首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
In adult mice the cytochrome P450 Cyp1a1 gene is not constitutively expressed but is highly inducible by foreign compounds acting through the aryl hydrocarbon (Ah) receptor. However, the expression profile of the Cyp1a1 gene in the developing embryo is not well under-stood. Using established transgenic mouse lines where 8.5 kb of the rat CYP1A1 promoter is cloned upstream of the lacZ reporter gene (1), we describe the expression of the CYP1A1-driven reporter gene in all tissues through-out stages E7-E14 of embryonic development. In contrast to the absence of constitutive Cyp1a1 and lacZ transgene expression in tissues of the adult mouse, a constitutive cell-specific and time-dependent pattern of CYP1A1 promoter activity was observed in the embryo. This expression pattern was confirmed as reflecting the endogenous gene by measuring Cyp1a1 mRNA levels and protein expression by immunohistochemistry. The number of cells displaying endogenous CYP1A1 activity could be increased in the embryo upon xenobiotic challenge, but only within areas where the CYP1A1 promotor was already active. When reporter mice were bred onto a genetic background expressing a lower affinity form of the Ah receptor (DBA allele), transgene and murine Cyp1a1 protein expression were both attenuated in the adult mouse liver upon xenobiotic challenge. By comparison, constitutive CYP1A1 promoter activity in the embryo was identical in the presence of either the high or low affinity Ah receptor. These novel data suggest that the Cyp1a1 protein may play a role in murine development and that regulation of the Cyp1a1 gene during this period is either through the action of a high affinity Ah receptor ligand or by an alternative regulatory pathway.  相似文献   

4.
We have examined enzyme activities and mRNA levels corresponding to aldehyde dehydrogenase-3 genes encoding cytosolic (ALDH3c) and microsomal (ALDH3m) forms. In contrast to negligible activities in the intact mouse liver, both ALDH3c and ALDH3m enzyme activities are inducible by benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mouse hepatoma Hepa-1c1c7 cell cultures. Constitutive mRNA levels of ALDH3c are virtually absent, whereas those of ALDH3m are substantial; using Hepa-1 mutant lines, we show that both ALDH3c and ALDH3m are TCDD-inducible by an Ah receptor-dependent mechanism. Basal mRNA levels of ALDH3c, but not those of ALDH3m, are strikingly elevated in untreated mutant cells lacking a functional CYP1A1 enzyme; low ALDH3c basal mRNA levels can be restored by introduction of a functional murine CYP1A1 or human CYP1A2 enzyme into these mutant cells. These data suggest that the TCDD induction process is distinct from the CYP1A1/CYP1A2 metabolism-dependent repression of constitutive gene expression; we suggest that this latter property classifies the Aldh-3c gene, but not the Aldh-3m gene, as a member of the murine [Ah] battery.  相似文献   

5.
6.
Cells of Saccharomyces cerevisiae contain a major cytosolic cyclophilin (Cyp)-related peptidyl-prolyl cis-trans isomerase (PPIase) which is the target for cyclosporin A (CsA) cytotoxicity and which is encoded by the CYP1 gene [Haendler et al., Gene 83 (1989) 39-46]. We recently identified a second Cyp-related gene in yeast, CYP2 [Koser et al., Nucleic Acids Res. 18 (1990) 1643] which predicts a protein with a hydrophobic leader sequence. A sequence lacking 33 codons from the 5'-end of the CYP2 open reading frame was generated by the polymerase chain reaction and engineered for expression in Escherichia coli. The corresponding recombinant truncated protein was purified and found to exhibit PPIase activity which was inhibited by CsA. The CYP2 gene is genetically unlinked to CYP1. As with CYP1, genomic disruption of CYP2 had no effect on haploid cell viability. Disruption of all three of the known yeast PPIase-encoding genes [CYP1, CYP2, and RBP1 for rapamycin-binding protein; Koltin et al., Mol. Cell. Biol. 11 (1991) 1718-1723] in the same haploid cell also resulted in no apparent cellular phenotype, suggesting either that none of these enzymes have an essential function or that additional PPIases can compensate for their specific absence. Whereas cells containing a genomic disruption of CYP1 exhibited a CsA-resistant phenotype, genomic disruption of CYP2 had no effect on CsA sensitivity. This suggests that the CYP1 gene product is the primary cellular target for CsA toxicity in yeast. Since both purified Cyps display CsA sensitivity in vitro, our data suggest that Cyp1 and Cyp2 differ in terms of their cellular function and/or localization.  相似文献   

7.
8.
9.
Human/rodent CYP1A1 and CYP1A2 orthologs are well known to exhibit species-specific differences in substrate preferences and rates of metabolism. This lab previously characterized a BAC-transgenic mouse carrying the human CYP1A1_CYP1A2 locus; in this line, human dioxin-inducible CYP1A1 and basal vs dioxin-inducible CYP1A2 have been shown to be expressed normally (with regard to mRNAs, proteins and three enzyme activities) in every one of nine mouse tissues studied. The mouse Cyp1a1 and Cyp1a2 genes are oriented head-to-head and share a bidirectional promoter region of 13,954 bp. Using Cre recombinase and loxP sites inserted 3' of the stop codons of both genes, we show here a successful interchromosomal excision of 26,173 bp that ablated both genes on the same allele. The Cyp1a1/1a2(-) double-knockout allele was bred with the "humanized" line; the final product is the hCYP1A1_1A2_Cyp1a1/1a2(-/-) line on a theoretically >99.8% C57BL/6J genetic background-having both human genes replacing the mouse orthologs. This line will be valuable for human risk assessment studies involving any environmental toxicant or drug that is a substrate for CYP1A1 or CYP1A2.  相似文献   

10.
11.
Treatment of wild-type (wt) aryl hydrocarbon (Ah)-responsive mouse Hepa 1c1c7 cells with benzo[a]pyrene (B[a]P) caused a concentration-dependent induction of ethoxyresorufin O-deethylase (EROD) activity. In contrast, B[a]P was inactive as an inducer in Ah nonresponsive class 1 and class 2 mutant cell lines. In parallel experiments, the nuclear fractions from wt cells treated with 10(-7) M [3H]B[a]P contained both the 4 s carcinogen binding protein and the 6 s (Ah receptor) complexes, whereas only the 4 s complex was present in the nuclear fraction of the class 2 mutant cells. The results obtained from cotreatment of wt Hepa 1c1c7 cells with 10(-6) or 10(-7) M B[a]P and 5 x 10(-7) or 10(-7) M 6-methyl-1,3,8-trichlorodibenzofuran (MCDF) showed that MCDF inhibited the induction of EROD activity and Cyp1a-1 mRNA levels by B[a]P. Moreover, using 10(-7) M [3H]B[a]P and unlabeled MCDF, it was shown that MCDF not only inhibited the induction response but also caused a concentration-dependent decrease in levels of the nuclear 6 s complex but not the 4 s complex. In contrast, in situ competition studies with unlabeled 10(-6) M benzo[ghi]-perylene (B[ghi]P) resulted in the elimination of the nuclear [3H]B[a]P 4 s complex (but not the 6 s complex); however, the EROD activity and Cyp1a-1 mRNA levels in cells treated with 10(-7) M B[a]P in the presence or absence of 10(-6) M B[ghi]P were not significantly different. These results indicate that the 4 s binding protein is not required for the induction of Cyp1a-1 gene expression in Hepa 1c1c7 cells and suggest that B[a]P and 2,3,7,8-tetrachlorodibenzo-p-dioxin induce Cyp1a-1 gene expression via a common mechanism which involves binding to the Ah receptor.  相似文献   

12.
The effect of xenobiotics (phenobarbital and atrazine) on the expression of Drosophila melanogaster CYP genes encoding cytochromes P450, a gene family generally associated with detoxification, was analyzed by DNA microarray hybridization and verified by real-time RT-PCR in adults of both sexes. Only a small subset of the 86 CYP genes was significantly induced by the xenobiotics. Eleven CYP genes and three glutathione S-transferases (GST) genes were significantly induced by phenobarbital, seven CYP and one GST gene were induced by atrazine. Cyp6d5, Cyp6w1, Cyp12d1 and the ecdysone-inducible Cyp6a2 were induced by both chemicals. The constitutive expression of several of the inducible genes (Cyp6a2, Cyp6a8, Cyp6d5, Cyp12d1) was higher in males than in females, and the induced level similar in both sexes. Thus, the level of induction was consistently higher in females than in males. The female-specific and hormonally regulated yolk protein genes were significantly induced by phenobarbital in males and repressed by atrazine in females. Our results suggest that the numerous CYP genes of Drosophila respond selectively to xenobiotics, providing the fly with an adaptive response to chemically adverse environments. The xenobiotic inducibility of some CYP genes previously associated with insecticide resistance in laboratory-selected strains (Cyp6a2, Cyp6a8, Cyp12d1) suggests that deregulation of P450 gene expression may be a facile way to achieve resistance. Our study also suggests that xenobiotic-induced changes in P450 levels can affect insect fitness by interfering with hormonally regulated networks.  相似文献   

13.
14.
The CYP1A1, CYP1A2, and CYP1B1 enzymes are inducible by benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); metabolism of BaP by these enzymes leads to electrophilic intermediates and genotoxicity. Throughout the gastrointestinal (GI) tract, we systematically compared basal and inducible levels of the CYP1 mRNAs by Q-PCR, and localized the CYP1 proteins by immunohistochemistry. Cyp1(+/+) wild-type were compared with the Cyp1a1(-/-), Cyp1a2(-/-), and Cyp1b1(-/-) single-knockout and Cyp1a1/1b1(-/-) and Cyp1a2/1b1(-/-) double-knockout mice. Oral BaP was compared with intraperitoneal TCDD. In general, maximal CYP1A1 mRNA levels were 3-10 times greater than CYP1B1, which were 3-10 times greater than CYP1A2 mRNA levels. Highest inducible concentrations of CYP1A1 and CYP1A2 occurred in proximal small intestine, whereas the highest basal and inducible levels of CYP1B1 mRNA occurred in esophagus, forestomach, and glandular stomach. Ablation of either Cyp1a2 or Cyp1b1 gene resulted in a compensatory increase in CYP1A1 mRNA - but only in small intestine. Also in small intestine, although BaP- and TCDD-mediated CYP1A1 inductions were roughly equivalent, oral BaP-mediated CYP1A2 mRNA induction was approximately 40-fold greater than TCDD-mediated CYP1A2 induction. CYP1B1 induction by TCDD in Cyp1(+/+) and Cyp1a2(-/-) mice was 4-5 times higher than that by BaP; however, in Cyp1a1(-/-) animals CYP1B1 induction by TCDD or BaP was approximately equivalent. CYP1A1 and CYP1A2 proteins were generally localized nearer to the lumen than CYP1B1 proteins, in both squamous and glandular epithelial cells. These GI tract data suggest that the inducible CYP1A1 enzyme, both in concentration and in location, might act as a "shield" in detoxifying oral BaP and, hence, protecting the animal.  相似文献   

15.
Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces cleft palate and hydronephrosis in mice, when exposed in utero; these effects are mediated by the aryl hydrocarbon receptor. The Cyp1a1, Cyp1a2, and Cyp1b1 genes are up-regulated by the aryl hydrocarbon receptor. To elucidate their roles in dioxin-induced teratogenesis, we compared Cyp1a1(-/-), Cyp1a2(-/-), and Cyp1b1(-/-) knock-out mice with Cyp1(+/+) wild-type mice. Dioxin was administered (25 microg/kg, gavage) on gestational day 10, and embryos were examined on gestational day 18. The incidence of cleft palate and hydronephrosis was not significantly different in fetuses from Cyp1a1(-/-), Cyp1b1(-/-), and Cyp1(+/+) wild-type mice. To fetuses carried by Cyp1a2(-/-) dams, however, this dose of dioxin was lethal; this effect was absolutely dependent on the maternal Cyp1a2 genotype and independent of the embryonic Cyp1a2 genotype. Dioxin levels were highest in adipose tissue, mammary gland, and circulating blood of Cyp1a2(-/-) mothers, compared with that in the Cyp1(+/+) mothers, who showed highest dioxin levels in liver. More dioxin reached the embryos from Cyp1a2(-/-) dams, compared with that from Cyp1(+/+) dams. Fetuses from Cyp1a2(-/-) dams exhibited a approximately 6-fold increased sensitivity to cleft palate, hydronephrosis, and lethality. Using the humanized hCYP1A1_1A2 transgenic mouse (expressing the human CYP1A1 and CYP1A2 genes in the absence of mouse Cyp1a2 gene), the teratogenic effects of dioxin reverted to the wild-type phenotype. These data indicate that maternal mouse hepatic CYP1A2, by sequestering dioxin and thus altering the pharmacokinetics, protects the embryos from toxicity and birth defects; substitution of the human CYP1A2 trans-gene provides the same protection. In contrast, neither CYP1A1 nor CYP1B1 appears to play a role in dioxin-mediated teratogenesis.  相似文献   

16.
17.
The insect molting hormone, 20-hydroxyecdysone (20E), is a major modulator of the developmental processes resulting in molting and metamorphosis. During evolution selective forces have preserved the Halloween genes encoding cytochrome P450 (P450) enzymes that mediate the biosynthesis of 20E. In the present study, we examine the phylogenetic relationships of these P450 genes in holometabolous insects belonging to the orders Hymenoptera, Coleoptera, Lepidoptera and Diptera. The analyzed insect genomes each contains single orthologs of Phantom (CYP306A1), Disembodied (CYP302A1), Shadow (CYP315A1) and Shade (CYP314A1), the terminal hydroxylases. In Drosophila melanogaster, the Halloween gene spook (Cyp307a1) is required for the biosynthesis of 20E, although a function has not yet been identified. Unlike the other Halloween genes, the ancestor of this gene evolved into three paralogs, all in the CYP307 family, through gene duplication. The genomic stability of these paralogs varies among species. Intron-exon structures indicate that D. melanogaster Cyp307a1 is a mRNA-derived paralog of spookier (Cyp307a2), which is the ancestral gene and the closest ortholog of the coleopteran, lepidopteran and mosquito CYP307A subfamily genes. Evolutionary links between the insect Halloween genes and vertebrate steroidogenic P450s suggest that they originated from common ancestors, perhaps destined for steroidogenesis, before the deuterostome-arthropod split. Conservation of putative substrate recognition sites of orthologous Halloween genes indicates selective constraint on these residues to prevent functional divergence. The results suggest that duplications of ancestral P450 genes that acquired novel functions may have been an important mechanism for evolving the ecdysteroidogenic pathway.  相似文献   

18.
Embryonic stem (ES) cells have features that resemble the pluripotent cells of peri-implantation embryos and have been used as an in vitro model to assess the effects of test substances on these stages of development. Here, for the first time, we report on the effects of the xenobiotic 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) on mouse ES cells cultured with TCDD at concentrations ranging from 0.0001 to 100 nM for 15 min to 48 h. TCDD effects were determined by analysing the induction of Cyp1A1, Cyp1A2, Cyp1B1 (phase I) and Nqo1, Gsta1, Ugt1a6 (phase II) genes. Cyp1A1 was the phase I gene most rapidly induced (4 h at 1 nM); Cyp1B1 was induced at 48 h (1 nM), whereas Cyp1A2 expression was not affected. TCDD did not alter phase II gene expression, which remained at basal levels throughout the 48 h of culture. We studied more accurately the expression of Cyp1A1, the earliest gene to respond to the presence of TCDD. We found that: 1) Cyp1A1 gene induction is dependent on the duration of exposure (precisely it is first induced after 3 h of culture at 1 nM, the minimum effective-dose); 2) Cyp1A1 induction requires the continuous presence of TCDD, being interrupted 4 h after removal of the xenobiotic; and 3) induced expression of CYP1A1 protein is dependent on TCDD concentration, the higher the concentration the earlier the production of the enzyme. Furthermore, after 48 h of treatment, TCDD did not promote either apoptosis or changes to the differentiation status of the ES cells. These results are the first important step to investigate the effects of dioxin on the very early stages of mammalian development.  相似文献   

19.
20.
The mouse cytochrome P1450 (CYP1A1) gene is responsible for the metabolism of numerous carcinogens and toxic chemicals. Induction by the environmental contaminant tetrachlorodibenzo-p-dioxin (TCDD) requires a functional aromatic hydrocarbon (Ah) receptor. We examined the 5'-flanking region of the CYP1A1 gene in mouse hepatoma Hepa-1 wild-type cells and a mutant line having a defect in chromatin binding of the TCDD-receptor complex. We identified two cis-acting elements (distal, -1071 to -901 region; proximal, -245 to -50 region) required for constitutive and TCDD-inducible CYP1A1 gene expression. Three classes of DNA-protein complexes binding to the distal element were identified: class I, found only in the presence of TCDD and a functional Ah receptor, that was heat labile and not competed against by simian virus 40 (SV40) early promoter DNA; class II, consisting of at least three constitutive complexes that were heat stable and bound to SV40 DNA; and class III, composed of at least three constitutive complexes that were thermolabile and were not competed against by SV40 DNA. Essential contacts for these proteins were centered at -993 to -990 for the class I complex, -987, -986, or both for the class II complexes, and -938 to -927 for the class III complexes. The proximal element was absolutely essential for both constitutive and TCDD-inducible CYP1A1 gene expression, and at least two constitutive complexes bound to this region. These data are consistent with the proximal element that binds proteins being necessary but not sufficient for inducible gene expression; interaction of these proteins with those at the distal element was found to be required for full CYP1A1 induction by TCDD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号