首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have recently demonstrated that two IFN-gamma-inducing cytokines, interleukin (IL)-12 and IL-18, synergistically induced the fungicidal activity of mouse peritoneal exudate cells (PEC) against Cryptococcus neoformans through NK cell production of interferon (IFN)-gamma and nitric oxide (NO) synthesis. In the present study, we further dissected these effects by examining the involvement of tumor necrosis factor (TNF)-alpha in the induction of IL-12/IL-18-stimulated PEC fungicidal activity. The addition of neutralizing anti-TNF-alpha mAb significantly suppressed IL-12/IL-18-stimulated PEC anticryptococcal activity. This effect was ascribed to the inhibition of macrophage NO synthesis, but not of IFN-gamma production by NK cells, because the same treatment inhibited the former response, but not the latter one. On the other hand, combined treatment with IL-12 and IL-18 synergistically induced the production of TNF-alpha by PEC and this effect was almost completely abrogated by neutralizing anti-IFN-gamma mAb. The cell type producing TNF-alpha among PEC was mostly macrophage. TNF-alpha significantly promoted macrophage NO production and anticryptococcal activity induced by IFN-gamma, and furthermore anti-TNF-alpha mAb partially inhibited these responses. Considered together, our results indicated that TNF-alpha contributed to the potentiation of IL-12/IL-18-induced PEC fungicidal activity against C. neoformans through enhancement of IFN-gamma-induced production of NO by macrophages, but not through increased production of IFN-gamma by NK cells.  相似文献   

2.
In this study, we examined the possible role of TNF-alpha and lymphotoxin (TNF-beta) as cofactors of macrophage activation. The results demonstrate that both TNF were capable of enhancing the cytostatic and cytolytic activity of murine peritoneal macrophages against Eb lymphoma cells. The potentiation of tumor cytotoxicity became apparent when macrophages from DBA/2 mice were suboptimally activated by either a T cell clone-derived macrophage-activating factor or by IFN-gamma plus LPS. Neither TNF-alpha nor TNF-beta could induce tumor cytotoxicity in IFN-gamma-primed macrophages, indicating that TNF cannot replace LPS as a triggering signal of activation. In LPS-resistant C3H/HeJ macrophages, which were unresponsive to IFN-gamma plus LPS, a supplementation with TNF fully restored activation to tumor cytotoxicity. Furthermore, TNF-alpha potentiated a variety of other functions in low-level activated macrophages such as a lactate production and release of cytotoxic factors. At the same time, TNF-alpha produced a further down-regulation of pinocytosis, tumor cell binding and RNA synthesis observed in activated macrophages. These data demonstrate new activities for both TNF-alpha and TNF-beta as helper factors that facilitate macrophage activation. In particular, the macrophage product TNF-alpha may serve as an autocrine signal to potentiate those macrophage functions that were insufficiently activated by lymphokines.  相似文献   

3.
Osteopontin aggravates experimental autoimmune uveoretinitis in mice   总被引:1,自引:0,他引:1  
Human endogenous uveitis is a common sight-threatening intraocular inflammatory disease and has been studied extensively using a murine model of experimental autoimmune uveoretinitis (EAU). It is possibly mediated by Th1 immune responses. In the present study, we investigated the role of osteopontin (OPN), a protein with pleiotropic functions that contributes to the development of Th1 cell-mediated immunity. Accompanying EAU progression, OPN was elevated in wild-type (WT) mice that had been immunized with human interphotoreceptor retinoid-binding protein (hIRBP) peptide 1-20. OPN-deficient (OPN-/-) mice showed milder EAU progression in clinical and histopathological scores compared with those of WT mice. The T cells from hIRBP-immunized OPN-/- mice exhibited reduced Ag-specific proliferation and proinflammatory cytokine (TNF-alpha and IFN-gamma) production compared with those of WT T cells. When hIRBP-immunized WT mice were administered M5 Ab reacting to SLAYGLR sequence, a cryptic binding site to integrins within OPN, EAU development was significantly ameliorated. T cells from hIRBP-immunized WT mice showed significantly reduced proliferative responses and proinflammatory cytokine production upon stimulation with hIRBP peptide in the presence of M5 Ab in the culture. Our present results demonstrate that OPN may represent a novel therapeutic target to control uveoretinitis.  相似文献   

4.
Expression of osteopontin (OPN) by activated T-cells and macrophages is required for the development of cell-mediated inflammatory responses. Acting through integrin alpha(v)beta(3) and CD44 receptors, OPN can promote chemoattraction and pro-inflammatory cytokine expression by macrophages. In this study, we have used peritoneal macrophages from OPN-/, CD44-/-, and WT mice to study the relationship between OPN and CD44 in macrophage migration. Using confocal microscopy, we show that OPN co-distributes with CD44 inside macrophages at cell edges and in cell processes in a mutually dependent manner. The existence of an intracellular form of OPN is supported by pulse-chase studies in which a thrombin-sensitive, phosphorylated protein immunoprecipitated with OPN antibodies is retained inside macrophages. In OPN-/- and CD44-/- macrophages, the absence of CD44 and OPN, respectively, is associated with the formation of fewer cell processes, reduced cell fusion required to form functional multinucleated osteoclasts in the presence of CSF-1 and RANKL, and impaired chemotaxis. Whereas the chemotaxis of CD44-/- cells to various chemoattractants is almost completely abrogated, a differential effect is seen with the OPN-/- cells. Thus, OPN-/- cells migrate normally towards CSF-1 but not towards fMLP and MCP-1, which signal through G-protein coupled receptors (GPCRs). That the GPCR-mediated migration is dependent upon the level of cell-surface CD44 is indicated by the reduced cell-surface expression of CD44 in OPN-/- cells and a comparable impairment in the chemotaxis of CD44+/- cells. Although chemotaxis of OPN-/- cells could be rescued by an OPN substratum, or by addition of high levels of OPN in solution, no response is evident with physiological levels of OPN, indicating a requirement for the CD44-associated intracellular OPN in CD44 cell-surface expression. These studies indicate, therefore, that the level of cell surface CD44 is critical for GPCR-mediated chemotaxis by peritoneal macrophages and suggest that a novel intracellular form of OPN may modulate CD44 activities involved in these processes.  相似文献   

5.
Osteopontin (OPN) is characterized as a major amplifier of Th1-immune responses. However, its role in intestinal inflammation is currently unknown. We found considerably raised OPN levels in blood of wild-type (WT) mice with dextran sodium sulfate (DSS)-induced colitis. To identify the role of this mediator in intestinal inflammation, we analysed experimental colitis in OPN-deficient (OPN(-/-)) mice. In the acute phase of colitis these mice showed more extensive colonic ulcerations and mucosal destruction than WT mice, which was abrogated by application of soluble OPN. Within the OPN(-/-) mice, infiltrating macrophages were not activated and showed impaired phagocytosis. Reduced mRNA expression of interleukin (IL)-1 beta and matrix metalloproteinases was found in acute colitis of OPN(-/-) mice. This was associated with decreased blood levels of IL-22, a Th17 cytokine that may mediate epithelial regeneration. However, OPN-(/-) mice showed increased serum levels of tumour necrosis factor (TNF)-alpha, which could be due to systemically present lipopolysaccharide translocated to the gut. In contrast to acute colitis, during chronic DSS-colitis, which is driven by a Th1 response of the lamina propria infiltrates, OPN(-/-) mice were protected from mucosal inflammation and demonstrated lower serum levels of IL-12 than WT mice. Furthermore, neutralization of OPN in WT mice abrogated colitis. Lastly, we demonstrate that in patients with active Crohn's disease OPN serum concentration correlated significantly with disease activity. Taken together, we postulate a dual function of OPN in intestinal inflammation: During acute inflammation OPN seems to activate innate immunity, reduces tissue damage and initiates mucosal repair whereas during chronic inflammation it promotes the Th1 response and strengthens inflammation.  相似文献   

6.
7.
We have previously established that IFN-gamma plus IL-2 induces murine macrophage tumoricidal activity. The purpose of this study was to identify the effector molecules that account for the IFN-gamma plus IL-2-induced macrophage cytotoxicity against P815 mastocytoma cells. ANA-1 macrophages and normal thioglycollate-elicited mouse peritoneal macrophages produced little or no detectable nitrite (NO2-) after incubation with IFN-gamma alone or IL-2 alone; however, IL-2 synergized with IFN-gamma for the production of NO2-. IFN-gamma plus IL-2 did not induce NO2- production or tumoricidal activity in ANA-1 macrophages that were cultured in medium devoid of L-arginine or in ANA-1 macrophages that were incubated with NG-monomethyl-L-arginine. As observed previously with ANA-1 macrophage tumoricidal activity, IL-4 inhibited IFN-gamma plus IL-2-induced, but not IFN-gamma plus LPS-induced, NO2- production. IL-4 also selectively decreased the ability of IFN-gamma and/or IL-2 to augment TNF-alpha mRNA expression in ANA-1 macrophages. Lastly, incubation of ANA-1 macrophages with anti-TNF mAb selectively inhibited the ability of IFN-gamma plus IL-2 to induce NO2- production and tumoricidal activity. These results indicate that IFN-gamma plus IL-2-induced tumoricidal activity is dependent upon the metabolism of L-arginine to reactive nitrogen intermediates, and they establish a role for TNF-alpha as a required intermediate for IL-2-dependent NO2- production and tumoricidal activity.  相似文献   

8.
Osteopontin (OPN) is a major non-collagenous bone matrix protein implicated in the regulation of cell function. Although OPN is rich in the cementum of the tooth, the significance of OPN in this tissue is not understood. Tooth root resorption is the most frequent complication of orthodontic tooth movement (TM). The objective of this study was to examine the pathophysiological role of OPN in cementum of the tooth root. For this purpose, the upper right first molar (M1) in OPN-deficient and wild-type (WT) mice was subjected to mechanical force via 10 gf NiTi coil spring while the left side molar was kept intact to serve as an internal control. Micro-CT section and the level of tartrate resistant acid phosphatase (TRAP)-positive cells on the tooth root surface defined as odontoclasts were quantified at the end of the force application. In WT mice, force application to the tooth caused appearance of odontoclasts around the mesial surface of the tooth root resulting in tooth root resorption. In contrast, OPN deficiency significantly suppressed the force-induced increase in the number of odontoclasts and suppressed root resorption. This force application also induced increase in the number of TRAP-positive cells in the alveolar bone on the pressure side defined as osteoclasts, while the levels of the increase in osteoclastic cell number in such alveolar bone were similar between the OPN-deficient and WT mice. These observations indicate that OPN deficiency suppresses specifically tooth root resorption in case of experimental force application.  相似文献   

9.
Reperfusion-induced oxidative injury to the myocardium promotes activation and proliferation of cardiac fibroblasts and repair by scar formation. Osteopontin (OPN) is a proinflammatory cytokine that is upregulated after reperfusion. To determine whether OPN enhances fibroblast survival after exposure to oxidants, cardiac fibroblasts from wild-type (WT) or OPN-null (OPN(-/-)) mice were treated in vitro with H(2)O(2) to model reperfusion injury. Within 1 h, membrane permeability to propidium iodide (PI) was increased from 5 to 60% in OPN(-/-) cells but was increased to only 20% in WT cells. In contrast, after 1-8 h of treatment with H(2)O(2), the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-stained cells was more than twofold higher in WT than OPN(-/-) cells. Electron microscopy of WT cells treated with H(2)O(2) showed chromatin condensation, nuclear fragmentation, and cytoplasmic and nuclear shrinkage, which are consistent with apoptosis. In contrast, H(2)O(2)-treated OPN(-/-) cardiac fibroblasts exhibited cell and nuclear swelling and membrane disruption that are indicative of cell necrosis. Treatment of OPN(-/-) and WT cells with a cell-permeable caspase-3 inhibitor reduced the percentage of TUNEL staining by more than fourfold in WT cells but decreased staining in OPN(-/-) cells by approximately 30%. Although the percentage of PI-permeable WT cells was reduced threefold, the percent of PI-permeable OPN(-/-) cells was not altered. Restoration of OPN expression in OPN(-/-) fibroblasts reduced the percentage of PI-permeable cells but not TUNEL staining after H(2)O(2) treatment. Thus H(2)O(2)-induced cell death in OPN-deficient cardiac fibroblasts is mediated by a caspase-3-independent, necrotic pathway. We suggest that the increased expression of OPN in the myocardium after reperfusion may promote fibrosis by protecting cardiac fibroblasts from cell death.  相似文献   

10.
11.
Antibody-dependent cellular cytotoxicity (ADCC) to tumor targets was studied using murine resident peritoneal macrophages and a macrophage cell line RAW264.10A, both having low inherent cytolytic activity. The target was 125I-labeled pre-B lymphoma 18-8. Pretreatment of both macrophage populations with 0.5 – 2 μM concentrations of the microtubule-stabilizing drug taxol greatly increased their antibody-dependent cytotoxicity with no stimulation of nonspecific killing. Taxol present only during the 18-hr cytolytic assays had no effect on target killing. Optimal killing activity was obtained by treating macrophages 2 days with taxol, similar to previously described cytokine stimulation of ADCC. This concentration completely blocked growth of RAW264 cells. Other microtubule inhibitors, lidocaine and colchicine, also augmented peritoneal and cell line macrophage ADCC at cytostatic concentrations. In contrast, the microfilament-disrupting agent, cytochalasin B, caused little or no stimulation of ADCC. These results show that microtubule reformation is not necessary for the development of cytotoxicity. Since microtubule inhibitors block lysosomal discharge, they may stimulate macrophage ADCC by causing accumulation of toxic molecules involved in cytotoxicity.  相似文献   

12.
During primary infection with intracellular bacteria, the membrane-associated form of TNF provides some TNF functions, but the relative contributions during memory responses are not well-characterized. In this study, we determined the role of T cell-derived secreted and membrane-bound TNF (memTNF) during adaptive immunity to Francisella tularensis live vaccine strain (LVS). Although transgenic mice expressing only the memTNF were more susceptible to primary LVS infection than wild-type (WT) mice, LVS-immune WT and memTNF mice both survived maximal lethal secondary Francisella challenge. Generation of CD44(high) memory T cells and clearance of bacteria were similar, although more IFN-gamma and IL-12(p40) were produced by memTNF mice. To examine T cell function, we used an in vitro tissue coculture system that measures control of LVS intramacrophage growth by LVS-immune WT and memTNF-T cells. LVS-immune CD4(+) and CD8(+) T cells isolated from WT and memTNF mice exhibited comparable control of LVS growth in either normal or TNF-alpha knockout macrophages. Although the magnitude of CD4(+) T cell-induced macrophage NO production clearly depended on TNF, control of LVS growth by both CD4(+) and CD8(+) T cells did not correlate with levels of nitrite. Importantly, intramacrophage LVS growth control by CD8(+) T cells, but not CD4(+) T cells, was almost entirely dependent on T cell-expressed TNF, and required stimulation through macrophage TNFRs. Collectively, these data demonstrate that T cell-expressed memTNF is necessary and sufficient for memory T cell responses to this intracellular pathogen, and is particularly important for intramacrophage control of bacterial growth by CD8(+) T cells.  相似文献   

13.
Summary DBA/2 mice were immunized i.p. against syngeneic SL2 lymphosarcoma cells. At various days after the last immunization peritoneal and spleen lymphocytes were collected. The lymphocyte suspensions were enriched for T-cells by nylon wool filtration.The peritoneal T-cells from immunized mice (a) expressed direct specific antitumor cytotoxicity in vitro, (b) induced macrophage cytotoxicity in vitro, and (c) exerted tumor neutralization measured in a Winn-type assay. Spleen T-cells from these immunized mice (a) expressed no direct specific antitumor cytotoxicity in vitro, (b) only induced moderate macrophage cytotoxicity in vitro, but (c) exerted tumor neutralization in a Winn assay.For effective tumor neutralization in vivo effector target cell ratios of 1000:1 were required. When the effector/target ratio of 1000:1 was maintained but the absolute numbers of effector and target cells were lowered from 106 to 105 lymphocytes and 103 to 102 target cells respectively, no tumor neutralization was obtained.The major effect of the sensitized-transferred T-lymphocytes seemed to be the induction of cytotoxic macrophages in the (naive) recipient mice, as the peritoneal macrophages collected from the recipient mice 7 days after i.p. injection of a mixture of sensitized T-cells and tumor cells were cytotoxic. Purified peritoneal T-lymphocytes collected from these recipient mice were able to induce macrophage cytotoxicity in vitro but expressed no cytotoxic T-cell activity.In conclusion, our results show that in the tumor system used, tumor neutralization after transfer of sensitized lymphocytes is not dependent on the presence of cytotoxic T-lymphocytes. Lymphocytes with the strongest potency to render macrophages cytotoxic (in vitro and in vivo) also induce the best tumor neutralization in vivo, suggesting an important role for host macrophages as antitumor effector cells.  相似文献   

14.
15.
Summary We tested anti-tumor activities of macrophages treated with a neutral polysaccharide, schizophyllan (SPG), against syngeneic and allogeneic tumor cell lines. SPG was a macrophage stimulant which was not mitogenic to lymphocytes. That made a sharp contrast with the data that Corynebacterium parvum, BCG, and muramyl dipeptide (MDF) were macrophage stimulants which had lymphocyte-activating properties. Treatment of SPG-treated PEC with Thy12 monoclonal antibody and guinea pig complement did not affect the capabilities of tumor-cell-growth suppression by the treated PEC. Thus, the effector cells were peritoneal adherent cells (macrophages morphologically) and effector-to-target contact seemed to be necessary for effective tumor-cell-growth inhibition, although contradictory data exist for this. Murine peritoneal adherent cells harvested 4 days after a single IP injection of SPG at a dose of 100 mg/kg body weight of mouse showed the most prominent cytostatic and cytotoxic activities against syngeneic and allogeneic tumor cells. The distribution of anti-tumor activity in macrophages of various sizes followed the same pattern as macrophages treated with C. Parvum, i.e., larger macrophages showed more remarkable anti-tumor activity. Crude nonadherent peritoneal cells incubated with SPG at a concentration of 10 g/ml, 100 g/ml, or 1 mg/ml did not secrete lymphokine that rendered macrophages cytotoxic, while ConA-treated nonadherent cells did so. Furthermore, spleen cells treated with SPG in vivo did not secrete macrophage-activating lymphokine in the presence of SPG. On the other hand, addition of 1 mg/ml of SPG-treated peritoneal adherent cells and bone-marrow-derived macrophages in vitro rendered them cytotoxic to a moderate degree. This implies that SPG may activate macrophages directly, allowing them to become cytotoxic in the peritoneal cavity. Lastly, SPG could induce production of II-1-like factor to a moderate degree. SPG, whose molecular structure is well elucidated, will provide us with a strong tool to analyze the mechanism of macrophage activation both in vitro and in vivo.Abbreviations PEC peritoneal exudate cells - SPG schizophyllan - LPS lipopolysaccharide - Con A concanavalin A - CGN carrageenan - B. M. bone marrow - FCS fetal calf serum - BCG bacille Calmétte Guérin - Il-1 interleukin 1 - PPD pure protein derivatives - MDP muramyl dipeptide - C. parvum Corynebacerium parvum Dr. Sugawara is a Research Fellow of the Alberta Heritage Foundation for Medical ResearchDr. Lee is a Research Associate of the National Cancer Institute of Canada  相似文献   

16.
Chemically synthesized mastoparan M, a tetradecapeptide toxin of venom (INLKAIAALAKKLL), was used in the experiments described. After addition of mastoparan M to cultures of mouse macrophages in vitro, tumour necrosis factor-alpha (TNF-alpha) and interleukin 1beta (IL-1beta) were detected in the culture fluids by 12 h and their highest accumulation was observed by 24 h. Mastoparan M induced increases in both TNF-alpha secretion and mRNA level at the same time. Nitrite levels, which reflect nitric oxide synthesis, were also found to increase in the macrophage cultures at 24 h after mastoparan M addition. In vivo studies showed that mastoparan M induced the formation and accumulation of TNF-alpha, IL-1beta and nitrite in the peritoneal exudates of mice much faster at 90 min, 120 min and 180 min after mastoparan M injection, respectively. Similarly, significant increases in myeloperoxidase activity, a marker for neutrophil and macrophage content, were observed in the peritoneal lavage cells after intraperitoneal injection of mastoparan M. However, induction of nitrite by mastoparan M was completely inhibited by simultaneous addition of antimouse TNF-alpha antibody to the macrophage cultures. These results suggest that modulation of both neutrophil and macrophage influx by mastoparan M may be conveyed through TNF-alpha and IL-1beta secretion accompanied by nitrite formation.  相似文献   

17.
A hybridoma clone secreting rat monoclonal antibody (MAB) designated as 3F3.5F and which reacted with a population of activated tumoricidal mouse peritoneal macrophage (M phi) was produced by the fusion of mouse myeloma cells with rat spleen cells immunized against adherent BCG-activated mouse peritoneal exudate cells (adherent BCG-PEC). The antibody was cytotoxic and of the rat IgM class. The specific reactivity of the antibody with mouse primary cells and cell lines was examined by complement-dependent cytotoxicity and indirect immunofluorescence flow cytometry analysis. The antibody was found to bind to about 40% of the adherent BCG-PEC activated in vivo and elicited peritoneal macrophages activated in vitro by lymphokine and lipopolysaccharide (LPS), to about 35% of polymorphonuclear neutrophils (PMN) 15 hr after intraperitoneal injection of BCG, to about 30% of bone marrow cells from BCG-infected mice, to about 10% of P815 mastocytoma cells and to thioglycollate-induced PEC to some degree. It did not bind to other cells tested including BCG-induced peritoneal lymphocytes, non-tumoricidal PEC, thymocytes, spleen cells, resting bone marrow cells from normal mice, lymphomas, myelomas, fibroblasts, or macrophage-cell lines. Pretreatment of adherent BCG-PEC with MAB 3F3.5F and rabbit complement caused a considerable decrease in tumor cytotoxicity toward P815 cells, but the same pretreatment of non-adherent BCG-PEC had no inhibitory effect on natural killer activity for YAC-1 cells.  相似文献   

18.
We tested anti-tumor activities of macrophages treated with a neutral polysaccharide, schizophyllan (SPG), against syngeneic and allogeneic tumor cell lines. SPG was a macrophage stimulant which was not mitogenic to lymphocytes. That made a sharp contrast with the data that Corynebacterium parvum, BCG, and muramyl dipeptide (MDF) were macrophage stimulants which had lymphocyte-activating properties. Treatment of SPG-treated PEC with Thy12 monoclonal antibody and guinea pig complement did not affect the capabilities of tumor-cell-growth suppression by the treated PEC. Thus, the effector cells were peritoneal adherent cells (macrophages morphologically) and effector-to-target contact seemed to be necessary for effective tumor-cell-growth inhibition, although contradictory data exist for this. Murine peritoneal adherent cells harvested 4 days after a single IP injection of SPG at a dose of 100 mg/kg body weight of mouse showed the most prominent cytostatic and cytotoxic activities against syngeneic and allogeneic tumor cells. The distribution of anti-tumor activity in macrophages of various sizes followed the same pattern as macrophages treated with C. Parvum, i.e., larger macrophages showed more remarkable anti-tumor activity. Crude nonadherent peritoneal cells incubated with SPG at a concentration of 10 micrograms/ml, 100 micrograms/ml, or 1 mg/ml did not secrete lymphokine that rendered macrophages cytotoxic, while ConA-treated nonadherent cells did so. Furthermore, spleen cells treated with SPG in vivo did not secrete macrophage-activating lymphokine in the presence of SPG. On the other hand, addition of 1 mg/ml of SPG-treated peritoneal adherent cells and bone-marrow-derived macrophages in vitro rendered them cytotoxic to a moderate degree. This implies that SPG may activate macrophages directly, allowing them to become cytotoxic in the peritoneal cavity. Lastly, SPG could induce production of II-1-like factor to a moderate degree. SPG, whose molecular structure is well elucidated, will provide us with a strong tool to analyze the mechanism of macrophage activation both in vitro and in vivo.  相似文献   

19.
Legionella pneumophila is an ubiquitous opportunistic intracellular pathogen that replicates readily in thioglycollate-elicited peritoneal macrophages from genetically susceptible A/J mice. Treatment of macrophage cultures in vitro with tumor necrosis factor-alpha (TNF-alpha) induced resistance of the macrophages to infection by Legionella as compared with control macrophages treated with medium alone. Addition of small amounts of monoclonal antibody to TNF-alpha restored susceptibility of the macrophages. Furthermore, antibody to the proinflammatory cytokine interleukin-1 (IL-1) alpha/beta increased resistance, but recombinant IL-1 had little effect. Such decreased susceptibility to Legionella growth in anti-IL-1 antibody-treated cultures corresponded with enhanced levels of TNF-alpha in the supernatants of the treated cells. An antibody to another proinflammatory cytokine with known immunoregulatory properties (i.e., IL-6) had little or no effect on the ability of the macrophages to be infected by Legionella and, furthermore, treatment with recombinant IL-6, similar to recombinant IL-1, did not modify the ability of the cells to be infected in vitro. These results indicate that TNF-alpha is important in controlling L. pneumophila replication, and IL-1 can regulate TNF-alpha levels, affecting susceptibility of macrophages to infection with an intracellular opportunistic pathogen like Legionella.  相似文献   

20.
Normal peritoneal exudate cells (PEC) were activated as suspension cultures either in mediator-rich supernatants from o-chlorobenzoyl-bovine gamma-globulin (OCB-BGG) stimulated lymphocytes or in antigen-free Sephadex fractions from these supernants. After 24 hr incubation thration. The adherent cell fractions of PEC, recovered by trypsinization from monolayers and activated by this technique, were as cytotoxic as unfractionated PEC. Lymphocyte supernatants and antigen-free fractions of the supernatants induced comparable macrophage-mediated tumor cytotoxicity. Treatment of activated macrophages with trypsin did not alter their cytotoxic capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号