首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a new generation of genome-wide DNA methylation BeadChip which allows high-throughput methylation profiling of the human genome. The new high density BeadChip can assay over 480K CpG sites and analyze twelve samples in parallel. The innovative content includes coverage of 99% of RefSeq genes with multiple probes per gene, 96% of CpG islands from the UCSC database, CpG island shores and additional content selected from whole-genome bisulfite sequencing data and input from DNA methylation experts. The well-characterized Infinium® Assay is used for analysis of CpG methylation using bisulfite-converted genomic DNA. We applied this technology to analyze DNA methylation in normal and tumor DNA samples and compared results with whole-genome bisulfite sequencing (WGBS) data obtained for the same samples. Highly comparable DNA methylation profiles were generated by the array and sequencing methods (average R2 of 0.95). The ability to determine genome-wide methylation patterns will rapidly advance methylation research.  相似文献   

2.
利用甲基化特异性引物高通量检测DNA甲基化   总被引:2,自引:1,他引:1  
建立一种基于甲基化特异性引物和SAGE技术的高通量DNA甲基化定量检测新方法(MSP-SAGE),首先利用亚硫酸氢钠对基因组DNA进行处理,使未甲基化的C转变为U,而甲基化的CpG不变.将处理和未处理的DNA双链变性后用随机引物PNNNNCG对存在含有CG的单链进行延伸,而无甲基化CG的单链处则不能延伸;将差异延伸的单链序列和频次信息经过系列分子操作后,引入PCR扩增模板;对中间带有未知序列的PCR扩增产物进行串连克隆测序.将来自于未处理组和处理组的某一CpG位点的序列出现的次数定义为[Tags]A和[Tags]B,将标准系列的实际甲基化水平和[Tags]B/[Tags]A之间建立线性回归方程.根据每一CpG位点的[Tags]B/[Tags]A比值可反推该位点的甲基化水平.MSP-SAGE具有良好的线性,基于标准系列的[Tags]B/[Tags]A与其实际甲基化水平的标准曲线方程为y=1.455x(R2=0.984,P<0.01).MSP-SAGE的回收率在95%到110%之间,精确度位于4.2%和10.5%,检测限在3%左右,单次检测通量可达24个CpG位点.MSP-SAGE是一种很有应用前途的高通量DNA甲基化定量检测方法.  相似文献   

3.
4.

The reduced representation bisulfite sequencing (RRBS) method has been developed for the high-throughput analysis of DNA methylation based on the sequencing of genomic libraries treated with sodium bisulfite by next-generation approaches. In contrast to whole-genome sequencing, the RRBS approach elaborates specific endonucleases to prepare libraries in order to produce pools of CpG-rich DNA fragments. The original RRBS technology based on the use of the MspI libraries allows one to increase the relative number of CpG islands in the pools of genomic fragments compared to whole-genome bisulfite sequencing. Nevertheless, this technology is rarely used due to the high cost compared with bisulfite methylation analysis with hybridization microarrays and significant residual amount of data represented by the sequences of genomic repeats that complicates the alignment and is not of particular interest for developing DNA methylation markers, which is often the main goal of biomedical research. We have developed an algorithm for estimating the likelihood that recognition sites of restriction endonucleases will be represented in CpG islands and present a method of reducing the effective size of the RRBS library without a significant loss of the CpG islands based on the use of the XmaI endonuclease for library preparation. In silico analysis demonstrates that the optimum range of the XmaI-RRBS fragment lengths is 110–200 base pairs. The sequencing of this library allows one to assess the methylation status of over 125000 CpG dinucleotides, of which over 90000 belong to CpG islands.

  相似文献   

5.
Although CpG methylation clearly distributes genome-wide in vertebrate nuclear DNA, the state of methylation in the vertebrate mitochondrial genome has been unclear. Several recent reports using immunoprecipitation, mass spectrometry, and enzyme-linked immunosorbent assay methods concluded that human mitochondrial DNA (mtDNA) has much more than the 2 to 5% CpG methylation previously estimated. However, these methods do not provide information as to the sites or frequency of methylation at each CpG site. Here, we have used the more definitive bisulfite genomic sequencing method to examine CpG methylation in HCT116 human cells and primary human cells to independently answer these two questions. We found no evidence of CpG methylation at a biologically significant level in these regions of the human mitochondrial genome. Furthermore, unbiased next-generation sequencing of sodium bisulfite treated total DNA from HCT116 cells and analysis of genome-wide sodium bisulfite sequencing data sets from several other DNA sources confirmed this absence of CpG methylation in mtDNA. Based on our findings using regionally specific and genome-wide approaches with multiple human cell sources, we can definitively conclude that CpG methylation is absent in mtDNA. It is highly unlikely that CpG methylation plays any role in direct control of mitochondrial function.  相似文献   

6.
Study of Tissue-Specific CpG Methylation of DNA in Extended Genomic Loci   总被引:2,自引:0,他引:2  
Modern approaches for studies on genome functioning include investigation of its epigenetic regulation. Methylation of cytosines in CpG dinucleotides is an inherited epigenetic modification that is responsible for both functional activity of certain genomic loci and total chromosomal stability. This review describes the main approaches for studies on DNA methylation. Under consideration are site-specific approaches based on bisulfite sequencing and methyl-sensitive PCR, whole-genome approaches aimed at searching for new methylation hot spots, and also mapping of unmethylated CpG sites in extended genomic loci.  相似文献   

7.
DNA methylation pattern mapping is heavily studied in normal and diseased tissues. A variety of methods have been established to interrogate the cytosine methylation patterns in cells. Reduced representation of whole genome bisulfite sequencing was developed to detect quantitative base pair resolution cytosine methylation patterns at GC-rich genomic loci. This is accomplished by combining the use of a restriction enzyme followed by bisulfite conversion. Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) increases the biologically relevant genomic loci covered and has been used to profile cytosine methylation in DNA from human, mouse and other organisms. ERRBS initiates with restriction enzyme digestion of DNA to generate low molecular weight fragments for use in library preparation. These fragments are subjected to standard library construction for next generation sequencing. Bisulfite conversion of unmethylated cytosines prior to the final amplification step allows for quantitative base resolution of cytosine methylation levels in covered genomic loci. The protocol can be completed within four days. Despite low complexity in the first three bases sequenced, ERRBS libraries yield high quality data when using a designated sequencing control lane. Mapping and bioinformatics analysis is then performed and yields data that can be easily integrated with a variety of genome-wide platforms. ERRBS can utilize small input material quantities making it feasible to process human clinical samples and applicable in a range of research applications. The video produced demonstrates critical steps of the ERRBS protocol.  相似文献   

8.
Xu YH  Manoharan HT  Pitot HC 《BioTechniques》2007,43(3):334, 336-340, 342
The bisulfite genomic sequencing technique is one of the most widely used techniques to study sequence-specific DNA methylation because of its unambiguous ability to reveal DNA methylation status to the order of a single nucleotide. One characteristic feature of the bisulfite genomic sequencing technique is that a number of sample sequence files will be produced from a single DNA sample. The PCR products of bisulfite-treated DNA samples cannot be sequenced directly because they are heterogeneous in nature; therefore they should be cloned into suitable plasmids and then sequenced. This procedure generates an enormous number of sample DNA sequence files as well as adding extra bases belonging to the plasmids to the sequence, which will cause problems in the final sequence comparison. Finding the methylation status for each CpG in each sample sequence is not an easy job. As a result CpG PatternFinder was developed for this purpose. The main functions of the CpG PatternFinder are: (i) to analyze the reference sequence to obtain CpG and non-CpG-C residue position information. (ii) To tailor sample sequence files (delete insertions and mark deletions from the sample sequence files) based on a configuration of ClustalW multiple alignment. (iii) To align sample sequence files with a reference file to obtain bisulfite conversion efficiency and CpG methylation status. And, (iv) to produce graphics, highlighted aligned sequence text and a summary report which can be easily exported to Microsoft Office suite. CpG PatternFinder is designed to operate cooperatively with BioEdit, a freeware on the internet. It can handle up to 100 files of sample DNA sequences simultaneously, and the total CpG pattern analysis process can be finished in minutes. CpG PatternFinder is an ideal software tool for DNA methylation studies to determine the differential methylation pattern in a large number of individuals in a population. Previously we developed the CpG Analyzer program; CpG PatternFinder is our further effort to create software tools for DNA methylation studies.  相似文献   

9.
Singal R  Grimes SR 《BioTechniques》2001,30(1):116-120
Cytosine methylation at CpG dinucleotides is an important control mechanism in development, differentiation, and neoplasia. Bisulfite genomic sequencing and its modifications have been developed to examine methylation at these CpG dinucleotides. To use these methods, one has to (i) manually convert the sequence to that produced by bisulfite conversion and PCR amplification, taking into account that cytosine residues at CpG dinucleotides may or may not be converted depending on their methylation status, (ii) identify relevant restriction sites that may be used for methylation analysis, and (iii) conduct similar steps with the other DNA strand since the two strands of DNA are no longer complementary after bisulfite conversion. To automate these steps, we have developed a macro that can be used with Microsoft Word. This macro (i) converts genomic sequence to modified sequence that would result after bisulfite treatment facilitating primer design for bisulfite genomic sequencing and methylation-sensitive PCR assay and (ii) identifies restriction sites that are preserved in bisulfite-converted and PCR-amplified product only if cytosine residues at relevant CpG dinucleotides are methylated (and thereby not converted to uracil) in the genomic DNA.  相似文献   

10.
High-throughput bisulfite sequencing is widely used to measure cytosine methylation at single-base resolution in eukaryotes. It permits systems-level analysis of genomic methylation patterns associated with gene expression and chromatin structure. However, methods for large-scale identification of methylation patterns from bisulfite sequencing are lacking. We developed a comprehensive tool, CpG_MPs, for identification and analysis of the methylation patterns of genomic regions from bisulfite sequencing data. CpG_MPs first normalizes bisulfite sequencing reads into methylation level of CpGs. Then it identifies unmethylated and methylated regions using the methylation status of neighboring CpGs by hotspot extension algorithm without knowledge of pre-defined regions. Furthermore, the conservatively and differentially methylated regions across paired or multiple samples (cells or tissues) are identified by combining a combinatorial algorithm with Shannon entropy. CpG_MPs identified large amounts of genomic regions with different methylation patterns across five human bisulfite sequencing data during cellular differentiation. Different sequence features and significantly cell-specific methylation patterns were observed. These potentially functional regions form candidate regions for functional analysis of DNA methylation during cellular differentiation. CpG_MPs is the first user-friendly tool for identifying methylation patterns of genomic regions from bisulfite sequencing data, permitting further investigation of the biological functions of genome-scale methylation patterns.  相似文献   

11.
CpG methylation is involved in a wide range of biological processes in vertebrates as well as in plants and fungi. To date, three enzymes, Dnmt1, Dnmt3a, and Dnmt3b, are known to have DNA methyltransferase activity in mouse and human. It has been proposed that de novo methylation observed in early embryos is predominantly carried out by the Dnmt3a and Dnmt3b methyltransferases, while Dntm1 is believed to be responsible for maintaining the established methylation patterns upon replication. Analysis of the sites methylated in vivo using the bisulfite genomic sequencing method confirms the previous finding that some regions of the plasmid are much more methylated by Dnmt3a than other regions on the same plasmid. However, the preferred targets of the enzyme cannot be determined due to the presence of other methylases, DNA binding proteins, and chromatin structure. To discern the DNA targets of Dnmt3a without these compounding factors, sites methylated by Dnmt3a in vitro were analyzed. These analyses revealed that the two cDNA strands have distinctly different methylation patterns. Dnmt3a prefers CpG sites on a strand in which it is flanked by pyrimidines over CpG sites flanked by purines in vitro. These findings indicate that, unlike Dnmt1, Dnmt3a most likely methylates one strand of DNA without concurrent methylation of the CpG site on the complementary strand. These findings also indicate that Dnmt3a may methylate some CpG sites more frequently than others, depending on the sequence context. Methylation of each DNA strand independently and with possible sequence preference is a novel feature among the known DNA methyltransferases.  相似文献   

12.
Complementary to the time- and cost-intensive direct bisulfite sequencing, we applied reduced representation bisulfite sequencing (RRBS) to the human peripheral blood mononuclear cells (PBMC) from YH, the Asian individual whose genome and epigenome has been deciphered in the YH project and systematically assessed the genomic coverage, coverage depth and reproducibility of this technology as well as the concordance of DNA methylation levels measured by RRBS and direct bisulfite sequencing for the detected CpG sites. Our result suggests that RRBS can cover more than half of CpG islands and promoter regions with a good coverage depth and the proportion of the CpG sites covered by the biological replicates reaches 80-90%, indicating good reproducibility. Given a smaller data quantity, RRBS enjoys much better coverage depth than direct bisulfite sequencing and the concordance of DNA methylation levels between the two methods is high. It can be concluded that RRBS is a time and cost-effective sequencing method for unbiased DNA methylation profiling of CpG islands and promoter regions in a genome-wide scale and it is the method of choice to assay certain genomic regions for multiple samples in a rapid way.  相似文献   

13.
14.
15.
Aberrant DNA methylation of CpG islands is among the earliest and most frequent alterations in cancer. It is of great importance to develop simple and high-throughput methods of methylation analysis for earlier cancer diagnosis or the detection of recurrence. In this study, bisulfite-modified target DNA arrays were prepared on positively charged nylon membrane with two different procedures: fixing PCR products and fixing genomic DNA. First, a bisulfite PCR product array was prepared through fixing PCR products amplified in bisulfite sequencing primers from the bisulfite-modified genomic DNA of different clinical samples on membrane. Furthermore, bisulfite-modified genomic DNA of the different samples was directly fixed on membrane to fabricate bisulfite genomic DNA arrays. The two kinds of arrays were hybridized by probes labeled with digoxigenin, and the hybridization signals were obtained through chemiluminescent detection. The methylation statuses of the IGFBP7 gene for breast tumor and normal tissue samples and for normal human blood cell samples were detected successfully by the two procedures. It was shown that the methods are reliable and sensitive and that they have high potential in screening molecular methylation markers from a large number of clinical samples.  相似文献   

16.
建立了适用于水稻基因组特定基因甲基化检测的亚硫酸氢钠测序法,并利用此方法对FIE2A基因CpG岛部分片段的甲基化差异进行了研究。采用CTAB法提取水稻叶片和胚乳细胞的基因组DNA,经亚硫酸氢钠化学修饰后,针对已修饰的FIE基因序列设计特异引物并结合巢式PCR扩增,TA载体克隆、测序,最后对测序结果进行分析。结果表明巢式PCR能够增加特异性产物的产生,FIE基因CpG岛在对称的CG和CNG位点甲基化水平较高,而在非对称CNN位点甲基化水平最低,此外在叶片中的平均甲基化水平较高。由此表明本研究建立的亚硫酸氢钠测序法适用于水稻基因组特定基因甲基化状态的检测。  相似文献   

17.
Methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq) has the potential to identify changes in DNA methylation important in cancer development. In order to understand the role of epigenetic modulation in the development of acute myeloid leukemia (AML) we have applied MeDIP-seq to the DNA of 12 AML patients and 4 normal bone marrows. This analysis revealed leukemia-associated differentially methylated regions that included gene promoters, gene bodies, CpG islands and CpG island shores. Two genes (SPHKAP and DPP6) with significantly methylated promoters were of interest and further analysis of their expression showed them to be repressed in AML. We also demonstrated considerable cytogenetic subtype specificity in the methylomes affecting different genomic features. Significantly distinct patterns of hypomethylation of certain interspersed repeat elements were associated with cytogenetic subtypes. The methylation patterns of members of the SINE family tightly clustered all leukemic patients with an enrichment of Alu repeats with a high CpG density (P<0.0001). We were able to demonstrate significant inverse correlation between intragenic interspersed repeat sequence methylation and gene expression with SINEs showing the strongest inverse correlation (R(2) = 0.7). We conclude that the alterations in DNA methylation that accompany the development of AML affect not only the promoters, but also the non-promoter genomic features, with significant demethylation of certain interspersed repeat DNA elements being associated with AML cytogenetic subtypes. MeDIP-seq data were validated using bisulfite pyrosequencing and the Infinium array.  相似文献   

18.
19.
20.
Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) is a technique that can be used for rapid quantitation of methylation at individual CpG sites. Treatment of genomic DNA with sodium bisulfite is used to convert unmethylated Cytosine to Uracil while leaving 5-methylcytosine unaltered. Strand-specific PCR is performed to generate a DNA template for quantitative methylation analysis using Ms-SNuPE. SNuPE is then performed with oligonucleotide(s) designed to hybridize immediately upstream of the CpG site(s) being interrogated. Reaction products are electrophoresed on polyacrylamide gels for visualization and quantitation by phosphorimage analysis. The Ms-SNuPE technique is similar to other quantitative assays that use bisulfite treatment of genomic DNA to discriminate unmethylated from methylated Cytosines (i.e., COBRA, pyrosequencing). Ms-SNuPE can be used for high-throughput methylation analysis and rapid quantitation of Cytosine methylation suitable for a wide range of biological investigations, such as checking aberrant methylation changes during tumorigenesis, monitoring methylation changes induced by DNA methylation inhibitors or for measuring hemimethylation. Approximately two to four CpG sites can be interrogated in up to 40 samples by Ms-SNuPE in less than 5 h, after PCR amplification of the desired target sequence and preparation of PCR amplicons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号