首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guibourt N  Boiteux S 《Biochimie》2000,82(1):59-64
The biological relevance of oxidative DNA damage has been unveiled by the identification of genes such as fpg of E. coli or OGG1 of Saccharomyces cerevisiae. Both Fpg and Ogg1 proteins are DNA glycosylases/AP lyases that excise 7,8-dihydro-8-oxoguanine (8-OxoG) and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine (Me-FapyG) from damaged DNA. Although similar, the enzymatic and biological properties of Fpg and Ogg1 proteins are not identical. Furthermore, the Fpg and Ogg1 proteins do not show significant sequence homologies. In this study, we investigated the ability of the Fpg protein of E. coli to complement phenotypes thought to be due to oxidative DNA damage in Saccharomyces cerevisiae. To express Fpg in yeast, the coding sequence of the fpg gene was placed under the control of a strong yeast promoter in the expression vector pCM190 to generate the pFPG240 plasmid. The Ogg1-deficient yeast strain CD138, ogg1::TRP1, was transformed with pFPG240 and the expression of Fpg was measured. Expression of Fpg in yeast harboring pFPG240 was revealed by efficient release of Me-FapyG and cleavage of 8-OxoG-containing duplexes by cell free protein extracts. The production of the Fpg protein in yeast cells was further demonstrated by immunoblotting analysis using anti-Fpg antibodies. Fpg expression suppresses the spontaneous mutator phenotype of ogg1- yeast for the production of canavanin resistant mutants (CanR) and Lys+ revertants. Fpg expression also restores the capacity of plasmid DNA treated with methylene blue plus visible light (MB-light) to transform the yeast ogg1- rad1- double mutant.  相似文献   

2.
The Escherichia coli Fpg protein is involved in the repair of oxidized residues. We examined, by targeted mutagenesis, the effect of the conserved lysine residue at position 57 upon the various catalytic activities of the Fpg protein. Mutant Fpg protein with Lys-57-->Gly (K57G) had dramatically reduced DNA glycosylase activity for the excision of 7,8-dihydro-8-oxo-guanine (8-oxoG). While wild type Fpg protein cleaved 8-oxoG/C DNA with a specificity constant ( k cat/ K M) of 0.11/(nM@min), K57G cleaved the same DNA 55-fold less efficiently. FpgK57G was poorly effective in the formation of Schiff base complex with 8-oxoG/C DNA. The efficiency in the binding of 8-oxoG/C DNA duplex for K57G mutant was decreased 16-fold. The substitution of Lys-57 for another basic amino acid Arg (K57R) had a slight effect on the 8-oxoG-DNA glycosylase activity and Schiff base formation. The DNA glycosylase activities of FpgK57G and FpgK57R using 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine residues as substrate were comparable to that of wild type Fpg. In vivo, the mutant K57G, in contrast to the mutant K57R and wild type Fpg, only partially restored the ability to prevent spontaneously induced transitions G/C-->T/A in E.coli BH990 ( fpg mutY ) cells. These results suggest an important role for Lys-57 in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo.  相似文献   

3.
To investigate involvement of DNA mismatch repair in the response to short-wave ultraviolet (UVC) light, we compared UVC-induced mutant frequencies and mutational spectra at the Hprt gene between wild type and mismatch-repair-deficient mouse embryonic stem (ES) cells. Whereas mismatch repair gene status did not significantly affect survival of these cells after UVC irradiation, UVC induced substantially more mutations in ES cells that lack the MutSalpha mismatch-recognizing heterodimer than in wild type ES cells. The global UVC-induced mutational spectra at Hprt and the distribution of most spectral mutational hotspots were found to be similar in mismatch-repair-deficient and wild type cells. However, at one predominant spectral hot spot for mutagenesis in wild type cells, the UVC-induced mutation frequency was not affected by the mismatch repair status. Together these data reveal a major role of mismatch repair in controlling mutagenesis induced by UVC light and may suggest the sequence context-dependent direct mismatch repair of misincorporations opposite UVC-induced pyrimidine dimers.  相似文献   

4.
One of the most predominating oxidative DNA damages, both spontaneously formed and after gamma-radiation is 7, 8-dihydro-8-oxoguanine (8oxoG). This 8oxoG is a mutagenic lesion because it can mispair with adenine instead of the correct cytosine leading to G:C to T:A transversions. In Escherichia coli (E. Coli) base excision repair (BER) is one of the most important repair systems for the repair of 8oxoG and other oxidative DNA damage. An important part of BER in E. coli is the so-called GO system which consists of three repair enzymes, MutM (Fpg), MutY and MutT which are all involved in repair of 8oxoG or 8oxoG mispairs. The aim of this study is to determine the effect of combined Fpg- and MutY-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum of the lacZalpha gene. For that purpose, non-irradiated or gamma-irradiated double-stranded (ds) M13mp10 DNA, with the lacZalpha gene inserted as mutational target sequence was transfected into an E. coli strain which is deficient in both Fpg and MutY (BH1040). The resulting mutation spectra were compared with the mutation spectra of a fpg(-) E. coli strain (BH410) and a wild type E. coli strain (JM105) which were determined in an earlier study. The results of the present study indicate that combined Fpg- and MutY-deficiency induces a large increase in G:C to T:A transversions in both the spontaneous and gamma-radiation-induced mutation spectra of BH1040 (fpg(-)mutY(-)) as compared to the fpg(-) and the wild type strain. Besides the increased levels of G:C to T:A transversions, there is also an increase in G:C to C:G transversions and frameshift mutations in both the spontaneous and gamma-radiation-induced mutation spectra of BH1040 (fpg(-)mutY(-)).  相似文献   

5.
Base excision repair (BER) is a very important repair mechanism to remove oxidative DNA damage. A major oxidative DNA damage after exposure to ionizing radiation is 7,8-dihydro-8-oxoguanine (8oxoG). 8oxoG is a strong mutagenic lesion, which may cause G:C to T:A transversions if not repaired correctly. Formamidopyrimidine-DNA glycosylase (Fpg), a repair enzyme which is part of BER, is the most important enzyme to repair 8oxoG. In the past years, evidence evolved that nucleotide excision repair (NER), a repair system originally thought to repair only bulky DNA lesions, can also repair some oxidative DNA damages. Examples of DNA damages which are recognized by NER are thymine glycol and abasic sites (AP sites). The main objective of this study is to determine if NER can act as a backup system for the repair of spontaneous and gamma-radiation-induced damages when Fpg is deficient. For that purpose, the effect of a NER-deficiency on the spontaneous and gamma-radiation-induced mutation spectrum in the lacZ gene was determined, using double-stranded (ds) M13 DNA, with the lacZalpha gene inserted as mutational target sequence. Subsequently the DNA was transfected into a fpg(-)uvrA(-) Escherichia coli strain (BH420) and the mutational spectra were compared with the spectra of a fpg(-) E. coli strain (BH410) and a wild type E. coli strain (JM105), which were determined in an earlier study. Furthermore, to examine effects which are caused by UvrA-deficiency, and not by Fpg-deficiency, the spontaneous and gamma-radiation-induced mutation spectra of an E. coli strain in which only UvrA is deficient (BH430) were also determined and compared with a wild type E. coli strain (JM105). The results of this study indicate that if only UvrA is deficient, there is an increase in spontaneous G:C to T:A transversions as compared to JM105 and a decrease in A:T to G:C transitions. The gamma-radiation-induced mutation spectrum of BH420 (fpg(-)uvrA(-)) shows a significant decrease in G:C to A:T and G:C to T:A mutations, as compared to BH410 where only Fpg is deficient. Based on these results, we conclude that in our experiments NER is not acting as a backup system if Fpg is deficient. Instead, NER seems to make mistakes, leading to the formation of mutations.  相似文献   

6.
An Escherichia coli genomic library composed of large DNA fragments (10-15 kb) was constructed using the plasmid pBR322 as vector. From it 700 clones were individually screened for increased excision of the ring-opened form of N7-methylguanine (2-6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine) or Fapy. One clone overproduced the Fapy-DNA glycosylase activity by a factor of 10-fold as compared with the wild-type strain. The Fapy-DNA glycosylase overproducer character was associated with a 15-kb recombinant plasmid (pFPG10). After subcloning a 1.4-kb fragment which contained the Fapy-DNA glycosylase gene (fpg+) was inserted in the plasmids pUC18 and pUC19 yielding pFPG50 and pFPG60 respectively. The cells harbouring pFPG60 displayed a 50- to 100-fold increase in glycosylase activity and overexpressed a 31-kd protein. From these cells the Fapy-DNA glycosylase was purified to apparent physical homogeneity as evidenced by a single protein band at 31 kd on SDS-polyacrylamide gels. The amino acid composition of the protein and the amino acid sequence deduced from the nucleotide sequence demonstrate that the cloned fragment contains the structural gene coding for the Fapy-DNA glycosylase. The nucleotide sequence of the fpg gene is composed of 809 base pairs and codes for a protein of 269 amino acids with a calculated mol. wt of 30.2 kd.  相似文献   

7.
The Escherichia coli Fpg protein is a DNA glycosylase/AP lyase. It removes, in DNA, oxidized purine residues, including the highly mutagenic C8-oxo-guanine (8-oxoG). The catalytic mechanism is believed to involve the formation of a transient Schiff base intermediate formed between DNA containing an oxidized residue and the N-terminal proline of the Fpg protein. The importance and the role of this proline upon the various catalytic activities of the Fpg protein was examined by targeted mutagenesis, resulting in the construction of three mutant Fpg proteins: Pro-2 --> Gly (FpgP2G), Pro-2 --> Thr (FpgP2T), and Pro-2 --> Glu (FpgP2E). The formamidopyrimidine DNA glycosylase activities of FpgP2G and FpgP2T were comparable and accounted for 10% of the wild-type activity. FpgP2G and FpgP2T had barely detectable 8-oxoG-DNA glycosylase activity and produced minute Schiff base complex with 8-oxoG/C DNA. FpgP2G and FpgP2T mutants did not cleave a DNA containing preformed AP site but readily produced Schiff base complex with this substrate. FpgP2E was completely inactive in all the assays. The binding constants of the different mutants when challenged with a duplex DNA containing a tetrahydrofuran residue were comparable. The mutant Fpg proteins barely or did not complement in vivo the spontaneous transitions G/C --> T/A in E. coli BH990 (fpg mutY) cells. These results show the mandatory role of N-terminal proline in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo as well as in its AP lyase activity upon preformed AP site but less in the 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine-DNA glycosylase activity.  相似文献   

8.
Plant genomic projects, such as Arabidopsis thaliana, rice, and maize, have provided excellent tools for comparative genome analysis on Base Excision DNA Repair (BER). A data-mining study associated with the SUCEST Genome project identified two EST clusters that shared homology to the bacteria MutM/Fpg protein. Comparative analyses presented here show a duplication of the MutM/Fpg gene in sugarcane, wheat and rice. The complementation assays show that both cDNAs from sugarcane are able to complement the Fpg and MutY-glycosylase deficiency in a double mutant Escherichia coli strain (CC104mutMmutY), reducing the spontaneous mutation frequency by 10-fold. The expression analyses by semi-quantitative RT-PCR show that these two mRNAs have different expression levels.  相似文献   

9.
We have reported that heat shock protein 27 (HSP27) and annexin II are involved in the protection of human cells against UVC-induced cell death. In this study we tried to confirm the combined roles of HSP27 and annexin II in cell death after UVC irradiation. In RSa cells with sensitivity to UVC, expression of annexin II decreased after UVC irradiation, but not in APr-1 cells with increased resistance to UVC. HSP27 siRNA-transfected APr-1 cells were sensitized to UVC lethality and showed decreased annexin II expression after UVC irradiation. In contrast, transfection of RSa cells with HSP27 cDNA increased their resistance to UVC lethality and caused increased annexin II expression. Furthermore, over-production of annexin II in RSa cells resulted in increased resistance to UVC lethality. This study indicates the involvement of cellular HSP27 expression in the UVC susceptibility of human cells, which occurs in association with regulation of annexin II expression.  相似文献   

10.
Iron ions mediate the formation of lethal DNA damage by hydrogen peroxide. However, when cells are depleted of iron ions by the treatment with iron chelators, DNA damage can still be detected. Here we show that the formation of such damage in low iron conditions is due to the participation of copper ions. Copper chelators can inhibit cell inactivation, DNA strand breakage and mutagenesis induced by hydrogen peroxide in cells pre-treated with iron chelators. The Fpg and UvrA proteins play an important role in the repair of DNA lesions formed in these conditions, as suggested by the great sensitivity of the uvrA and fpg mutant strains to the treatment when compared to the wild type strain.  相似文献   

11.
The involvement of reactive oxygen species (ROS) in the induction of DNA damage to Escherichia coli cells caused by UVC (254 nm) irradiation was studied. We verified the expression of the soxS gene induced by UVC (254 nm) and its inhibition by sodium azide, a singlet oxygen (1O2) scavenger. Additional results showed that a water-soluble carotenoid (norbixin) protects against the lethal effects of UVC. These results suggest that UVC radiation can also cause ROS-mediated lethality.  相似文献   

12.
Using a yeast based p53 functional assay we previously demonstrated that the UVC-induced p53 mutation spectrum appears to be indistinguishable from the one observed in Non Melanoma Skin Cancer (NMSC). However, position 742 (codon 248, CpG site) represented the major hot spot in NMSC but was not found mutated in the yeast system. In order to determine whether UVC-induced mutagenic events may be facilitated at methylated cytosine (5mC), a yeast expression vector harbouring a human wild-type p53 cDNA (pLS76) was methylated in vitro by HpaII methylase. Methylation induced 98% protection to HpaII endonuclease. Unmethylated and methylated pLS76 vectors were then UVC irradiated (lambda(max): 254 nm) and transfected into a yeast strain containing the ADE2 gene regulated by a p53-responsive promoter. The results revealed that: (i) 5mC at HpaII sites did not cause any difference in the UVC-induced survival and/or mutagenicity; (ii) none of the 20 mutants derived from methylated pLS76 showed p53 mutations targeted at HpaII sites; (iii) the UVC-induced p53 mutation spectra derived from methylated and unmethylated pLS76 were indistinguishable not only when classes of mutations and hot spots were concerned, but also when compared through a rigorous statistical test to estimate their relatedness (P = 0.85); (iv) the presence of 5mC did not increase the formation of photo-lesions at codon 248, as determined by using a stop polymerase assay. Although based on a limited number of mutants, these results suggest that the mere presence of 5mC at position 742 does not cause a dramatic increase of its mutability after UVC irradiation. We propose that position 742 is a hot spot in NMSC either because of mutagenic events at 5mC caused by other UV components of solarlight and/or because not all the NMSC are directly correlated with UV mutagenesis but may have a "spontaneous" origin.  相似文献   

13.
A 34-mer oligonucleotide containing a single 7,8-dihydro-8-oxoguanine (8-OxoG) residue was used to study the enzymatic and DNA binding properties of the Fpg protein from E. coli. The highest rates of incision of the 8-OxoG containing strand by the Fpg protein were observed for duplexes where 8-OxoG was opposite C (*G/C) or T (*G/T). In contrast, the rates of incision of duplexes containing 8-OxoG opposite G (*G/G) and A (*G/A) were 5-fold and 200-fold slower. Gel retardation studies showed that the Fpg protein had a strong affinity for duplexes where the 8-OxoG was opposite pyrimidines and less affinity for duplexes where the 8-OxoG was opposite purines. KDapp values were 0.6 nM (*G/C), 1.0 nM (*G/T), 6.0 nM (*G/G) and 16.0 nM (*G/A). The Fpg protein also binds to unmodified (G/C) duplex and a KDapp of 90 nM was measured. The cleavage and binding of the (*G/C) duplex were also studied using bacterial crude lysates. Wild type E. coli crude extract incised the 8-OxoG containing strand and formed a specific retardation complex with the (*G/C) duplex. These two reactions were mediated by the Fpg protein, since they were not observed with a crude extract from a bacterial strain whose fpg gene was inactivated. Furthermore, we have studied the properties of 6 mutant Fpg proteins with Cys-->Gly mutations. The results showed that the 2 Fpg proteins with Cys-->Gly mutations outside the zinc finger sequence cleaved the 8-OxoG containing strand, formed complexes with the (*G/C) duplex and suppressed the mutator phenotype of the fpg-1 mutant. In contrast, the 4 Fpg proteins with Cys-->Gly mutations within the zinc finger motif neither cleave nor bind the (*G/C) duplex, nor do these proteins suppress the fpg-1 mutator phenotype.  相似文献   

14.
Pura is a nucleic acid-binding protein with DNA-unwinding activity, which has recently been shown to have a role in the cellular response to DNA damage. We have investigated the function of Pura in Ultraviolet-C (UVC) radiation-induced DNA damage and nucleotide excision repair (NER). Mouse embryo fibroblasts from PURA-/- knockout mice, which lack Pura, showed enhanced sensitivity to UVC irradiation as assessed by assays for cell viability and clonogenicity compared to Pura positive control cultures. In reporter plasmid reactivation assays to measure the removal of DNA adducts induced in vitro by UVC, the Pura-negative cells were less efficient in DNA damage repair. Pura-negative cells were also more sensitive to UVC-induced DNA damage measured by Comet assay and showed a decreased ability to remove UVC-induced cyclobutane pyrimidine dimers. In wild-type mouse fibroblasts, expression of Pura is induced following S-phase checkpoint activation by UVC in a similar manner to the NER factor TFIIH. Moreover, co-immunoprecipitation experiments showed that Pura physically associates with TFIIH. Thus, Pura has a role in NER and the repair of UVC-induced DNA damage.  相似文献   

15.
Electronic excited molecular oxygen (singlet oxygen, 1O2) is known to damage DNA, yielding mutations. In this work, the mutagenicity induced by 1O2 in a defined sequence of DNA was investigated after replication in Escherichia coli mutants deficient for nucleotide and base excision DNA repair pathways. For this purpose a plasmid containing a 1O2-damaged 14 base oligonucleotide was introduced into E.coli by transfection and mutations were screened by hybridization with an oligonucleotide with the original sequence. Mutagenesis was observed in all strains tested, but it was especially high in the BH20 (fpg), AYM57 (fpg mutY) and AYM84 (fpg mutY uvrC) strains. The frequency of mutants in the fpg mutY strain was higher than in the triple mutant fpg mutY uvrC, suggesting that activity of the UvrABC excinuclease can favor the mutagenesis of these lesions. Additionally, most of the mutations were G→T and G→C transversions, but this was dependent on the position of the guanine in the sequence and on repair deficiency in the host bacteria. Thus, the kind of repair and the mutagenesis associated with 1O2-induced DNA damage are linked to the context of the damaged sequence.  相似文献   

16.
The increased prevalence of drug resistant strains of Mycobacterium tuberculosis (Mtb) indicates that significant mutagenesis occurs during tuberculosis disease in humans. DNA damage by host-derived reactive oxygen/nitrogen species is hypothesized to be critical for the mutagenic process in Mtb thus, highlighting an important role for DNA repair enzymes in maintenance of genome fidelity. Formamidopyrimidine (Fpg/MutM/Fapy) and EndonucleaseVIII (Nei) constitute the Fpg/Nei family of DNA glycosylases and together with EndonucleaseIII (Nth) are central to the base excision repair pathway in bacteria. In this study we assess the contribution of Nei and Nth DNA repair enzymes in Mycobacterium smegmatis (Msm), which retains a single nth homologue and duplications of the Fpg (fpg1 and fpg2) and Nei (nei1 and nei2) homologues. Using an Escherichia coli nth deletion mutant, we confirm the functionality of the mycobacterial nth gene in the base excision repair pathway. Msm mutants lacking nei1, nei2 and nth individually or in combination did not display aberrant growth in broth culture. Deletion of nth individually results in increased UV-induced mutagenesis and combinatorial deletion with the nei homologues results in reduced survival under oxidative stress conditions and an increase in spontaneous mutagenesis to rifampicin. Deletion of nth together with the fpg homolgues did not result in any growth/survival defects or changes in mutation rate. Furthermore, no differential emergence of the common rifampicin resistance conferring genotypes were noted. Collectively, these data confirm a role for Nth in base excision repair in mycobacteria and further highlight a novel interplay between the Nth and Nei homologues in spontaneous mutagenesis.  相似文献   

17.
Jain R  Kumar P  Varshney U 《DNA Repair》2007,6(12):1774-1785
Reactive oxygen species produced as a part of cellular metabolism or environmental agent cause a multitude of damages in cell. Oxidative damages to DNA or the free nucleotide pool result in occurrence of 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA, and failure to replace it with the correct base results in a variety of mutations in the genome. Formamidopyrimidine DNA glycosylase (Fpg/MutM), a functionally conserved repair enzyme initiates the 8-oxoG repair pathway in all eubacteria. DNA in mycobacteria with G+C rich genomes is particularly vulnerable to the oxidative damage. In this study, we disrupted fpg gene in Mycobacterium smegmatis to generate an Fpg deficient strain. The strain showed an enhanced mutator phenotype and susceptibility to hydrogen peroxide. Analyses of rifampicin resistance determining region (RRDR) revealed that, in contrast to Fpg deficient Escherichia coli where C to A mutations predominate, Fpg deficient M. smegmatis shows a remarkable increase in accumulation of A to G (or T to C) mutations. Interestingly, exposure of the mutant to sub-lethal level of hydrogen peroxide results in a major shift towards C to G (or G to C) mutations. Biochemical analysis showed that mycobacterial Fpg; and MutY (which excises misincorporated A against 8-oxoG) possess substrate specificities similar to their counterparts in E. coli. However, the DNA polymerase assays with cell-free extracts showed preferential incorporation of G in M. smegmatis as opposed to an A in E. coli. Our studies highlight the importance and the distinctive features of Fpg mediated DNA repair in mycobacteria.  相似文献   

18.
Purα is a nucleic acid-binding protein with DNA-unwinding activity, which has recently been shown to have a role in the cellular response to DNA damage. We have investigated the function of Purα in Ultraviolet-C (UVC) radiation-induced DNA damage and nucleotide excision repair (NER). Mouse embryo fibroblasts from PURA-/- knockout mice, which lack Purα, showed enhanced sensitivity to UVC irradiation as assessed by assays for cell viability and clonogenicity compared to Purα positive control cultures. In reporter plasmid reactivation assays to measure the removal of DNA adducts induced in vitro by UVC, the Purα-negative cells were less efficient in DNA damage repair. Purα-negative cells were also more sensitive to UVC-induced DNA damage measured by Comet assay and showed a decreased ability to remove UVC-induced cyclobutane pyrimidine dimers. In wild-type mouse fibroblasts, expression of Purα is induced following S-phase checkpoint activation by UVC in a similar manner to the NER factor TFIIH. Moreover, co-immunoprecipitation experiments showed that Purα physically associates with TFIIH. Thus, Purα has a role in NER and the repair of UVC-induced DNA damage.Key words: purα, ultraviolet radiation, DNA damage, DNA repair, nucleotide excision repair, TFIIH  相似文献   

19.
The repair of 2,6-diamino-4-hydroxy-5-N-methyl-formamidopyrimidine (Fapy) residues in DNA is performed by a Fapy-DNA glycosylase activity which is encoded for by the fpg gene in Escherichia coli. Besides DNA glycosylase activity, this protein, the FPG protein, is endowed with an EDTA-resistant activity nicking DNA at apurinic/apyrimidinic (AP) sites. To overproduce the FPG protein, the fpg gene was placed under the control of the tac promoter in the expression vector pKK223-3 yielding the pFPG230 plasmid. The production of the FPG protein in cells harboring the pFPG230 plasmid was 800-fold higher than that of the wild type strain after induction by isopropyl-beta-D-thio-galactopyranoside. From these cells, the FPG protein was purified to homogeneity in sufficient quantity to study its physical and catalytic properties. In its active form, the FPG protein is a globular monomer of 31 kDa and has an experimentally measured isoelectric point of 8.5. When the FPG protein is heat-denatured in the presence of EDTA the two activities are more rapidly inactivated than when heated in the absence of EDTA, suggesting that the FPG protein possesses a tightly bound metal ion. Atomic absorption spectrophotometric analysis shows that there is one zinc/FPG protein molecule. The FPG protein is different from previously described DNA glycosylases and AP-nicking enzymes in E. coli. The contribution of the AP-nicking activity associated with the FPG protein represents 10-20% of the total EDTA-resistant AP-nicking activities in E. coli.  相似文献   

20.
Ultraviolet-C (UVC) irradiation induces DNA damage and UVC-irradiated cells undergo cell growth arrest to repair the damaged DNA or the induction of apoptosis to prevent the risk of neoplastic transformation. Phospholipase C-gamma1 (PLC-gamma1) is a mediator of growth factor induced-signal cascade, catalyzing the hydrolysis of phosphatidyl 4,5-bisphosphate to generate second messengers, diacylglycerol and inositol 1,4,5-trisphosphate (IP(3)). PLC-gamma1 is activated by phosphorylation of tyrosine residues upon occupation of cell surface receptors by growth factors and plays an important role in controlling cellular proliferation and differentiation. In this study, we found that PLC-gamma1 was tyrosine phosphorylated within 2.5 min after UVC irradiation. To investigate the role of UVC-induced tyrosine phosphorylation of PLC-gamma1, we compared the effect of UVC between PLC-gamma1 overexpressing cells and empty vector transfected cells. Overexpression of PLC-gamma1 inhibited UVC-induced sub-diploid peak and DNA fragmentation. Northern blot analysis revealed that UVC-induced c-fos mRNA accumulation was inhibited in PLC-gamma1 overexpressing cells, while c-jun expression was not affected. In addition, UVC-induced activation of c-Jun N-terminal kinase (JNK) was significantly suppressed in PLC-gamma1 overexpressing cells. These results suggest that PLC-gamma1 may associate with the protective function against the UVC-induced cell death progression via the inhibition of accumulation of c-fos mRNA and the inhibition of JNK kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号