首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Nicklas JA  Cline TW 《Genetics》1983,103(4):617-631
The X-chromosome:autosome balance in D. melanogaster appears to control both sex determination and dosage compensation through effects on a maternally influenced sex-linked gene called Sex-lethal (Sxl; 1-19.2). To facilitate molecular and genetic analysis of Sxl, we attempted to determine the locations of all ethyl methanesulfonate (EMS)-mutable genes vital to both sexes in the region between 6E1 and 7B1. This area includes approximately 1 cM of the genetic map on each side of Sxl and was reported by C. B. Bridges to contain 26 salivary gland polytene chromosome bands. The region appears rather sparsely populated with genes vital to both sexes, since the 122 recessive lethal mutations we recovered fell into only nine complementation groups. From one to 38 alleles of each gene were recovered. There was a preponderance of embryonic lethals in this area, although the lethal periods of loss-of-function mutations included larval, pupal and adult stages as well. Since the screen required that mutations be recessive and lethal to males, our failure to recover new Sxl alleles was the result expected for a gene with a female-specific function. An attempt was made to identify recessive male-specific lethals in this region, but none were found. Precise map positions were determined for eight of the nine vital genes. An interesting feature of the map is the location of Sxl in the middle of a 0.6- to 0.7-cM interval that appears to be devoid of genes vital to both sexes. The genetic location was determined of breakpoints near Sxl for all available chromosome rearrangements. Sxl is most likely located just to the left of band 7A1. We determined the relationship of our EMS-induced mutations in these nine genes to alleles induced by others. From this we conclude that the various genes appear to differ significantly from each other in their relative sensitivity to mutation by EMS vs. X rays.  相似文献   

2.
We have conducted a genetic analysis of the region flanking the 68C glue gene cluster in Drosophila melanogaster by isolating lethal and semilethal mutations uncovered by deficiencies which span this region. Three different mutagens were used: ethyl methanesulfonate (EMS), ethyl nitrosourea (ENU) and diepoxybutane (DEB). In the region from 68A3 to 68C11, 64 lethal, semilethal, and visible mutations were recovered. These include alleles of 13 new lethal complementation groups, as well as new alleles of rotated, low xanthine dehydrogenase, lethal(3)517 and lethal(3)B76. Six new visible mutations from within this region were recovered on the basis of their reduced viability; all proved to be semiviable alleles of lethal complementation groups. No significant differences were observed in the distributions of lethals recovered using the three different mutagens. Each lethal was mapped on the basis of complementation with overlapping deficiencies; mutations that mapped within the same interval were tested for complementation, and the relative order of the lethal groups within each interval was determined by recombination. The cytological distribution of genes within the 68A3-68C11 region is not uniform: the region from 68A2,3 to 68B1,3 (seven to ten polytene chromosome bands) contains at least 13 lethal complementation groups and the mutation low xanthine dehydrogenase; the adjoining region from 68B1,3 to 68C5,6 (six to nine bands) includes the 68C glue gene cluster, but no known lethal or visible complementation groups; and the interval from 68C5,6 to 68C10,11 (three to five bands) contains at least three lethal complementation groups and the visible mutation rotated. The developmental stage at which lethality is observed was determined for a representative allele from each lethal complementation group.  相似文献   

3.
The organization of essential genes in the unc-22 region, defined by the deficiency sDf2 on linkage group IV, has been studied. Using the balancer nT1 (IV;V), which suppresses recombination over 49 map units, 294 lethal mutations on LGIV(right) and LGV(left) were recovered using EMS mutagenesis. Twenty-six of these mutations fell into the unc-22 region. Together with previously isolated lethal mutations, there is now a total of 63 lethal mutations which fall into 31 complementation groups. Mutations were positioned on the map using eight overlapping deficiencies in addition to sDf2. The lethal alleles and deficiencies in the unc-22 region were characterized with respect to their terminal phenotypes. Mapping of these lethal mutations shows that sDf2 deletes a minimum of 1.8 map units and a maximum of 2.5 map units. A minimum estimate of essential gene number for the region using a truncated Poisson calculation is 48. The data indicate a minimum estimate of approximately 3500 essential genes in the Caenorhabditis elegans genome.  相似文献   

4.
5.
Chromosomal mutations induced by ethyl methanesulfonate (EMS) treatment can cause female sterility or maternal-effect lethality in Drosophila. EMS is particularly useful to researchers because it creates mutations independent of position effects. However, because researchers have little control over the chromosomal site of mutation, post-mutagenic genetic mapping is required to determine the cytological location of the mutation. To make a valuable set of mutants more useful to the research community, we have mapped the uncharacterized part of the female-sterile - maternal-effect lethal Tubingen collection. We mapped 49 female-sterile - maternal-effect lethal alleles and 72 lethal alleles to individual deficiency intervals on the third chromosome. In addition, we analyzed the phenotype of ovaries resulting from female sterile mutations. The observed phenotypes range from tumorous ovaries and early blocks in oogenesis, to later blocks, slow growth, blocks in stage 10, to apparently full development of the ovary. The mapping and phenotypic characterization of these 121 mutations provide the necessary information for the researcher to consider a specific mutant as a candidate for their gene of interest.  相似文献   

6.
Mutations Affecting Functions of the Drosophila Gene Glued   总被引:5,自引:0,他引:5       下载免费PDF全文
Glued mutations in Drosophila comprise an essential complementation group with complex developmental effects. The original Glued mutation (Gl) has dominant nonlethal effects in heterozygous flies, principally on the morphogenesis of the visual system. Gl also has a recessive lethal effect early in development. Mutations that reverse the dominant visual effects of Gl (GlR mutations) were induced by gamma-radiation or by insertions of the transposable P element. The GlR(G) mutations induced by gamma-radiation do not reverse the lethal effect of Gl; these appear to be null mutations, some of which (and possibly all) delete segments of the Glued region. The GlR(P) mutations induced by insertion of the P element also reverse concomitantly a recessive lethal effect of Gl, suggesting that both the recessive and dominant effects are controlled by the same gene. The reversal of a lethal effect of Gl by the P element is remarkable, since it indicates that an essential gene function can be restored by insertion of unrelated DNA. Another class of lethal Glued mutations was induced in the normal Gl+ strain by ethyl methanesulfonate (EMS). The EMS mutations belong to the same essential complementation group as Gl, but do not have the strong dominant effects of Gl on the visual system. The GlR(P) mutations provide a molecular marker for the Glued gene, which was used to map the gene to the 70C2 band of chromosome 3L by in situ hybridization of a P element probe to polytene chromosomes from the GlR(P) strains and also to isolate clones of Glued genomic DNA for molecular studies of the normal gene and the various Glued mutations.  相似文献   

7.
The recessive X-linked mutation erect wing (ewg), in Drosophila melanogaster, was characterized as a flightless behavioral mutant which specifically lacked the dorsal longitudinal flight muscles [1]. This mutation was mapped distal to the X chromosomal locus yellow, and further to the cytological segment 1 A 1 to 1 B2-3 [2]. Several lethal complementation groups have been mapped to this interval [3]. Our complementation tests show that ewg is allelic to one lethal complementation group in the region 1 A 1 to 1 B2-3. A further analysis of ewg and several lethal alleles isolated at this locus was undertaken in the present investigation. Most of the lethal alleles at this locus lead to a late embryonic or early larval lethal phase, indicating that the ewg+ gene product is necessary for the development of more than just the dorsal longitudinal flight muscles. Intragenic complementation was observed for some of the ewg lethal alleles. Genetic mosaics with ewg lethal alleles showed that mutant cell clones in cuticular structures are viable. Mosaic analysis is consistent with a mesodermal defect associated with the locus.  相似文献   

8.
We have analyzed a region of approximately 5.4 million base pairs for mutations, which under standard laboratory conditions result in developmental arrest, sterility, or maternal-effect lethality in Caenorhabditis elegans. Lethal mutations were isolated, maintained, and genetically manipulated as homozygotes using sDp2– a duplication of the left half of chromosome I. All of the lethals and rearrangements used in this analysis were balanced by sDp2. Relatively low doses of mutagen, (approximately 15 mM ethylmethane sulfate; EMS), were used so as to limit the occurrence of second-site mutations, thus increasing the probability of recovering single nucleotide substitutions. Treatment of over 32,400 marked chromosomes resulted in 486 analyzed mutations. In this paper, we add 133 previously unidentified let genes, isolated in the EMS screens, and one let gene identified by a γ-ray induced mutation, to our collection of 103 essential genes. We also recovered lethal alleles of genes for which visible mutants already existed. In total, eight deficiencies and alleles of 237 essential genes were identified. Eighty-nine of the previously unidentified let genes are represented by more than one lethal allele. Statistical analysis indicates a minimum estimate of 400 essential genes in the region of chromosome I balanced by sDp2. This region occupies approximately half of chromosome I, and contains over 1135 protein-coding genes predicted from the genomic sequence data. Thus, approximately one-third of the predicted genes are estimated to be essential. Of these approximately 60% are represented by lethal alleles. Less than 2% of the lethal-bearing strains recovered in our analysis, including the eight genetically definable deficiencies, carried more than one lethal mutation. Several screens were used to recover mutations for this analysis. Because all the mutations were isolated using the same balancer, under similar screening conditions, it was possible to compare intervals within the sDp2 region with each other. The fraction of essential genes that present relatively large targets for EMS was highest within the central cluster (dpy-5 to unc-13). Received: 12 July 1999 / Accepted: 6 December 1999  相似文献   

9.
Twenty-one X-linked recessive lethal and sterile mutations balanced by an unlinked X-chromosome duplication have been identified following EMS treatment of the small nematode, Caenorhabditis elegans. The mutations have been assigned by complementation analysis to 14 genes, four of which have more than one mutant allele. Four mutants, all alleles, are temperature-sensitive embryonic lethals. Twelve mutants, in ten genes, are early larval lethals. Two mutants are late larval lethals, and the expression of one of these is influenced by the number of X chromosomes in the genotype. Two mutants are maternal-effect lethals; for both, oocytes made by mutant hermaphrodites are rescuable by wild-type sperm. One of the maternal-effect lethals and two larval lethals are allelic. One mutant makes defective sperm. The lethals and steriles have been mapped by recombination and by complementation testing against 19 deficiencies identified after X-ray treatment. The deficiencies divide the region, about 15% of the X-chromosome linkage map, into at least nine segments. The deficiencies have also been used to check the phenotypes of hemizygous lethal and sterile hermaphrodites.  相似文献   

10.
E P Walsh  N H Brown 《Genetics》1998,150(2):791-805
Drosophila integrins have essential adhesive roles during development, including adhesion between the two wing surfaces. Most position-specific integrin mutations cause lethality, and clones of homozygous mutant cells in the wing do not adhere to the apposing surface, causing blisters. We have used FLP-FRT induced mitotic recombination to generate clones of randomly induced mutations in the F1 generation and screened for mutations that cause wing blisters. This phenotype is highly selective, since only 14 lethal complementation groups were identified in screens of the five major chromosome arms. Of the loci identified, 3 are PS integrin genes, 2 are blistered and bloated, and the remaining 9 appear to be newly characterized loci. All 11 nonintegrin loci are required on both sides of the wing, in contrast to integrin alpha subunit genes. Mutations in 8 loci only disrupt adhesion in the wing, similar to integrin mutations, while mutations in the 3 other loci cause additional wing defects. Mutations in 4 loci, like the strongest integrin mutations, cause a "tail-up" embryonic lethal phenotype, and mutant alleles of 1 of these loci strongly enhance an integrin mutation. Thus several of these loci are good candidates for genes encoding cytoplasmic proteins required for integrin function.  相似文献   

11.
To accelerate functional genomic research in tomato, we developed a Micro-Tom TILLING (Targeting Induced Local Lesions In Genomes) platform. DNA pools were constructed from 3,052 ethyl methanesulfonate (EMS) mutant lines treated with 0.5 or 1.0% EMS. The mutation frequency was calculated by screening 10 genes. The 0.5% EMS population had a mild mutation frequency of one mutation per 1,710 kb, whereas the 1.0% EMS population had a frequency of one mutation per 737 kb, a frequency suitable for producing an allelic series of mutations in the target genes. The overall mutation frequency was one mutation per 1,237 kb, which affected an average of three alleles per kilobase screened. To assess whether a Micro-Tom TILLING platform could be used for efficient mutant isolation, six ethylene receptor genes in tomato (SlETR1-SlETR6) were screened. Two allelic mutants of SlETR1 (Sletr1-1 and Sletr1-2) that resulted in reduced ethylene responses were identified, indicating that our Micro-Tom TILLING platform provides a powerful tool for the rapid detection of mutations in an EMS mutant library. This work provides a practical and publicly accessible tool for the study of fruit biology and for obtaining novel genetic material that can be used to improve important agronomic traits in tomato.  相似文献   

12.
Of 24 ethyl methanesulphonate-induced, recessive-lethal mutations in the region 9E1-9F13 of the X chromosome of Drosophila melanogaster, eight fall into a typically homogeneous lethal complementation group associated with the raspberry (ras) locus. Mutations in this group have previously been shown to be pleiotropic, affecting not only ras but also two other genetic entities, gua 1 and pur 1, which yield auxotrophic mutations.--The eight new mutations have been characterized phenotypically in double heterozygotes with gua 1, pur 1 and ras mutations. Despite their homogeneity in lethal complementation tests, the mutations prove quite diverse. For example, two mutations have little or no effect on eye color in double heterozygotes with ras2. The differences between the lethals are allele-specific and cannot be explained as a trivial outcome of a hypomorphic series.--Taken alone, the lethal complementation studies mask the complexity of the locus and the diversity of its recessive lethal alleles. By extension, we argue that the general use of lethal saturation studies provides an unduly simplified image of genetic organization. We suggest that the reason why recessive lethal mutations rarely present complex complementation patterns is that complex loci tend to produce mutations that affect several subfunctions.  相似文献   

13.
Negatively reinforced olfactory conditioning has been widely employed to identify learning and memory genes, signal transduction pathways and neural circuitry in Drosophila. To delineate the molecular and cellular processes underlying reward-mediated learning and memory, we developed a novel assay system for positively reinforced olfactory conditioning. In this assay, flies were involuntarily exposed to the appetitive unconditioned stimulus sucrose along with a conditioned stimulus odour during training and their preference for the odour previously associated with sucrose was measured to assess learning and memory capacities. After one training session, wild-type Canton S flies displayed reliable performance, which was enhanced after two training cycles with 1-min or 15-min inter-training intervals. Higher performance scores were also obtained with increasing sucrose concentration. Memory in Canton S flies decayed slowly when measured at 30 min, 1 h and 3 h after training; whereas, it had declined significantly at 6 h and 12 h post-training. When learning mutant t beta h flies, which are deficient in octopamine, were challenged, they exhibited poor performance, validating the utility of this assay. As the Drosophila model offers vast genetic and transgenic resources, the new appetitive conditioning described here provides a useful tool with which to elucidate the molecular and cellular underpinnings of reward learning and memory. Similar to negatively reinforced conditioning, this reward conditioning represents classical olfactory conditioning. Thus, comparative analyses of learning and memory mutants in two assays may help identify the molecular and cellular components that are specific to the unconditioned stimulus information used in conditioning.  相似文献   

14.
Nash D  Janca FC 《Genetics》1983,105(4):957-968
In a small region of the X chromosome of Drosophila melanogaster, we have found that a third of the mutations that appear to act as lethals in segmental haploids are viable in homozygous mutant individuals. These viable mutations fall into four complementation groups. The most reasonable explanation of these mutations is that they are a subset of functionally hypomorphic alleles of essential genes: hypomorphic mutations with activity levels above a threshold required for survival, but below twice that level, should behave in this manner. We refer to these mutations as "haplo-specific lethal mutations." In studies of autosomal lethals, haplo-specific lethal mutations can be included in lethal complementation tests without being identified as such. Accidental inclusion of disguised haplo-specific lethals in autosomal complementation tests will generate spurious examples of interallelic complementation.  相似文献   

15.
The ad hoc genetic correlation between ethanol sensitivity and learning mechanisms in Drosophila could overemphasize a common process supporting both behaviors. To challenge directly the hypothesis that these mechanisms are singular, we examined the learning phenotypes of 10 new strains. Five of these have increased ethanol sensitivity, and the other 5 do not. We tested place and olfactory memory in each of these lines and found two new learning mutations. In one case, altering the tribbles gene, flies have a significantly reduced place memory, elevated olfactory memory, and normal ethanol response. In the second case, mutation of a gene we name ethanol sensitive with low memory (elm), place memory was not altered, olfactory memory was sharply reduced, and sensitivity to ethanol was increased. In sum, however, we found no overall correlation between ethanol sensitivity and place memory in the 10 lines tested. Furthermore, there was a weak but nonsignificant correlation between ethanol sensitivity and olfactory learning. Thus, mutations that alter learning and sensitivity to ethanol can occur independently of each other and this implies that the set of genes important for both ethanol sensitivity and learning is likely a subset of the genes important for either process.  相似文献   

16.
Ho-Chun Wei  Huidy Shu  James V Price 《Génome》2003,46(6):1049-1058
Assigning functional significance to completed genome sequences is one of the next challenges in biological science. Conventional genetic tools such as deficiency chromosomes help assign essential complementation groups to their corresponding genes. We describe an F2 genetic screen to identify lethal mutations within cytogenetic region 61D-61F of the third chromosome of Drosophila melanogaster. One hundred sixteen mutations were identified by their failure to complement both Df(3L)bab-PG and Df(3L)3C7. These alleles were assigned to 14 complementation groups and 9 deficiency intervals. Complementation groups were ordered using existing deficiencies, as well as new deficiencies generated in this study. With the aid of the genomic sequence, genetic and physical maps in the region were correlated by use of PCR to localize the breakpoints of deficiencies within a 268-kb genomic contig (GenBank accession No. AC005847). Six essential complementation groups were assigned to specific genes, including genes encoding a porphobilinogen deaminase and a Sac1-like protein.  相似文献   

17.
J. K. Lim 《Genetics》1979,93(3):681-701
During a study of delayed mutations, an unstable X chromosome (Uc) was detected. Spontaneous X-linked recessive lethal mutations were detected in 34 of 993 sperm sampled from 50 males carrying this chromosome. All but three of the 34 lethals originated as clusters in three of the 50 males Cytogenetic and complementation analyses revealed 14 intrachromosomal rearrangements: ten inversions, two reverse repeats, one deficiency and one transposition. Eight of the 14 rearrangements have one break in the 6F1-2 doublet and two rearrangements have a break in 6F1-5 of the X chromosome. The remaining four rearrangements have in addition to the aberrations a lethal point mutation between 6F1 and 6F5. Though each of the lethal lines was established from a single lethal-bearing female, chromosome polymorphism is evident in 17 of the 18 lines having rearrangements, with certain aberrations recurring in several lines. The lethal mutations revert frequently to the nonlethal state, and cytological evidence indicates that more than one mutational event may occur at the unstable locus of the chromosome during one generation. Two lethal lines had more than one type of chromosome rearrangement sharing a common breakpoint. These observations are consistent with the view that the instability of the Uc lines is caused by a transposable element capable of site-specific chromosome breaks and perpetual generation of mutations. The mutagenic and genetic properties of transposable elements can be related to the two-mutation theory of KNUDSON (1971) for cancer initiation.  相似文献   

18.
From 10,900 F1 progeny of ethyl methanesulfonate (EMS)-mutagenized Caenorhabditis elegans nematodes, we isolated 194 lethal mutations on the left arm of LGV, a region balanced by the reciprocal translocation of eT1. The analysis of 166 of those mutations resulted in the identification of one deficiency and alleles of 78 genes including 38 new genes, thus increasing the number of identified essential genes to 101. We estimate that there are a minimum of 120 essential genes in this region, which comprises approximately 7% of the recombinational distance, although only about 4.2% of the genes, in C. elegans. We calculate that there are a minimum of 2850 essential genes in the genome. The left arm of LGV has two recombinational gene clusters separated by a high-recombination and/or essential gene-sparse region. One gene in this region, let-330, is the largest EMS target on the left arm of LGV, with twice as many alleles (16) as the next most EMS-mutable genes, let-332 and rol-3. Another gene in the sparse region, lin-40, and the region near lin-40 are major targets for Tc1 mobilization-induced mutagenesis. The analysis of essential genes in large regions should help to define C. elegans in terms of all its genes and aid in the understanding of the relationship of genome structure to genome function.  相似文献   

19.
Most animals depend on olfaction for survival and procreation. Odor-guided behavior is a quantitative trait, with phenotypic variation due to multiple segregating quantitative trait loci (QTL). Despite its profound biological importance, the genetic basis of naturally occurring variation in olfactory behavior remains unexplored. Here, we mapped a single Drosophila QTL affecting variation in avoidance response to benzaldehyde, using a population of recombinant inbred lines. Deficiency complementation mapping resolved this region into one female- and one male-specific QTL. Subsequent quantitative complementation tests to all available mutations of positional candidate genes showed that the female-specific QTL failed to complement a P-element insertional mutation, l(3)04276. The P-element insertion was in the intron of a novel gene, Vanaso, which contains a putative guanylate binding protein domain, is highly polymorphic, and is expressed in the third antennal segment, the major olfactory organ of Drosophila. No expression was detected in the fly brain, suggesting that Vanaso plays a role in peripheral chemosensory processes rather than in central integration of olfactory information. QTL mapping followed by quantitative complementation tests to deficiencies and mutations is an effective strategy for gene discovery that allows characterization of effects of recessive lethal genes on adult phenotypes and here enabled identification of a candidate gene that contributes to sex-specific quantitative variation in olfactory behavior.  相似文献   

20.
Two genomic clones exhibiting a maternal-specific pattern of expression map to cytological region 52A. To elucidate the function of these clones we have undertaken a mutagenesis of the cytological region 51D-52A. This paper presents the results of this screen and the preliminary analysis of female-sterile and lethal mutations isolated. A total of twelve complementation groups have been identified, four of which are defined exclusively by female-sterile alleles. Only one visible mutation was isolated, a recessive temperature-sensitive allele of Thickened-arista (Tarts). Several of the seven lethal loci display an embryonic lethal phase. Three of the four female-sterile loci affect chorion structure with one resulting in underamplification of the chorion genes, and two (possibly three) of the four female-steriles affect nuclear division/DNA replication. Thus it appears that this is a "developmentally important" region, possibly representing a clustering of genes involved in either DNA replication or nuclear division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号