首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Wu HY  Brian DA 《Journal of virology》2007,81(7):3206-3215
Coronaviruses have a positive-strand RNA genome and replicate through the use of a 3' nested set of subgenomic mRNAs each possessing a leader (65 to 90 nucleotides [nt] in length, depending on the viral species) identical to and derived from the genomic leader. One widely supported model for leader acquisition states that a template switch takes place during the generation of negative-strand antileader-containing templates used subsequently for subgenomic mRNA synthesis. In this process, the switch is largely driven by canonical heptameric donor sequences at intergenic sites on the genome that match an acceptor sequence at the 3' end of the genomic leader. With experimentally placed 22-nt-long donor sequences within a bovine coronavirus defective interfering (DI) RNA we have shown that matching sites occurring anywhere within a 65-nt-wide 5'-proximal genomic acceptor hot spot (nt 33 through 97) can be used for production of templates for subgenomic mRNA synthesis from the DI RNA. Here we report that with the same experimental approach, template switches can be induced in trans from an internal site in the DI RNA to the negative-strand antigenome of the helper virus. For these, a 3'-proximal 89-nt acceptor hot spot on the viral antigenome (nt 35 through 123), largely complementary to that described above, was found. Molecules resulting from these switches were not templates for subgenomic mRNA synthesis but, rather, ambisense chimeras potentially exceeding the viral genome in length. The results suggest the existence of a coronavirus 5'-proximal partially double-stranded template switch-facilitating structure of discrete width that contains both the viral genome and antigenome.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
C L Liao  M M Lai 《Journal of virology》1992,66(10):6117-6124
Mouse hepatitis virus (MHV), a coronavirus, has been shown to undergo a high frequency of RNA recombination both in tissue culture and in animal infection. So far, RNA recombination has been demonstrated only between genomic RNAs of two coinfecting viruses. To understand the mechanism of RNA recombination and to further explore the potential of RNA recombination, we studied whether recombination could occur between a replicating MHV RNA and transfected RNA fragments. We first used RNA fragments which represented the 5' end of genomic-sense sequences of MHV RNA for transfection. By using polymerase chain reaction amplification with two specific primers, we were able to detect recombinant RNAs which incorporated the transfected fragment into the 5' end of the viral RNA in the infected cells. Surprisingly, even the anti-genomic-sense RNA fragments complementary to the 5' end of MHV genomic RNA could also recombine with the MHV genomic RNAs. This observation suggests that RNA recombination can occur during both positive- and negative-strand RNA synthesis. Furthermore, the recombinant RNAs could be detected in the virion released from the infected cells even after several passages of virus in tissue culture cells, indicating that these recombinant RNAs represented functional virion RNAs. The crossover sites of these recombinants were detected throughout the transfected RNA fragments. However, when an RNA fragment with a nine-nucleotide (CUUUAUAAA) deletion immediately downstream of a pentanucleotide (UCUAA) repeat sequence in the leader RNA was transfected into MHV-infected cells, most of the recombinants between this RNA and the MHV genome contained crossover sites near this pentanucleotide repeat sequence. In contrast, when exogenous RNAs with the intact nine-nucleotide sequence were used in similar experiments, the crossover sites of recombinants in viral genomic RNA could be detected at more-downstream sites. This study demonstrated that recombination can occur between replicating MHV RNAs and RNA fragments which do not replicate, suggesting the potential of RNA recombination for genetic engineering.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号