首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stromal cells (MSCs), especially those lying close to cartilage defects, are an important cell source for cartilage regeneration. We hypothesize that a larger number of MSCs might become available, if the bone marrow in the immediate vicinity of the subchondral bone is stimulated for MSCs in advance of the creation of cartilage defects. A trans-medullary passage-way reaching the immediate vicinity of the subchondral bone was created 4 days prior to the creation of cartilage defects. In another setting, basic fibroblast growth factor (bFGF) was administered through the trans-medullary passage-way in order to augment the stimulation of MSCs. The rabbits were killed at various times after the creation of cartilage defects. Triple staining of bromodeoxyuridine (BrdU), CD44 and CD45 and histological evaluation were subsequently performed. A considerable proportion of the proliferating cells were identified as bone-marrow-derived MSCs. Enumeration of BrdU-positive cells demonstrated that trans-medullary stimulation, especially with bFGF, increased the number of proliferating cells. The histological grading score of trans-medullary stimulation with bFGF group was superior to that of the other groups. Thus, in-advance stimulation of the bone marrow effectively increases the number of proliferating cells. The putative progenitor cells for chondrocytes stimulated thereby are likely to be recruited to the osteochondral defects at the appropriate time, contributing to the repair of full-thickness articular cartilage defects at the early follow-up time point.  相似文献   

2.
Mesenchymal stem cell (MSC)-based therapies may aid in the repair of articular cartilage defects. The purpose of this study was to investigate the effects of intraarticular injection of allogeneic MSCs in an in vivo anterior cruciate ligament transection (ACLT) model of osteoarthritis in rabbits. Allogeneic bone marrow-derived MSCs were isolated and cultured under hypoxia (1% O2). After 8 weeks following ACLT, MSCs suspended in hyaluronic acid (HA) were injected into the knees, and the contralateral knees were injected with HA alone. Additional controls consisted of a sham operation group as well as an untreated osteoarthritis group. The tissues were analyzed by macroscopic examination as well as histologic and immunohistochemical methods at 6 and 12 weeks post-transplantation. At 6 and 12 weeks, the joint surface showed less cartilage loss and surface abrasion after MSC injection as compared to the tissues receiving HA injection alone. Significantly better histological scores and cartilage content were observed with the MSC transplantation. Furthermore, engraftment of allogenic MSCs were evident in surface cartilage. Thus, injection of the allogeneic MSCs reduced the progression of osteoarthritis in vivo.  相似文献   

3.
Some treatments for full thickness defects of articular cartilage, such as cultured chondrocyte transplantation, have already been done. However, to overcome osteoarthritis, we must further study the partial thickness defect of articular cartilage. It is much more difficult to repair a partial thickness defect because few repairing cells can address such injured sites. We herein show that bioengineered layered chondrocyte sheets using temperature-responsive culture dishes may be a potentially useful treatment for partial thickness defects. We evaluated the property of these sheets using real-time PCR and histological findings, and allografted these sheets to evaluate the effect of treatment using a rabbit partial model. In conclusion, layered chondrocyte sheets were able to maintain the cartilageous phenotype, and could be attached to the sites of cartilage damage which acted as a barrier to prevent a loss of proteoglycan from these sites and to protect them from catabolic factors in the joint.  相似文献   

4.
Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis.  相似文献   

5.
While morphologic and biochemical aspects of degenerative joint disease (osteoarthritis [OA]) have been elucidated by numerous studies, the molecular mechanisms underlying the progressive loss of articular cartilage during OA development remain largely unknown. The main focus of the present study was to gain more insight into molecular changes during the very early stages of mechanically induced cartilage degeneration and to relate molecular alterations to histological changes at distinct localizations of the joint. Studies on human articular cartilage are hampered by the difficulty of obtaining normal tissue and early-stage OA tissue, and they allow no progressive follow-up. An experimental OA model in dogs with a slow natural history of OA (Pond–Nuki model) was therefore chosen. Anterior cruciate ligament transection (ACLT) was performed on 24 skeletally mature dogs to induce joint instability resulting in OA. Samples were taken from different joint areas after 6, 12, 24 and 48 weeks, and gene expression levels of common cartilage molecules were quantified in relation to the histological grading (modified Mankin score) of adjacent tissue. Histological changes reflected early progressive degenerative OA. Soon after ACLT, chondrocytes responded to the altered mechanical conditions by significant and stable elevation of collagen type II, collagen type I and YKL40 expression, which persisted throughout the study. In contrast to the mild to moderate histological alterations, these molecular changes were not progressive and were independent of the joint localization (tibia, femur, lateral, medial) and the extent of matrix degeneration. MMP13 remained unaltered until 24 weeks, and aggrecan and tenascinC remained unaltered until 48 weeks after ACLT. These findings indicate that elevated collagen type II, collagen type I and YKL40 mRNA expression levels are early and sensitive measures of ACLT-induced joint instability independent of a certain grade of morphological cartilage degeneration. A second phase of molecular changes in OA may begin around 48 weeks after ACLT with altered expression of further genes, such as MMP13, aggrecan and tenascin. Molecular changes observed in the present study suggest that dog cartilage responds to degenerative conditions by regulating the same genes in a similar direction as that observed for chondrocytes in late human OA.  相似文献   

6.
Implantation of tissue-engineered heterotopic cartilage into joint cartilage defects might be an alternative approach to improve articular cartilage repair. Hence, the aim of this study was to characterize and compare the quality of tissue-engineered cartilage produced with heterotopic (auricular, nasoseptal and articular) chondrocytes seeded on polyglycolic acid (PGA) scaffolds in vitro and in vivo using the nude mice xenograft model. PGA scaffolds were seeded with porcine articular, auricular and nasoseptal chondrocytes using a dynamic culturing procedure. Constructs were pre-cultured 3 weeks in vitro before being implanted subcutaneously in nude mice for 1, 6 or 12 weeks, non-seeded scaffolds were implanted as controls. Heterotopic neo-cartilage quality was assessed using vitality assays, macroscopical and histological scoring systems. Neo-cartilage formation could be observed in vitro in all PGA associated heterotopic chondrocytes cultures and extracellular cartilage matrix (ECM) deposition increased in vivo. The 6 weeks in vivo incubation time point leads to more consistent results for all cartilage species, since at 12 weeks in vivo construct size reductions were higher compared with 6 weeks except for auricular chondrocytes PGA cultures. Some regressive histological changes could be observed in all constructs seeded with all chondrocytes subspecies such as cell-free ECM areas. Particularly, but not exclusively in nasoseptal chondrocytes PGA cultures, ossificated ECM areas appeared. Elastic fibers could not be detected within any neo-cartilage. The neo-cartilage quality did not significantly differ between articular and non-articular chondrocytes constructs. Whether tissue-engineered heterotopic neo-cartilage undergoes sufficient transformation, when implanted into joint cartilage defects requires further investigation.  相似文献   

7.
While morphologic and biochemical aspects of degenerative joint disease (osteoarthritis [OA]) have been elucidated by numerous studies, the molecular mechanisms underlying the progressive loss of articular cartilage during OA development remain largely unknown. The main focus of the present study was to gain more insight into molecular changes during the very early stages of mechanically induced cartilage degeneration and to relate molecular alterations to histological changes at distinct localizations of the joint. Studies on human articular cartilage are hampered by the difficulty of obtaining normal tissue and early-stage OA tissue, and they allow no progressive follow-up. An experimental OA model in dogs with a slow natural history of OA (Pond-Nuki model) was therefore chosen. Anterior cruciate ligament transection (ACLT) was performed on 24 skeletally mature dogs to induce joint instability resulting in OA. Samples were taken from different joint areas after 6, 12, 24 and 48 weeks, and gene expression levels of common cartilage molecules were quantified in relation to the histological grading (modified Mankin score) of adjacent tissue. Histological changes reflected early progressive degenerative OA. Soon after ACLT, chondrocytes responded to the altered mechanical conditions by significant and stable elevation of collagen type II, collagen type I and YKL40 expression, which persisted throughout the study. In contrast to the mild to moderate histological alterations, these molecular changes were not progressive and were independent of the joint localization (tibia, femur, lateral, medial) and the extent of matrix degeneration. MMP13 remained unaltered until 24 weeks, and aggrecan and tenascinC remained unaltered until 48 weeks after ACLT. These findings indicate that elevated collagen type II, collagen type I and YKL40 mRNA expression levels are early and sensitive measures of ACLT-induced joint instability independent of a certain grade of morphological cartilage degeneration. A second phase of molecular changes in OA may begin around 48 weeks after ACLT with altered expression of further genes, such as MMP13, aggrecan and tenascin. Molecular changes observed in the present study suggest that dog cartilage responds to degenerative conditions by regulating the same genes in a similar direction as that observed for chondrocytes in late human OA.  相似文献   

8.
Focal articular cartilage damage can eventually lead to the onset of osteoarthritis with degradation around healthy articular cartilage. Currently, there are no drugs available that effectively repair articular cartilage damage. Several surgical techniques exist and are expected to prevent progression to osteoarthritis, but they do not offer a long‐term clinical solution. Recently, regenerative medicine approaches using human pluripotent stem cells (PSCs) have gained attention as new cell sources for therapeutic products. To translate PSCs to clinical application, appropriate cultures that produce large amounts of chondrocytes and hyaline cartilage are needed. So too are assays for the safety and efficacy of the cellular materials in preclinical studies including animal transplantation models. To confirm safety and efficacy, transplantation into the subcutaneous space and articular cartilage defects have been performed in animal models. All but one study we reviewed that transplanted PSC‐derived cellular products into articular cartilage defects found safe and effective recovery. However, for most of those studies, the quality of the PSCs was not verified, and the evaluations were done with small animals over short observation periods. Large animals and longer observation times are preferred. We will discuss the recent progress and future direction of the animal transplantation studies for the treatment of focal articular cartilage damages using PSCs.  相似文献   

9.
Cartilage defects are a known risk factor for osteoarthritis. Estimation of structural changes in these defects could help us to identify high risk defects and thus to identify patients that are susceptible for the onset and progression of osteoarthritis. Here, we present an algorithm combined with computational modeling to simulate the disorganization of collagen fibril network in injured cartilage. Several potential triggers for collagen disorganization were tested in the algorithm following the assumption that disorganization is dependent on the mechanical stimulus of the tissue. We found that tensile tissue stimulus alone was unable to preserve collagen architecture in intact cartilage as collagen network reoriented throughout the cartilage thickness. However, when collagen reorientation was based on both tensile tissue stimulus and tensile collagen fibril strains or stresses, the collagen network architecture was preserved in intact cartilage. Using the same approach, substantial collagen reorientation was predicted locally near the cartilage defect and particularly at the cartilage–bone interface. The developed algorithm was able to predict similar structural findings reported in the literature that are associated with experimentally observed remodeling in articular cartilage. The proposed algorithm, if further validated, could help to predict structural changes in articular cartilage following post-traumatic injury potentially advancing to impaired cartilage function.  相似文献   

10.
Physiological loading of articulating joints is necessary for normal cartilage function. However, conditions of excessive overloading or trauma can cause cartilage injury resulting in matrix damage and cell death. The objective of this study was to evaluate chondrocyte viability within mechanically compressed articular cartilage removed from immature and mature bovine knees. Twenty-three mature and 68 immature cartilage specimens were subjected to static uniaxial confined-creep compressions of 0–70% and the extent of cell death was measured using fluorescent microscopic imaging. In both age groups, cell death was always initiated at the articular surface and increased linearly in depth with increasing strain magnitude. However, most of the cell death was localized within the superficial zone (SZ) of the cartilage matrix with the depth never greater than ~ 500 μm or 25% of the thickness of the test specimen. The immature cartilage was found to have a significantly greater (> 2 times) amount (depth) of cell death compared to the mature cartilage, especially at the higher strains. This finding was attributed to the lower compressive modulus of the immature cartilage in the SZ compared to that of the mature cartilage, resulting in a greater local matrix strain and concomitant cell surface membrane strain in this zone when the matrix was compressed. These results provide further insight into the capacity of articular cartilage in different age groups to resist the severity of traumatic injury from compressive loads.  相似文献   

11.
Normal and abnormal extracellular matrix turnover is thought to result, in part, from the balance in the expression of metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). The clinical manifestations of an imbalance in these relationships are evident in a variety of pathologic states, including osteoarthritis, deficient long-bone growth, rheumatoid arthritis, tumor invasion, and inadequate cartilage repair. Articular cartilage defects commonly heal as fibrocartilage, which is structurally inferior to the normal hyaline architecture of articular cartilage. Transforming growth factor-beta 1 (TGF-beta1), a cytokine central to growth, repair, and inflammation, has been shown to upregulate TIMP-1 expression in human and bovine articular cartilage. Additionally, members of the TGF-beta superfamily are thought to play key roles in chondrocyte growth and differentiation. Bone morphogenetic protein-2 (BMP-2), a member of this superfamily, has been shown to regulate chondrocyte differentiation states and extracellular matrix composition. It was proposed that, by optimizing extracellular matrix composition, BMP-2 would enhance articular cartilage healing. After determining the release kinetics of BMP-2 from a collagen type I implant (Long-Evans male rats; two implants/rat, n = 14), it was found that, in a tissue engineering application, BMP-2 induced a hyaline-like repair of New Zealand White rabbit knee articular cartilage defects (3-mm full-thickness defects in the femoral trochlea; 2 defects/rabbit, n = 36). The quality of cartilage repair with BMP-2 (with or without chondrocytes) was significantly better than defects treated with BMP-2, as assessed by a quantitative scoring scale. Immunohistochemical staining revealed TIMP-1 production in the cartilage defects treated with BMP-2. When studied in vitro, it was found that BMP-2 markedly increased TIMP-1 mRNA by both bovine articular and human rib chondrocytes. Additionally, increased TIMP-1 mRNA was translated into increased TIMP-1 protein production by bovine chondrocytes. Taken together, these data suggest that BMP-2 may be a useful cytokine to improve healing of cartilaginous defects. Furthermore, these data suggest that the beneficial effects of BMP-2 may be, in part, related to alterations in extracellular matrix turnover.  相似文献   

12.
Osteoarthritis is a disease of multifactorial aetiology characterised by progressive breakdown of articular cartilage. In the early stages of the disease, changes become apparent in the superficial zone of articular cartilage, including fibrillation and fissuring. Normally, a monolayer of lubricating molecules is adsorbed on the surface of cartilage and contributes to the minimal friction and wear properties of synovial joints. Proteoglycan 4 is the lubricating glycoprotein believed to be primarily responsible for this boundary lubrication. Here we have used an established ovine meniscectomy model of osteoarthritis, in which typical degenerative changes are observed in the operated knee joints at three months after surgery, to evaluate alterations in proteoglycan 4 expression and localisation in the early phases of the disease. In normal control joints, proteoglycan 4 was immunolocalised in the superficial zone of cartilage, particularly in those regions of the knee joint covered by a meniscus. After the onset of early osteoarthritis, we demonstrated a loss of cellular proteoglycan 4 immunostaining in degenerative articular cartilage, accompanied by a significant (p < 0.01) decrease in corresponding mRNA levels. Early loss of proteoglycan 4 from the cartilage surface in association with a decrease in its expression by superficial-zone chondrocytes might have a role in the pathogenesis of osteoarthritis.  相似文献   

13.
Tissue engineering (TE) has been proven usefulness in cartilage defect repair. For effective cartilage repair, the structural orientation of the cartilage scaffold should mimic that of native articular cartilage, as this orientation is closely linked to cartilage mechanical functions. Using thermal-induced phase separation (TIPS) technology, we have fabricated an oriented cartilage extracellular matrix (ECM)-derived scaffold with a Young''s modulus value 3 times higher than that of a random scaffold. In this study, we test the effectiveness of bone mesenchymal stem cell (BMSC)-scaffold constructs (cell-oriented and random) in repairing full-thickness articular cartilage defects in rabbits. While histological and immunohistochemical analyses revealed efficient cartilage regeneration and cartilaginous matrix secretion at 6 and 12 weeks after transplantation in both groups, the biochemical properties (levels of DNA, GAG, and collagen) and biomechanical values in the oriented scaffold group were higher than that in random group at early time points after implantation. While these differences were not evident at 24 weeks, the biochemical and biomechanical properties of the regenerated cartilage in the oriented scaffold-BMSC construct group were similar to that of native cartilage. These results demonstrate that an oriented scaffold, in combination with differentiated BMSCs can successfully repair full-thickness articular cartilage defects in rabbits, and produce cartilage enhanced biomechanical properties.  相似文献   

14.
In the differentiated state, human articular chondrocytes exhibited modestly developed cytoskeletal components, while cells dedifferentiated by serial subcultures in vitro displayed a prominent cytoskeleton. Morphological changes, a well-developed actin cytoskeleton, and the presence of numerous intracellular organelles were characteristic features of the dedifferentiated chondrocyte phenotype. These properties correlated with the expression, biosynthesis, storage, and secretion of the cysteine peptidase, cathepsin B, a marker of the dedifferentiated chondrocyte phenotype and a potent mediator of cartilage catabolism in osteoarthritis. Both the actin cytoskeleton and microtubules were responsible for trafficking of cathepsin B between cellular compartments in chondrocytes. Despite the endosomes and lysosomes storing high amounts of mature cathepsin B, this enzyme could not be visualized in its active form within these organelles. However, enzymatically active cathepsin B was associated with polymerized tubulin, and was no longer detectable after disruption of the microtubules. This enzyme species possibly represents the mature cathepsin B form in transport vesicles, after cleavage of the inhibitory propeptide, on the way to a final target. These results suggest noteworthy parallels between osteoarthritic articular cartilage and the artificially dedifferentiated cell phenotype, including the expression of type I collagen, the expression of cathepsin B, a significant modification of the cytoskeleton, and the formation of abundant secretory vesicles. These similarities justify the use of chondrocyte cultures as models of the behavior of cartilage cells in osteoarthritis.  相似文献   

15.
We aimed to assess the effect of ovariectomy on cartilage turnover and degradation, to evaluate whether ovariectomized (OVX) rats could form an experimental model of postmenopausal osteoarthritis. The effect of ovariectomy on cartilage was studied using two cohorts of female Sprague–Dawley rats, aged 5 and 7 months. In a third cohort, the effect of exogenous estrogen and a selective estrogen receptor modulator was analyzed. Knee joints were assessed by histological analysis of the articular cartilage after 9 weeks. Cartilage turnover was measured in urine by an immunoassay specific for collagen type II degradation products (CTX-II), and bone resorption was quantified in serum using an assay for bone collagen type I fragments (CTX-I). Surface erosion in the cartilage of the knee was more severe in OVX rats than in sham-operated animals, particularly in the 7-month-old cohort (P = 0.008). Ovariectomy also significant increased CTX-I and CTX-II. Both the absolute levels of CTX-II and the relative changes from baseline seen at week 4 correlated strongly with the severity of cartilage surface erosion at termination (r = 0.74, P < 0.01). Both estrogen and the selective estrogen receptor modulator inhibited the ovariectomy-induced acceleration of cartilage and bone turnover and significantly suppressed cartilage degradation and erosion seen in vehicle-treated OVX rats. The study indicates that estrogen deficiency accelerates cartilage turnover and increases cartilage surface erosion. OVX rats provide a useful experimental model for the evaluation of the chondroprotective effects of estrogens and estrogen-like substances and the model may be an in vivo representation of osteoarthritis in postmenopausal women.  相似文献   

16.
Meniscectomy is a significant risk factor for osteoarthritis, involving altered cell synthesis, central fibrillation, and peripheral osteophyte formation. Though changes in articular cartilage contact pressure are known, changes in tissue-level mechanical parameters within articular cartilage are not well understood. Recent imaging research has revealed the effects of meniscectomy on the time-dependent deformation of physiologically loaded articular cartilage. To determine tissue-level cartilage mechanics that underlie observed deformation, a novel finite element modeling approach using imaging data and a contacting indenter boundary condition was developed. The indenter method reproduces observed articular surface deformation and avoids assumptions about tangential stretching. Comparison of results from an indenter model with a traditional femur-tibia model verified the method, giving errors in displacement, solid and fluid stress, and strain below 1% (RMS) and 7% (max.) of the absolute maximum of the parameters of interest. Indenter finite element models using real joint image data showed increased fluid pressure, fluid exudation, loss of fluid load support, and increased tensile strains centrally on the tibial condyle after meniscectomy-patterns corresponding to clinical observations of cartilage matrix damage and fibrillation. Peripherally there was decreased consolidation, which corresponds to reduced contact and fluid pressure in this analysis. Clinically, these areas have exhibited advance of the subchondral growth front, biological destruction of the cartilage matrix, cartilage thinning, and eventual replacement of the cartilage via endochondral ossification. Characterizing the changes in cartilage mechanics with meniscectomy and correspondence with observed tissue-level effects may help elucidate the etiology of joint-level degradation seen in osteoarthritis.  相似文献   

17.
Articular cartilage function depends on the molecular composition and structure of its extracellular matrix (ECM). The collagen network (CN) provides cartilage with tensile integrity, but must also remodel during growth. Such remodeling may depend on matrix molecules interacting with the CN to modulate the tensile behavior of cartilage. The objective of this study was to determine the effects of increasingly selective matrix depletion on tensile properties of immature and mature articular cartilage, and thereby establish a framework for identifying molecules involved in CN remodeling. Depletion of immature cartilage with guanidine, chondroitinase ABC, chondroitinase AC, and Streptomyces hyaluronidase markedly increased tensile integrity, while the integrity of mature cartilage remained unaltered after depletion with guanidine. The enhanced tensile integrity after matrix depletion suggests that certain ECM components of immature matrix serve to inhibit CN interactions and may act as modulators of physiological alterations of cartilage geometry and tensile properties during growth/maturation.  相似文献   

18.
The objective of this study was to develop an in vitro cartilage degradation model that emulates the damage seen in early-stage osteoarthritis. To this end, cartilage explants were collagenase-treated to induce enzymatic degradation of collagen fibers and proteoglycans at the articular surface. To assess changes in mechanical properties, intact and degraded cartilage explants were subjected to a series of confined compression creep tests. Changes in extracellular matrix structure and composition were determined using biochemical and histological approaches. Our results show that collagenase-induced degradation increased the amount of deformation experienced by the cartilage explants under compression. An increase in apparent permeability as well as a decrease in instantaneous and aggregate moduli was measured following collagenase treatment. Histological analysis of degraded explants revealed the presence of surface fibrillation, proteoglycan depletion in the superficial and intermediate zones and loss of the lamina splendens. Collagen cleavage was confirmed by the Col II–3/4Cshort antibody. Degraded specimens experienced a significant decrease in proteoglycan content but maintained total collagen content. Repetitive testing of degraded samples resulted in the gradual collapse of the articular surface and the compaction of the superficial zone. Taken together, our data demonstrates that enzymatic degradation with collagenase can be used to emulate changes seen in early-stage osteoarthritis. Further, our in vitro model provides information on cartilage mechanics and insights on how matrix changes can affect cartilage's functional properties. More importantly, our model can be applied to develop and test treatment options for tissue repair.  相似文献   

19.
骨关节炎软骨细胞发生内质网应激   总被引:1,自引:0,他引:1  
目的:研究骨关节炎软骨细胞是否发生内质网应激现象。方法:对关节置换术后的人类骨关节炎软骨标本和正常关节软骨标本切片进行内质网应激标志分子免疫球蛋白重链结合蛋白(BiP)的免疫组织化学检测;对小鼠膝关节进行半月板切断术诱发实验性骨关节炎,在术后1、3和6周取材,对组织切片进行番红花“O”染色、Mankin评分及BiP的免疫组织化学检测。结果:所有人类骨关节炎标本中软骨细胞BiP的表达明显升高。番红花“O”染色结果表明,在小鼠骨关节炎模型中,全部手术侧关节表面发生磨损,且随着术后时间延长关节表面磨损范围逐步扩大,手术侧Mankn分值显著高于对照侧;此外,手术侧的软骨细胞内BiP呈阳性表达,且表达量随术后时间延长而增加。结论:在人类骨关节炎标本和实验性小鼠骨关节炎模型中,关节软骨细胞均发生明显的内质网应激现象。  相似文献   

20.
The objective of this study was to provide a detailed experimental assessment of the two-dimensional cartilage strain distribution on the cross-section of immature and mature bovine humeral heads subjected to contact loading at a relatively rapid physiological loading rate. Six immature and six mature humeral head specimens were loaded against glass and strains were measured at the end of a 5s loading ramp on the textured articular cross-section using digital image correlation analysis. The primary findings indicate that elevated tensile and compressive strains occur near the articular surface, around the center of the contact region. Few qualitative or quantitative differences were observed between mature and immature joints. Under an average contact stress of approximately 1.7 MPa, the peak compressive strains averaged -0.131+/-0.048, which was significantly less than the relative change in cartilage thickness, -0.104+/-0.032 (p<0.05). The peak tensile strains were significantly smaller in magnitude, at 0.0325+/-0.013. These experimental findings differ from a previous finite element analysis of articular contact, which predicted peak strains at the cartilage-bone interface even when accounting for the porous-hydrated nature of the tissue, its depth-dependent inhomogeneity, and the disparity between its tensile and compressive properties. These experimental results yield new insights into the local mechanical environment of the tissue and cells, and suggest that further refinements are needed in the modeling of contacting articular layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号