facilitates identification of new questions and hypotheses much more rapid and convenient than current approaches using isolated repositories. Several new hypotheses for integrase were created as an example, and we experimentally confirmed a predicted CK2 phosphorylation site. Weblink: [http://hivtoolbox.bio-toolkit.com].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号