首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The γ‐proteobacterium Arsenophonus and its close relatives (Arsenophonus and like organisms, ALOs) are emerging as a novel clade of endosymbionts, which are exceptionally widespread in insects. The biology of ALOs is, however, in most cases entirely unknown, and it is unclear how these endosymbionts spread across insect populations. Here, we investigate this aspect through the examination of the presence, the diversity and the evolutionary history of ALOs in 25 related species of blood‐feeding flies: tsetse flies (Glossinidae), louse flies (Hippoboscidae) and bat flies (Nycteribiidae and Streblidae). While these endosymbionts were not found in tsetse flies, we identify louse flies and bat flies as harbouring the highest diversity of ALO strains reported to date, including a novel ALO clade, as well as Arsenophonus and the recently described Candidatus Aschnera chinzeii. We further show that the origin of ALO endosymbioses extends deep into the evolutionary past of louse flies and bat flies, and that it probably played a major role in the ecological specialization of their hosts. The evolutionary history of ALOs is notably complex and was shaped by both vertical transmission and horizontal transfers with frequent host turnover and apparent symbiont replacement in host lineages. In particular, ALOs have evolved repeatedly and independently close relationships with diverse groups of louse flies and bat flies, as well as phylogenetically more distant insect families, suggesting that ALO endosymbioses are exceptionally dynamic systems.  相似文献   

2.
1. Many insects host secondary bacterial symbionts that are known to have wide‐ranging effects on their hosts, from host‐plant use to resistance against natural enemies. This has been most widely studied in aphids, which have become a model system to study insect–bacteria interactions. 2. While there is an increasing understanding of the role of symbionts in aphids from controlled laboratory studies, we are only beginning to explore the impact of hosting these symbionts on eco‐evolutionary dynamics in natural systems. To date, many research groups have identified bacterial symbionts from various aphid species, providing us with a bank of literature on aphid–symbiont associations in natural populations. 3. The role of secondary symbionts in aphids is discussed, and the taxonomic and geographical distribution of symbionts among aphids are summarised, and the potential reasons for the patterns observed. The need to test for multiple symbiont species (and co‐infections) across many individuals and the whole distribution range of an aphid is highlighted, including sampling on all known host‐plant species. 4. It is further important also to consider variation within the symbiont, the aphid‐host and the surrounding community, e.g. host‐plants or the natural enemies, to understand how these have the potential to mediate aphid–symbiont interactions. 5. Finally, the knowledge gained from experimental work should now be used to understand the role of aphid secondary symbionts in field systems, to fully understand the potentially far‐reaching consequences of aphid endosymbionts on community and ecosystem processes.  相似文献   

3.
Deep‐sea vesicomyid clams live in mutualistic symbiosis with chemosynthetic bacteria that are inherited through the maternal germ line. On evolutionary timescales, strictly vertical transmission should lead to cospeciation of host mitochondrial and symbiont lineages; nonetheless, examples of incongruent phylogenies have been reported, suggesting that symbionts are occasionally horizontally transmitted between host species. The current paradigm for vesicomyid clams holds that direct transfers cause host shifts or mixtures of symbionts. An alternative hypothesis suggests that hybridization between host species might explain symbiont transfers. Two clam species, Archivesica gigas and Phreagena soyoae, frequently co‐occur at deep‐sea hydrocarbon seeps in the eastern Pacific Ocean. Although the two species typically host gammaproteobacterial symbiont lineages marked by divergent 16S rRNA phylotypes, we identified a number of clams with the A. gigas mitotype that hosted symbionts with the P. soyoae phylotype. Demographic inference models based on genome‐wide SNP data and three Sanger sequenced gene markers provided evidence that A. gigas and P. soyoae hybridized in the past, supporting the hypothesis that hybridization might be a viable mechanism of interspecific symbiont transfer. These findings provide new perspectives on the evolution of vertically transmitted symbionts and their hosts in deep‐sea chemosynthetic environments.  相似文献   

4.
Many symbioses have costs and benefits to their hosts that vary with the environmental context, which itself may vary in space. The same symbiont may be a mutualist in one location and a parasite in another. Such spatially conditional mutualisms pose a dilemma for hosts, who might evolve (higher or lower) horizontal or vertical transmission to increase their chances of being infected only where the symbiont is beneficial. To determine how transmission in hosts might evolve, we modeled transmission evolution where the symbiont had a spatially conditional effect on either host lifespan or fecundity. We found that over ecological time, symbionts that affected lifespan but not fecundity led to high frequencies of infected hosts in areas where the symbiont was beneficial and low frequencies elsewhere. In response, hosts evolved increased horizontal transmission only when the symbiont affected lifespan. We also modeled transmission evolution in symbionts, which evolved high horizontal and vertical transmission, indicating a possible host–symbiont conflict over transmission mode. Our results suggest an eco‐evolutionary feedback where the component of host fitness affected by a conditionally mutualistic symbiont in turn determines its distribution in the population, and, through this, the transmission mode that evolves.  相似文献   

5.
The microbiome can significantly impact host phenotypes and serve as an additional source of heritable genetic variation. While patterns across eukaryotes are consistent with a role for symbiotic microbes in host macroevolution, few studies have examined symbiont‐driven host evolution or the ecological implications of a dynamic microbiome across temporal, spatial or ecological scales. The pea aphid, Acyrthosiphon pisum, and its eight heritable bacterial endosymbionts have served as a model for studies on symbiosis and its potential contributions to host ecology and evolution. But we know little about the natural dynamics or ecological impacts of the heritable microbiome of this cosmopolitan insect pest. Here we report seasonal shifts in the frequencies of heritable defensive bacteria from natural pea aphid populations across two host races and geographic regions. Microbiome dynamics were consistent with symbiont responses to host‐level selection and findings from one population suggested symbiont‐driven adaptation to seasonally changing parasitoid pressures. Conversely, symbiont levels were negatively correlated with enemy‐driven mortality when measured across host races, suggesting important ecological impacts of host race microbiome divergence. Rapid drops in symbiont frequencies following seasonal peaks suggest microbiome instability in several populations, with potentially large costs of ‘superinfection’ under certain environmental conditions. In summary, the realization of several laboratory‐derived, a priori expectations suggests important natural impacts of defensive symbionts in host‐enemy eco‐evolutionary feedbacks. Yet negative findings and unanticipated correlations suggest complexities within this system may limit or obscure symbiont‐driven contemporary evolution, a finding of broad significance given the widespread nature of defensive microbes across plants and animals.  相似文献   

6.
Aphids may harbor a wide variety of facultative bacterial endosymbionts. These symbionts are transmitted maternally with high fidelity and they show horizontal transmission as well, albeit at rates too low to enable infectious spread. Such symbionts need to provide a net fitness benefit to their hosts to persist and spread. Several symbionts have achieved this by evolving the ability to protect their hosts against parasitoids. Reviewing empirical work and some models, I explore the evolutionary ecology of symbiont‐conferred resistance to parasitoids in order to understand how defensive symbiont frequencies are maintained at the intermediate levels observed in aphid populations. I further show that defensive symbionts alter the reciprocal selection between aphids and parasitoids by augmenting the heritable variation for resistance, by increasing the genetic specificity of the host–parasitoid interaction, and by inducing environment‐dependent trade‐offs. These effects are conducive to very dynamic, symbiont‐mediated coevolution that is driven by frequency‐dependent selection. Finally I argue that defensive symbionts represent a problem for biological control of pest aphids, and I propose to mitigate this problem by exploiting the parasitoids’ demonstrated ability to rapidly evolve counteradaptations to symbiont‐conferred resistance.  相似文献   

7.
Understanding the coevolution of hosts and parasites is a long‐standing goal of evolutionary biology. There is a well‐developed theoretical framework to describe the evolution of host–parasite interactions under the assumption of direct, two‐species interactions, which can result in arms race dynamics or sustained genotype fluctuations driven by negative frequency dependence (Red Queen dynamics). However, many hosts rely on symbionts for defence against parasites. Whilst the ubiquity of defensive symbionts and their potential importance for disease control are increasingly recognized, there is still a gap in our understanding of how symbionts mediate or possibly take part in host–parasite coevolution. Herein we address this question by synthesizing information already available from theoretical and empirical studies. First, we briefly introduce current hypotheses on how defensive mutualisms evolved from more parasitic relationships and highlight exciting new experimental evidence showing that this can occur very rapidly. We go on to show that defensive symbionts influence virtually all important determinants of coevolutionary dynamics, namely the variation in host resistance available to selection by parasites, the specificity of host resistance, and the trade‐off structure between host resistance and other components of fitness. In light of these findings, we turn to the limited theory and experiments available for such three‐species interactions to assess the role of defensive symbionts in host–parasite coevolution. Specifically, we discuss under which conditions the defensive symbiont may take over from the host the reciprocal adaptation with parasites and undergo its own selection dynamics, thereby altering or relaxing selection on the hosts' own immune defences. Finally, we address potential effects of defensive symbionts on the evolution of parasite virulence. This is an important problem for which there is no single, clear‐cut prediction. The selection on parasite virulence resulting from the presence of defensive symbionts in their hosts will depend on the underlying mechanism of defence. We identify the evolutionary predictions for different functional categories of symbiont‐conferred resistance and we evaluate the empirical literature for supporting evidence. We end this review with outstanding questions and promising avenues for future research to improve our understanding of symbiont‐mediated coevolution between hosts and parasites.  相似文献   

8.
Virtually all aphids maintain an obligate mutualistic symbiosis with bacteria from the Buchnera genus, which produce essential nutrients for their aphid hosts. Most aphids from the Lachninae subfamily have been consistently found to house additional endosymbionts, mainly Serratia symbiotica. This apparent dependence on secondary endosymbionts was proposed to have been triggered by the loss of the riboflavin biosynthetic capability by Buchnera in the Lachninae last common ancestor. However, an integral large‐scale analysis of secondary endosymbionts in the Lachninae is still missing, hampering the interpretation of the evolutionary and genomic analyses of these endosymbionts. Here, we analysed the endosymbionts of selected representatives from seven different Lachninae genera and nineteen species, spanning four tribes, both by FISH (exploring the symbionts’ morphology and tissue tropism) and 16S rRNA gene sequencing. We demonstrate that all analysed aphids possess dual symbiotic systems, and while most harbour S. symbiotica, some have undergone symbiont replacement by other phylogenetically‐distinct bacterial taxa. We found that these secondary associates display contrasting cell shapes and tissue tropism, and some appear to be lineage‐specific. We propose a scenario for symbiont establishment in the Lachninae, followed by changes in the symbiont's tissue tropism and symbiont replacement events, thereby highlighting the extraordinary versatility of host‐symbiont interactions.  相似文献   

9.
Wolbachia is a common heritable bacterial symbiont in insects. Its evolutionary success lies in the diverse phenotypic effects it has on its hosts coupled to its propensity to move between host species over evolutionary timescales. In a survey of natural host–symbiont associations in a range of Drosophila species, we found that 10 of 16 Wolbachia strains protected their hosts against viral infection. By moving Wolbachia strains between host species, we found that the symbiont genome had a much greater influence on the level of antiviral protection than the host genome. The reason for this was that the level of protection depended on the density of the symbiont in host tissues, and Wolbachia rather than the host‐controlled density. The finding that virus resistance and symbiont density are largely under the control of symbiont genes in this system has important implications both for the evolution of these traits and for public health programmes using Wolbachia to prevent mosquitoes from transmitting disease.  相似文献   

10.
The microbial symbionts of eukaryotes influence disease resistance in many host‐parasite systems. Symbionts show substantial variation in both genotype and phenotype, but it is unclear how natural selection maintains this variation. It is also unknown whether variable symbiont genotypes show specificity with the genotypes of hosts or parasites in natural populations. Genotype by genotype interactions are a necessary condition for coevolution between interacting species. Uncovering the patterns of genetic specificity among hosts, symbionts, and parasites is therefore critical for determining the role that symbionts play in host‐parasite coevolution. Here, we show that the strength of protection conferred against a fungal pathogen by a vertically transmitted symbiont of an aphid is influenced by both host‐symbiont and symbiont‐pathogen genotype by genotype interactions. Further, we show that certain symbiont phylogenetic clades have evolved to provide stronger protection against particular pathogen genotypes. However, we found no evidence of reciprocal adaptation of co‐occurring host and symbiont lineages. Our results suggest that genetic variation among symbiont strains may be maintained by antagonistic coevolution with their host and/or their host's parasites.  相似文献   

11.
Sulfur-oxidizing chemoautotrophic (thioautotrophic) bacteria are now known to occur as endosymbionts in phylogenetically diverse bivalve hosts found in a wide variety of marine environments. The evolutionary origins of these symbioses, however, have remained obscure. Comparative 16S rRNA sequence analysis was used to investigate whether thioautotrophic endosymbionts are monophyletic or polyphyletic in origin and to assess whether phylogenetic relationships inferred among these symbionts reflect those inferred among their hosts. 16S rRNA gene sequences determined for endosymbionts from nine newly examined bivalve species from three families (Vesicomyidae, Lucinidae, and Solemyidae) were compared with previously published 16S rRNA sequences of thioautotrophic symbionts and free-living bacteria. Distance and parsimony methods were used to infer phylogenetic relationships among these bacteria. All newly examined symbionts fall within the gamma subdivision of the Proteobacteria, in clusters containing previously examined symbiotic thioautotrophs. The closest free-living relatives of these symbionts are bacteria of the genus Thiomicrospira. Symbionts of the bivalve superfamily Lucinacea and the family Vesicomyidae each form distinct monophyletic lineages which are strongly supported by bootstrap analysis, demonstrating that host phylogenies inferred from morphological and fossil evidence are congruent with phylogenies inferred for their respective symbionts by molecular sequence analysis. The observed congruence between host and symbiont phylogenies indicates shared evolutionary history of hosts and symbiont lineages and suggests an ancient origin for these symbioses. Correspondence to: D.L. Distel  相似文献   

12.
The level of integration between associated partners can range from ectosymbioses to extracellular and intracellular endosymbioses, and this range has been assumed to reflect a continuum from less intimate to evolutionarily highly stable associations. In this study, we examined the specificity and evolutionary history of marine symbioses in a group of closely related sulphur‐oxidizing bacteria, called Candidatus Thiosymbion, that have established ecto‐ and endosymbioses with two distantly related animal phyla, Nematoda and Annelida. Intriguingly, in the ectosymbiotic associations of stilbonematine nematodes, we observed a high degree of congruence between symbiont and host phylogenies, based on their ribosomal RNA (rRNA) genes. In contrast, for the endosymbioses of gutless phallodriline annelids (oligochaetes), we found only a weak congruence between symbiont and host phylogenies, based on analyses of symbiont 16S rRNA genes and six host genetic markers. The much higher degree of congruence between nematodes and their ectosymbionts compared to those of annelids and their endosymbionts was confirmed by cophylogenetic analyses. These revealed 15 significant codivergence events between stilbonematine nematodes and their ectosymbionts, but only one event between gutless phallodrilines and their endosymbionts. Phylogenetic analyses of 16S rRNA gene sequences from 50 Cand. Thiosymbion species revealed seven well‐supported clades that contained both stilbonematine ectosymbionts and phallodriline endosymbionts. This closely coupled evolutionary history of marine ecto‐ and endosymbionts suggests that switches between symbiotic lifestyles and between the two host phyla occurred multiple times during the evolution of the Cand. Thiosymbion clade, and highlights the remarkable flexibility of these symbiotic bacteria.  相似文献   

13.
Range expansion results from complex eco‐evolutionary processes where range dynamics and niche shifts interact in a novel physical space and/or environment, with scale playing a major role. Obligate symbionts (i.e. organisms permanently living on hosts) differ from free‐living organisms in that they depend on strong biotic interactions with their hosts which alter their niche and spatial dynamics. A symbiotic lifestyle modifies organism–environment relationships across levels of organisation, from individuals to geographical ranges. These changes influence how symbionts experience colonisation and, by extension, range expansion. Here, we investigate the potential implications of a symbiotic lifestyle on range expansion capacity. We present a unified conceptual overview on range expansion of symbionts that integrates concepts grounded in niche and metapopulation theories. Overall, we explain how niche‐driven and dispersal‐driven processes govern symbiont range dynamics through their interaction across scales, from host switching to geographical range shifts. First, we describe a background framework for range dynamics based on metapopulation concepts applied to symbiont organisation levels. Then, we integrate metapopulation processes operating in the physical space with niche dynamics grounded in the environmental arena. For this purpose, we provide a definition of the biotope (i.e. living place) specific to symbionts as a hinge concept to link the physical and environmental spaces, wherein the biotope unit is a metapopulation patch (either a host individual or a land fragment). Further, we highlight the dual nature of the symbionts' niche, which is characterised by both host traits and the external environment, and define proper conceptual variants to provide a meaningful unification of niche, biotope and symbiont organisation levels. We also explore variation across systems in the relative relevance of both external environment and host traits to the symbiont's niche and their potential implications on range expansion. We describe in detail the potential mechanisms by which hosts, through their function as biotopes, could influence how some symbionts expand their range – depending on the life history and traits of both associates. From the spatial point of view, hosts can extend symbiont dispersal range via host‐mediated dispersal, although the requirement for among‐host dispersal can challenge symbiont range expansion. From the niche point of view, homeostatic properties of host bodies may allow symbiont populations to become insensitive to off‐host environmental gradients during host‐mediated dispersal. These two potential benefits of the symbiont–host interaction can enhance symbiont range expansion capacity. On the other hand, the central role of hosts governing the symbiont niche makes symbionts strongly dependent on the availability of suitable hosts. Thus, environmental, dispersal and biotic barriers faced by suitable hosts apply also to the symbiont, unless eventual opportunities for host switching allow the symbiont to expand its repertoire of suitable hosts (thus expanding its fundamental niche). Finally, symbionts can also improve their range expansion capacity through their impacts on hosts, via protecting their affiliated hosts from environmental harshness through biotic facilitation.  相似文献   

14.
Maternally inherited endosymbionts are found in numerous insect species and have various effects on host ecology. New symbioses are most commonly established following lateral transfer of an existing symbiont from one host species to another. Laboratory study has demonstrated that symbionts commonly perform poorly in novel hosts, with weak vertical transmission and maladaptive pathogenicity being observed in the generations following transfer. This poor performance probably limits symbiont occurrence. We here use microarray technology to test whether poor symbiont performance observed following 1 year of vertical transmission through a new host is associated with alteration in host gene expression or whether it occurs independently of this. We utilize the Drosophila melanogaster--Spiroplasma interaction and test the response of the host in the presence of both natural Spiroplasma infections and novel Spiroplasma infections transinfected previously from other host species. None of the Spiroplasma infections investigated produced upregulation in host haemolymph/fat body-based immune responses, and we therefore rejected the hypothesis that failure to thrive was associated with immune upregulation. One infection was associated with a downregulation of genes associated with egg production compared to uninfected controls, indicative of damage to the host. The Spiroplasma infection showed that the weakest vertical transmission showed no significant disturbance to host gene expression compared to uninfected controls. We conclude that the failure of Spiroplasma in novel host species is associated either with causing harm to their new hosts or through a failure to thrive in the new host that occurs independently of host responses to infection.  相似文献   

15.
Heritable microbial symbionts can have important effects on many aspects of their hosts’ biology. Acquisition of a novel symbiont strain can provide fitness benefits to the host, with significant ecological and evolutionary consequences. We measured barriers to horizontal transmission by artificially transferring facultative symbionts from the grain aphid, Sitobion avenae, and five other aphid species into two clonal genotypes of S. avenae. We found the symbiont Hamiltonella defensa establishes infections more easily following a transfer from the same host species and that such infections are more stable. Infection success was also higher when the introduced symbiont strain was more closely related to the strain that was originally present in the host (but which had previously been removed). There were no differences among successfully established symbiont strains in their effect on aphid fecundity. Hamiltonella defensa did not confer protection against parasitoids in our S. avenae clones, although it often does in other aphid hosts. However, strains of the symbiont Regiella insecticola originating from two host species protected grain aphids against the pathogenic fungus Pandora neoaphidis. This study helps describe the extent to which facultative symbionts can act as a pool of adaptations that can be sampled by their eukaryote hosts.  相似文献   

16.
In most mutualistic symbioses of insects and intracellular bacteria, the endosymbionts provide additional nutrients to a host that feeds on an unbalanced diet. A strictly vertical transmission leads to co-speciation between the two partners. We have investigated an insect-bacteria relationship with a non-nutritional basis. The reed beetles (Donaciinae) harbor bacteria that produce a secretion used by the larvae for building a cocoon for pupation in mud underwater. The 16S rRNA of the bacteria and the cytochrome c oxidase I and elongation factor 1alpha of the beetles have been partially sequenced. The bacterial and the host phylogeny were highly congruent. Larger taxonomic units (genera) and host species groups/pairs have been recovered in the bacterial phylogeny. The symbiont data still cannot clarify the hitherto unresolved deeper phylogeny of the hosts, which is interpreted as a sign of rapid adaptive radiation of the reed beetles soon after their origin. The rate of sequence evolution among/within host species is discussed.  相似文献   

17.
Understanding what shapes variation in genetic diversity among species remains a major challenge in evolutionary ecology, and it has been seldom studied in parasites and other host‐symbiont systems. Here, we studied mtDNA variation in a host‐symbiont non‐model system: 418 individual feather mites from 17 feather mite species living on 17 different passerine bird species. We explored how a surrogate of census size, the median infrapopulation size (i.e., the median number of individual parasites per infected host individual), explains mtDNA genetic diversity. Feather mite species genetic diversity was positively correlated with mean infrapopulation size, explaining 34% of the variation. As expected from the biology of feather mites, we found bottleneck signatures for most of the species studied but, in particular, three species presented extremely low mtDNA diversity values given their infrapopulation size. Their star‐like haplotype networks (in contrast with more reticulated networks for the other species) suggested that their low genetic diversity was the consequence of severe bottlenecks or selective sweeps. Our study shows for the first time that mtDNA diversity can be explained by infrapopulation sizes, and suggests that departures from this relationship could be informative of underlying ecological and evolutionary processes.  相似文献   

18.
Kremer N  Huigens ME 《Molecular ecology》2011,20(17):3496-3498
A huge variety of Arthropod species is infected with endosymbiotic Wolbachia bacteria that manipulate their host’s reproduction to invade populations. In addition to vertical transmission from mother to offspring through the egg cytoplasm, it has been demonstrated through phylogenetic analyses and natural transfer experiments that horizontal transmission of Wolbachia (i.e. contagion) can occur between Arthropod hosts. More recently, factors influencing horizontal transfer have also been explored. While it is clear that horizontal transmission between species plays a major role in the evolutionary history of Wolbachia infections among insects, its role in the spread of a new infection through a host population, notably through within‐species transfers, remained unknown. In this issue of Molecular Ecology, Kraaijeveld et al. (2011) present the first evidence that horizontal transmission played a key role in the early spread of parthenogenesis‐inducing Wolbachia through the parasitoid wasp Leptopilina clavipes. To support their finding, the authors studied genetic variation in three types of markers, including host nuclear DNA, mitochondrial DNA and Wolbachia DNA. Specifically, they examined potential associations between their diversity patterns. No diversity was detected in Wolbachia genes, indicating that a single Wolbachia strain must have infected and spread through L. clavipes. In addition, a correlation between substantial variation in mitochondrial and nuclear genotypes suggested that horizontal transmission played an important role in the current clonal genetic variation in this wasp. Such horizontal transmission could be facilitated by a specific host ecology (e.g. parasitoid wasps sharing the same host resource) and potentially impact co‐evolution between host and symbiont.  相似文献   

19.
The processes underlying host adaptation by bacterial pathogens remain a fundamental question with relevant clinical, ecological, and evolutionary implications. Zoonotic pathogens of the genus Bartonella constitute an exceptional model to study these aspects. Bartonellae have undergone a spectacular diversification into multiple species resulting from adaptive radiation. Specific adaptations of a complex facultative intracellular lifestyle have enabled the colonisation of distinct mammalian reservoir hosts. This remarkable host adaptability has a multifactorial basis and is thought to be driven by horizontal gene transfer (HGT) and recombination among a limited genus‐specific pan genome. Recent functional and evolutionary studies revealed that the conserved Bartonella gene transfer agent (BaGTA) mediates highly efficient HGT and could thus drive this evolution. Here, we review the recent progress made towards understanding BaGTA evolution, function, and its role in the evolution and pathogenesis of Bartonella spp. We notably discuss how BaGTA could have contributed to genome diversification through recombination of beneficial traits that underlie host adaptability. We further address how BaGTA may counter the accumulation of deleterious mutations in clonal populations (Muller's ratchet), which are expected to occur through the recurrent transmission bottlenecks during the complex infection cycle of these pathogens in their mammalian reservoir hosts and arthropod vectors.  相似文献   

20.
Symbiodinium-like dinoflagellates have been shown to be a diverse group of endosymbionts that associate mutualistically with many kinds of coral reef dwellers, including cnidarians, molluscs, and protists. A high number of genetically ITS types of symbionts have been reported to date. However, whether these recently identified Symbiodinium ITS types indeed represent independent evolutionary lineages is still unsettled. Here I tested the null hypothesis that certain group of symbionts sampled from different geographical locations are derived from a single evolutionary lineage using a nested clade analysis (NCA). I analyzed a total of 174 ITS1 sequences from GenBank and pooled them into 74 ITS1 distinct haplotypes. Using these haplotypes, the statistical parsimony criterion produced 23 independent network trees, each one corresponding to a genetically independent evolving lineage. Some of these lineages revealed certain degree of specificity with some host groups at least at the phylum level. Within the previously described 28S-rDNA phylotype A, five ITS1 lineages were resolved. Phylotypes B and C resolved each in two ITS1 lineages. The highest ITS1 symbiont diversity was observed within the phylotype F, in which 11 lineages were resolved. Moreover, most of these lineages were associated uniquely with protist hosts from the group of foraminiferans. Here it is suggested that this high genetic diversity of endosymbionts associated with foraminiferans is linked with the evolution of soritacean foraminifera, which seems to have been driven by endosymbiosis. Lastly, the absence of genetic recombination presented in this study, suggest a lack of hybridisation at least among the major 28S-rDNA phylotypes within Symbiodinium-like dinoflagellates. This supports highly the idea that these phylotypes are indeed independent evolutionary units, which should be considered at least as different species. Whether they belong to the same genus or to different higher taxa still needs to be revised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号