首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epithelial cell keratins make up the type I (K9-K20) and type II (K1-K8) intermediate filament proteins. In glandular epithelia, K8 becomes phosphorylated on S73 ((71)LLpSPL) in human cultured cells and tissues during stress, apoptosis, and mitosis. Of all known proteins, the context of the K8 S73 motif (LLS/TPL) is unique to type II keratins and is conserved in epidermal K5/K6, esophageal K4, and type II hair keratins, except that serine is replaced by threonine. Because knowledge regarding epidermal and esophageal keratin regulation is limited, we tested whether K4-K6 are phosphorylated on the LLTPL motif. K5 and K6 become phosphorylated in vitro on threonine by the stress-activated kinase p38. Site-specific anti-phosphokeratin antibodies to LLpTPL were generated, which demonstrated negligible basal K4-K6 phosphorylation. In contrast, treatment of primary keratinocytes and other cultured cells, and ex vivo skin and esophagus cultures, with serine/threonine phosphatase inhibitors causes a dramatic increase in K4-K6 LLpTPL phosphorylation. This phosphorylation is accompanied by keratin solubilization, filament reorganization, and collapse. K5/K6 LLTPL phosphorylation occurs in vivo during mitosis and apoptosis induced by UV light or anisomycin, and in human psoriatic skin and squamous cell carcinoma. In conclusion, type II keratins of proliferating epithelia undergo phosphorylation at a unique and conserved motif as part of physiological mitotic and stress-related signals.  相似文献   

2.
W Zhang  E Dang  X Shi  L Jin  Z Feng  L Hu  Y Wu  G Wang 《PloS one》2012,7(7):e40797

Background

To investigate the regulation of K17 expression by the pro-inflammatory cytokine IL-22 in keratinocytes and its important role in our previously hypothesized “K17/T cell/cytokine autoimmune loop” in psoriasis.

Materials and Methods

K17 expression was examined in the IL-22-treated keratinocytes by real-time quantitative PCR, ELISA, Western blot and Immunofluorescence. In addition, the signaling pathways involved in K17 regulation were investigated with related inhibitors and siRNAs. In addition, K17 expression was examined in the epidermis of IL-22-injected mouse skin.

Results

IL-22-induced K17 expression was confirmed in keratinocytes and the epidermis of IL-22-injected mouse skin at both mRNA and protein levels, which is an important complement to the autoimmune loop. We further investigated the regulatory mechanisms and found that both STAT3 and ERK1/2 were involved in the up-regulation of K17 expression induced by IL-22.

Conclusion

IL-22 up-regulates K17 expression in keratinocytes in a dose-dependent manner through STAT3- and ERK1/2-dependent mechanisms. These findings indicated that IL-22 was also involved in the K17/T cell/cytokine autoimmune loop and may play an important role in the progression of psoriasis.  相似文献   

3.
The epidermal keratinocytes express two major pairs of keratin polypeptides. One pair (K5/K14) expressed specifically in basal generative compartment and the other (K1/K10) expressed specifically in the differentiating suprabasal compartment. The switch in the expression of the keratins from proliferating to differentiating compartment indicates the changes that occur in the keratin filament organization which in turn influences the functional properties of the epidermis. Proper regulation of keratin gene expression and the filament organization are absolutely necessary for normal functioning of the skin. Keratin gene mutations can influence the filament integrity thereby causing several heritable blistering disorders of the skin such as epidermolysis bullosa, bullous icthyosiform erythroderma, etc. Changes in the keratin gene expression may lead to incomplete differentiation of the epidermal keratinocyte, causing hyperproliferative diseases of the skin such as psoriasis, carcinomas, etc. This review briefly describes the changes in keratin structure or gene expression that are known to result in various disorders of the skin.  相似文献   

4.
We present evidence that increases in intracellular calcium, induced by treatment with calcium ionophore A23187 or the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin, dephosphorylated histone H3 at serine10 (histone H3-Ser10) in a dose-dependent manner in human hepatoma HepG2 cells. Inhibition of p42/44MAPK, pp90RSK, or p38MAPK did not affect the ability of A23187 to dephosphorylate histone H3-Ser10. This response is significantly blocked by okadaic acid, indicating a requirement for protein phosphatase 2A (PP2A). A23187 increased the activity of PP2A towards phosphorylated histone H3-Ser10. Furthermore, pretreatment with calphostin C, a selective protein kinase C (PKC) inhibitor, blocked A23187-dependent dephosphorylation of histone H3-Ser10, and coimmunoprecipitation analysis showed PP2A association with the PKCbetaII isoform. Unlike untreated cells, coimmunoprecipitated complex from A23187-treated cells showed greater dephosphorylation of histone H3-Ser10 in a PP2A-dependent manner. Inhibition of PP2A increased phosphorylation at Ser660 that determines calcium sensitivity and activity of PKCbetaII isoform, thus supporting a role for intracomplex regulation. Finally, chromatin immunoprecipitation assays following exposure to A23187 and okadaic acid revealed regulatory role of histone H3-Ser10 phosphorylation in selective gene induction. Altogether, our findings suggest a novel role for calcium in modulating histone H3-Ser10 phosphorylation level and led us to propose a model emphasizing PP2A activation, occurring downstream following perturbations in calcium homeostasis, as key event in dephosphorylating histone H3-Ser10 in mammalian cells.  相似文献   

5.
p70 ribosomal protein S6 kinase 1 (S6K1) is regulated by multiple phosphorylation events. Three of these sites are highly conserved among AGC kinases (cAMP dependent Protein Kinase, cGMP dependent Protein Kinase, and Protein Kinase C subfamily): the activation loop in the kinase domain, and two C-terminal sites, the turn motif and the hydrophobic motif. The common dogma has been that phosphorylation of the hydrophobic motif primes S6K1 for the phosphorylation at the activation loop by phosphoinositide-dependent protein kinase 1 (PDK1). Here, we show that the turn motif is, in fact, phosphorylated first, the activation loop second, and the hydrophobic motif is third. Specifically, biochemical analyses of a construct of S6K1 lacking the C-terminal autoinhibitory domain as well as full-length S6K1, reveals that S6K1 is constitutively phosphorylated at the turn motif when expressed in insect cells and becomes phosphorylated in vitro by purified PDK1 at the activation loop. Only the species phosphorylated at the activation loop by PDK1 gets phosphorylated at the hydrophobic motif by mammalian target of rapamycin (mTOR) in vitro. These data are consistent with a previous model in which constitutive phosphorylation of the turn motif provides the key priming step in the phosphorylation of S6K1. The data provide evidence for regulation of S6K1, where hydrophobic motif phosphorylation is not required for PDK1 to phosphorylate S6K1 at the activation loop, but instead activation loop phosphorylation of S6K1 is required for mTOR to phosphorylate the hydrophobic motif of S6K1.  相似文献   

6.
Keratins, the major structural protein of all epithelia are a diverse group of cytoskeletal scaffolding proteins that form intermediate filament networks, providing structural support to keratinocytes that maintain the integrity of the skin. Expression of keratin genes is usually regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Amongst the 54 known functional keratin genes in humans, about 22 different genes including, the cornea, hair and hair follicle-specific keratins have been implicated in a wide range of hereditary diseases. The exact phenotype of each disease usually reflects the spatial expression level and the types of mutated keratin genes, the location of the mutations and their consequences at sub-cellular levels as well as other epigenetic and/or environmental factors. The identification of specific pathogenic mutations in keratin disorders formed the basis of our understanding that led to re-classification, improved diagnosis with prognostic implications, prenatal testing and genetic counseling in severe keratin genodermatoses. Molecular defects in cutaneous keratin genes encoding for keratin intermediate filaments (KIFs) causes keratinocytes and tissue-specific fragility, accounting for a large number of genetic disorders in human skin and its appendages. These diseases are characterized by keratinocytes fragility (cytolysis), intra-epidermal blistering, hyperkeratosis, and keratin filament aggregation in severely affected tissues. Examples include epidermolysis bullosa simplex (EBS; K5, K14), keratinopathic ichthyosis (KPI; K1, K2, K10) i.e. epidermolytic ichthyosis (EI; K1, K10) and ichthyosis bullosa of Siemens (IBS; K2), pachyonychia congenita (PC; K6a, K6b, K16, K17), epidermolytic palmo-plantar keratoderma (EPPK; K9, (K1)), monilethrix (K81, K83, K86), ectodermal dysplasia (ED; K85) and steatocystoma multiplex. These keratins also have been identified to have roles in apoptosis, cell proliferation, wound healing, tissue polarity and remodeling. This review summarizes and discusses the clinical, ultrastructural, molecular genetics and biochemical characteristics of a broad spectrum of keratin-related genodermatoses, with special clinical emphasis on EBS, EI and PC. We also highlight current and emerging model tools for prognostic future therapies. Hopefully, disease modeling and in-depth understanding of the molecular pathogenesis of the diseases may lead to the development of novel therapies for several hereditary cutaneous diseases.  相似文献   

7.
Cell level inflammatory signalling is a combination of initiation at cell membrane receptors and modulation by cytoplasmic regulatory proteins. For keratinocytes, the predominant cell type in the epidermis, this would include toll-like receptors (TLR) and cytoplasmic proteins that propagate or dampen post-receptor signalling. We previously reported that increased levels of tumor necrosis factor α induced protein 3-interacting protein 1 (TNIP1) in HaCaT keratinocytes leads to decreased expression of stress response and inflammation-associated genes. This finding suggested decreased TNIP1 levels, as seen in some cutaneous disease states, may produce the opposite effect, sensitizing cells to triggers of inflammatory signalling including those sensed by TLR. In this study of TNIP1-deficient HaCaT keratinocytes we examined intracellular signalling consequences especially those expected to produce gene expression changes downstream of TLR3 or TLR2/6 activation by Poly (I:C) or FSL-1, agonists modeling skin relevant pathogens. We found TNIP1-deficient keratinocytes are hyper-sensitive to TLR activation compared to control cells with a normal complement of TNIP1 and receiving the same agonist stimulation. TNIP1-deficient keratinocytes have increased levels of activated (phosphorylated) cytoplasmic mediators such as JNK and p38 and greater nuclear translocation of NF-κB and phospho-p38 when exposed to TLR ligands. This is consistent with significantly increased expression of several inflammatory cytokines and chemokines, such as IL-6 and IL-8. These results describe how decreased TNIP1 levels promote a hyper-sensitive state in HaCaT keratinocytes evidenced by increased activation of signalling molecules downstream of TLR agonists and increased expression of pro-inflammatory mediators. TNIP1 keratinocyte deficiency as reported for some skin diseases may predispose these cells to excessive inflammatory signalling upon exposure to viral or bacterial ligands for TLR.  相似文献   

8.
Phosphatidylethanolamine-binding protein (PEBP) has been demonstrated to bind to Raf-1 and mitogen-activated protein kinase kinase, components of the extracellular signal-regulated protein kinase (ERK) pathway, thereby inhibiting the pathway and resulting in the suppression of cell proliferation. In the present study, we examined whether PEBP is involved in differentiation induction of human keratinocytes. PEBP expression was immunohistochemically examined in normal human skin and skin cancers with different differentiation properties. PEBP was not expressed in the basal layer of the epidermis but was expressed in the spinous and granular layers of normal skin. The protein was expressed in differentiated but not in undifferentiated carcinoma. PEBP expression was also examined in cultured normal human epidermal keratinocytes in which differentiation was induced by calcium treatment. Involucrin was used as a differentiation marker for spinous and granular cells. Northern blotting analysis indicated that both PEBP and involucrin mRNAs were enhanced 6 h after treatment with 2.0 mM CaCl(2). The protein amount of PEBP was also increased by this treatment. To investigate whether PEBP is involved in differentiation induction of keratinocytes, HaCaT keratinocytes were transfected with an expression vector. Fluorescent immunostain revealed that cells expressing PEBP exhibited enlarged and flattened cell shape, and induction of involucrin expression was demonstrated by immunoblot analysis. Although the protein amount of ERK was not altered, phosphorylated ERK levels were decreased and cell proliferation was partly inhibited by PEBP expression. These results indicate that PEBP not only inhibits cell proliferation but also induces differentiation of human keratinocytes.  相似文献   

9.
Keratin polypeptide 20 (K20) is an intermediate filament protein with preferential expression in epithelia of the stomach, intestine, uterus, and bladder and in Merkel cells of the skin. K20 expression is used as a marker to distinguish metastatic tumor origin, but nothing is known regarding its regulation and function. We studied K20 phosphorylation as a first step toward understanding its physiologic role. K20 phosphorylation occurs preferentially on serine, with a high stoichiometry as compared with keratin polypeptides 18 and 19. Mass spectrometry analysis predicted that either K20 Ser(13) or Ser(14) was a likely phosphorylation site, and Ser(13) was confirmed as the phospho-moiety using mutation and transfection analysis and generation of an anti-K20-phospho-Ser(13) antibody. K20 Ser(13) phosphorylation increases after protein kinase C activation, and Ser(13)-to-Ala mutation interferes with keratin filament reorganization in transfected cells. In physiological contexts, K20 degradation and associated Ser(13) hyperphosphorylation occur during apoptosis, and chemically induced mouse colitis also promotes Ser(13) phosphorylation. Among mouse small intestinal enterocytes, K20 Ser(13) is preferentially phosphorylated in goblet cells and undergoes dramatic hyperphosphorylation after starvation and mucin secretion. Therefore, K20 Ser(13) is a highly dynamic protein kinase C-related phosphorylation site that is induced during apoptosis and tissue injury. K20 Ser(13) phosphorylation also serves as a unique marker of small intestinal goblet cells.  相似文献   

10.
The intermediate filament cytoskeleton is essential for the development and maintenance of normal tissue function. A number of diverse recent observations implicate these filament systems in sensing stress and protecting cells against its worst consequences. Cells expressing severely disruptive keratin mutations, characteristic of Dowling-Meara EBS, were previously reported to show elevated responses to physiological stress, and partial disassembly of cell junctions was reported upon direct mechanical stress to the cells. Gene expression microarray analysis has therefore been used here to examine the broad spectrum of effects of mutant keratins. Many genes associated with keratins and other components of the cytoskeleton showed altered expression levels; in particular, many cell junction components are down-regulated in EBS cells. That this is due to the expression of the mutant keratins, and not to other genetic variables, is supported by observation of the same effects in isogenic cells generated from wild type keratinocytes transfected with the same keratin mutations in the helix boundary motifs of K14 or K5. Whilst the mechanism underlying this is unclear, these findings may help to explain other aspects of EBS-associated pathology, such as faster scratch wound migration, or acantholysis (cell-cell separation) in patients' skin. Constitutive stress combined with constitutively weakened cell junctions may also contribute to a recently reported increased risk of non-melanoma skin cancer in EBS patients.  相似文献   

11.
Jiang X  Wang Y 《Biochemistry》2004,43(49):15567-15576
Dehydrins are a group of proteins that are accumulated during environmental stress such as drought and low temperature or during late embryogenesis. In the present study, we isolated dehydrin DHN1, also known as Rab17 protein, from maize kernel by an acid extraction method, removed the phosphoric acid groups from phosphorylated residues by beta-elimination via treating the protein with barium hydroxide, and identified the sites of phosphorylation by tandem mass spectrometry. Our results showed that each of the seven contiguous serine residues (Ser78-Ser84) in the serine tract could be phosphorylated. The beta-elimination procedure was shown to be essential for the detection and subsequent site mapping of the heavily phosphorylated peptide by mass spectrometry. We also found that protein kinase CK2 could catalyze the phosphorylation of the DHN1 protein in vitro and the level of phosphorylation was comparable to that of the DHN1 isolated from maize seeds. Moreover, the in vitro phosphorylation also occurred on the serine residues in the serine tract region, suggesting that CK2 might be involved in the phosphorylation of the serine track region in maize kernel in vivo.  相似文献   

12.
Transforming growth factor beta (TGF-beta) inhibits proliferation of normal keratinocytes, and this response is retained, to variable extents, in benign tumors of the skin (S. Haddow, D. J. Fowlis, K. Parkinson, R. J. Akhurst, and A. Balmain, Oncogene, 6: 1465-1470, 1991). To investigate the profile of TGF-beta biosynthesis during various stages of chemical carcinogenesis of the skin, we used a combination of ribonuclease protection assay, in situ hybridization with gene-specific probes for TGF-beta 1, -beta 2, and -beta 3, and immunohistochemistry with isoform-specific antibodies against TGF-beta 1. Following 12-O-tetradecanoylphorbol-13-acetate treatment of adult mouse skin, there was a rapid induction of TGF-beta 1 protein. Intracellular TGF-beta 1 protein was localized to suprabasal keratinocytes, and the extracellular form was localized predominantly to the dermis. Despite ubiquitous induction of TGF-beta 1 protein by 12-O-tetradecanoylphorbol-13-acetate in various mouse strains, we noted strain-specific differences in the quantitative induction of TGF-beta 1 RNA. Papillomas and carcinomas induced in vivo had elevated levels of TGF-beta 1 RNA within the basal keratinocyte compartment but did not contain significant levels of TGF-beta 1 protein within the tumor. We postulate that the tumor evades TGF-beta 1-controlled negative growth regulation by altered translational and/or posttranslational processing mechanisms of this growth factor. Levels of TGF-beta 2 and -beta 3 RNA were not elevated at any stage of chemical carcinogenesis of the skin.  相似文献   

13.
The process of wound repair in adult skin is complex, involving dermal contraction and epithelial migration to repair the lesion and restore the skin's barrier properties. At the wound edge, keratinocytes undergo many changes that engender an epithelialization behavior. The type II keratin 6 and type I keratins 16 and 17 are induced well before cell migration begins, but the role of these proteins is not understood. Forced expression of human K16 in skin epithelia of transgenic mice has been shown to cause dose-dependent skin lesions concomitant with alterations in keratin filament organization and in cell adhesion. Here we show, with the use of a quantitative assay, that these transgenic mice show a delay in the closure of full-thickness skin wounds in situ compared with wild-type and low-expressing K16 transgenic mice. We adapted and validated an ex vivo skin explant culture system to better assess epithelialization in a wound-like environment. Transgenic K16 explants exhibit a significant reduction of keratinocyte outgrowth in this setting. This delay is transgene dose-dependent, and is more severe when K16 is expressed in mitotic compared with post-mitotic keratinocytes. Various lines of evidence suggest that the mechanism(s) involved is complex and not strictly cell autonomous. These findings have important implications for the function of K16 in vivo.  相似文献   

14.
Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 play important roles in mitogenesis and chemotaxis of endothelial cells. In normal human skin, VEGF is expressed and secreted by epidermal keratinocytes. Emerging data suggest that keratinocyte-derived VEGF targets other cell types besides the dermal endothelial cells. We have recently showed that keratinocytes from human normal skin expressed all five known VEGF receptors and co-receptors (neuropilin 1 and 2). To define the functional significance of VEGFR-2 in epidermis, we examined its role in a keratinocyte cell line, HaCaT cells, in response to VEGF treatment. Expression of VEGFR-2 on HaCaT cells was confirmed at both RNA and protein levels and was regulated by VEGF165 treatment. Treatment of HaCaT cells with VEGF165 induced tyrosine-autophosphorylation of VEGFR-2 and phosphorylation of PLC-gamma and p44/42 MAPK in a time-dependent manner. Preincubation with a neutralizing antibody for VEGFR-2 (MAB3571) completely abrogated these phosphorylation effects. Furthermore, VEGF165 stimulated proliferation and migration of HaCaT cells, and this effect was significantly blocked by a pretreatment with MAB3571. Neutralizing VEGFR-2 in HaCaT cells increased cell adhesion during culture. Our results suggest that VEGFR-2 expressed on HaCaT cells plays a crucial role in VEGF-mediated regulation of cell activity.  相似文献   

15.
The phosphopeptide Ser (P)-Ser(P)-Ser-(P)-Glu-Glu-Ser22-Ile-Thr, reproducing the 17-24 segment of beta-casein A2 including the seryl residue (Ser-22) which is targeted by casein kinase-1 was synthesized and used as model substrate for this enzyme. Its phosphorylation efficiency is actually higher than that of intact beta-casein (similar Vmax and 14 microM Km). Conversely the fully dephosphorylated peptide SSSEESIT is not affected by CK-1 to any detectable extent and its glutamyl derivative EEEEESIT displays a more than 50-fold higher Km and a 5-fold lower Vmax as compared to the parent phosphopeptide. The relevance of the individual phosphoseryl residues has been assessed by comparing the phosphorylation efficiencies of the phosphopeptides EESpEESIT, ESpEEESIT and SpEEEESIT: while the first is a substrate almost as good as the tris Ser (P)-peptide (Km = 62 microM), and the third one is almost as poor as EEEEESIT (Km = 1.55 mM), ESpEEESIT displays a intermediate efficiency (Km = 277 microM). These data in conjunction with the finding that the phosphopentapeptide Ser(P)-Ser(P)-Ser(P)-Ser-Ser(P), but neither Ser(P)-Ser(P)-Ser-Ser(P) nor Ser-Ser(P)-Ser(P)-Glu-Glu and Ser-Ala-Ala-Ser(P)-Ser(P), is readily phosphorylated by CK-1, support the concept that CK-1 is a phosphate directed protein kinase recognizing the Ser(P)-X-X-Ser-X and, less efficiently, the Ser(P)-X-X-X-Ser-X motifs.  相似文献   

16.
Expression profiles revealed miR‐1299 downregulation concomitant with arginase‐2 (ARG2) upregulation in hyperpigmented skin of melasma patients. Opposite regulation of tyrosinase and PMEL17 by miR‐1299 and inverse relationship between miR‐1299 and ARG2 expression denoted a role of miR‐1299 in pigmentation with ARG2 as a miR‐1299 target. ARG2 overexpression or knock‐down in keratinocytes, the main source of ARG2 in epidermis, positively regulated tyrosinase and PMEL17 protein levels, but not mRNA levels or melanosome transfer. ARG2 overexpression in keratinocytes reduced autophagy equivalent to 3‐MA, an autophagy inhibitor which also increased tyrosinase and PMEL17 protein levels, whereas ARG2 knock‐down induced opposite results. Autophagy inducer rapamycin reduced ARG2‐increased tyrosinase and PMEL17 protein levels. Also, autophagy was reduced in late passage‐induced senescent keratinocytes showing ARG2 upregulation. ARG2, but not 3‐MA, stimulated keratinocyte senescence. These results suggest that ARG2 reduces autophagy in keratinocytes by stimulating cellular senescence, resulting in skin pigmentation by reducing degradation of transferred melanosomes.  相似文献   

17.
Protein phosphatases play key roles in cellular regulation and are subjected to control by protein inhibitors whose activity is in turn regulated by phosphorylation. Here we investigated the possible regulation of phosphorylation-dependent type-1 protein phosphatase (PP1) inhibitors, CPI-17, PHI-1, and KEPI, by various kinases. Protein kinases A (PKA) and G (PKG) phosphorylated CPI-17 at the inhibitory site (T38), but not PHI-1 (T57). Phosphorylated CPI-17 inhibited the activity of both the PP1 catalytic subunit (PP1c) and the myosin phosphatase holoenzyme (MPH) with IC(50) values of 1-8 nM. PKA predominantly phosphorylated a site distinct from the inhibitory T73 in KEPI, whereas PKG was ineffective. Integrin-linked kinase phosphorylated KEPI (T73) and this dramatically increased inhibition of PP1c (IC(50)=0.1 nM) and MPH (IC(50)=8 nM). These results suggest that the regulatory phosphorylation of CPI-17 and KEPI may involve distinct kinases and signaling pathways.  相似文献   

18.
SGK-1 (serum- and glucocorticoid-regulated kinase-1) is a stress-induced serine/threonine kinase that is phosphorylated and activated downstream of PI3K (phosphoinositide 3-kinase). SGK-1 plays a critical role in insulin signalling, cation transport and cell survival. SGK-1 mRNA expression is transiently induced following cellular stress, and SGK-1 protein levels are tightly regulated by rapid proteasomal degradation. In the present study we report that SGK-1 forms a complex with the stress-associated E3 ligase CHIP [C-terminus of Hsc (heat-shock cognate protein) 70-interacting protein]; CHIP is required for both the ubiquitin modification and rapid proteasomal degradation of SGK-1. We also show that CHIP co-localizes with SGK-1 at or near the endoplasmic reticulum. CHIP-mediated regulation of SGK-1 steady-state levels alters SGK-1 kinase activity. These data suggest a model that integrates CHIP function with regulation of the PI3K/SGK-1 pathway in the stress response.  相似文献   

19.
Suppressor of cytokine signaling (SOCS)3 belongs to a family of proteins that are known to exert important functions as inducible feedback inhibitors and are crucial for the balance of immune responses. There is evidence for a deregulated immune response in chronic inflammatory skin diseases. Thus, it was the aim of this study to investigate the regulation of SOCS proteins involved in intracellular signaling pathways occurring during inflammatory skin diseases and analyze their impact on the course of inflammatory responses. Because we and others have previously described that the cytokine IL-27 has an important impact on the chronic manifestation of inflammatory skin diseases, we focused here on the signaling induced by IL-27 in human primary keratinocytes compared with autologous blood-derived macrophages. Here, we demonstrate that SOCS3 is critically involved in regulating the cell-specific response to IL-27. SOCS3 was found to be significantly up-regulated by IL-27 in macrophages but not in keratinocytes. Other STAT3-activating cytokines investigated, including IL-6, IL-22, and oncostatin M, also failed to up-regulate SOCS3 in keratinocytes. Lack of SOCS3 up-regulation in skin epithelial cells was accompanied by prolonged STAT1 and STAT3 phosphorylation and enhanced CXCL10 production upon IL-27 stimulation compared with macrophages. Overexpression of SOCS3 in keratinocytes significantly diminished this enhanced CXCL10 production in response to IL-27. We conclude from our data that keratinocytes have a cell type-specific impaired capacity to up-regulate SOCS3 which may crucially determine the course of chronic inflammatory skin diseases.  相似文献   

20.
Induction of tyrosine phosphorylation occurs as an early and specific event in keratinocyte differentiation. A set of tyrosine-phosphorylated substrates which transduce mitogenic signals by tyrosine kinases has previously been identified. We show here that of these substrates, the Ras GTPase-activating protein, GAP, is specifically affected during calcium-induced keratinocyte differentiation. As early as 10 min after calcium addition to cultured primary mouse keratinocytes, GAP associates with tyrosine-phosphorylated proteins and translocates to the membrane. In addition, a GAP-associated protein of approximately 62 kDa (p62) becomes rapidly and heavily tyrosine phosphorylated in both membrane and cytosolic fractions. This protein corresponds to the major tyrosine-phosphorylated protein that is induced in differentiating keratinocytes as early as 5 min after calcium addition. p62 phosphorylation was not observed after exposure of these cells to epidermal growth factor, phorbol ester, or transforming growth factor beta. In contrast, PLC gamma and P13K were tyrosine phosphorylated after epidermal growth factor, but not calcium, stimulation. Thus, changes of Ras GAP and an associated p62 protein occur as early and specific events in keratinocyte differentiation and appear to involve a calcium-induced tyrosine kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号