首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Covalent conjugation of mammalian calmodulin with ubiquitin   总被引:1,自引:0,他引:1  
In this paper it is shown that mammalian calmodulin from bovine testis is a substrate for reticulocyte ubiquitin conjugating activity (UCA) forming a 1:1 covalent conjugate between bovine calmodulin and ubiquitin (uCaM). There is an absolute requirement for Ca2+ in the range of approximately 10 microM for ubiquitination of calmodulin to occur. This novel conjugate (uCaM) shows a Ca2+-dependent mobility change in polyacrylamide gel electrophoresis in the presence of SDS, indicating that the calmodulin-ubiquitin conjugate still retains the mobility change of native calmodulin. This conjugation reaction could be of prime importance for the intracellular turnover of calmodulin in the mammalian cell, although it cannot be excluded that the ubiquitin-calmodulin conjugate might in itself be of biological relevance.  相似文献   

2.
A continuing problem in the area of oligonucleotide-based therapeutics is the poor access of these molecules to their sites of action in the nucleus or cytosol. A number of approaches to this problem have emerged. One of the most interesting is the use of ligand–oligonucleotide conjugates to promote receptor mediated cell uptake and delivery. Here we provide an overview of recent developments regarding targeted conjugates, including use of peptides, carbohydrates and small molecules as ligands. Additionally we discuss our own experience with this approach and point out both advantages and limitations.  相似文献   

3.
Fluorescent-labeled molecules have been used extensively for a wide range of applications in biological detection and diagnosis. A new form of highly luminescent and photostable nanoparticles was generated by doping the fluorescent dye tris(2'2-bipyridyl)dichlororuthenium(II)hexahydrate (Rubpy) inside silica material. Because thousands of fluorescent dye molecules are encapsulated in the silica matrix that also serves to protect Rubpy dye from photodamaging oxidation, the Rubpy-dye-doped nanoparticles are extremely bright and photostable. We have used these nanoparticles successfully in various fluorescence labeling techniques, including fluorescent-linked immunosorbent assay, immunocytochemistry, immunohistochemistry, DNA microarray, and protein microarray. By combining the high-intensity luminescent nanoparticles with the specificity of antibody-mediated recognition, ultrasensitive target detection has been achieved. In all cases, assay results clearly demonstrated the superiority of the nanoparticles over organic fluorescent dye molecules and quantum dots in probe labeling for sensitive target detection. These results demonstrate the potential to apply these newly developed fluorescent nanoparticles in various biodetection systems.  相似文献   

4.
One of the most crucial steps for the successful construction of a biosensor is the appropriate and reproducible coupling of the biological part (e.g. enzyme, antibody) to the inorganic moiety of the device (e.g. electrode, microchip). In this paper three methods of immobilization of avidin to a glassy carbon electrode are described. Depending on the type of immobilization, avidin may lose its biological activity as determined by an enzyme immunoassay, using biotinylated reagents. If avidin is covalently bound to the glassy carbon electrode via the bridge molecule 4.4'-diaminodiphenylamine, the biological activity is retained. About 1.5 pmol of avidin can be bound to the electrode (3 mm in diameter), resulting in a nearly complete monolayer of protein.  相似文献   

5.
V J Chen  F Wold 《Biochemistry》1986,25(4):939-944
Neoglycoproteins in which the oligosaccharide moieties are attached noncovalently to the protein through a high-affinity ligand have been prepared from biotinylated oligosaccharides and avidin or the nonglycosylated microbial analogue streptavidin. One of the asparagine-oligosaccharides purified from Pronase-digested ovalbumin (Man6-GlcNAc2-Asn) was reacted with an excess of the hydroxysuccinimide ester of biotin or, for the purpose of quantitation, [3H]biotin. Derivatives were also prepared with an extension "arm", a 6-aminohexanoyl group, between biotin and asparagine. When the purified biotinyl-Asn-oligosaccharide was added to avidin or streptavidin, a complex was formed containing 3 mol of oligosaccharide/mol of protein. The complexes were stable at neutral pH in the absence of biotin and could be dialyzed for 2 weeks without any significant loss of ligand. In the presence of biotin, or under denaturing conditions, the oligosaccharide derivative was released and could be quantitatively recovered. To assess the influence of the protein matrix on the reactivity of the oligosaccharide units, free biotinyl-Asn-oligosaccharide and the corresponding avidin and streptavidin complexes were exposed to alpha-mannosidase in parallel experiments. The rate of hydrolysis of the free derivative was severalfold faster than that of the two protein complexes, and at the time when about 90% of the free derivative had all five alpha-mannosyl residues removed, the majority of the protein-bound derivatives contained two to four undigested alpha-mannosyl residues and also had a significant amount of undigested starting material. The ease of preparation and the properties of these neoglycoproteins suggest that they should be excellent models for the study of glycoprotein-receptor binding and glycoprotein processing.  相似文献   

6.
Yang  Tao  Sun  Shuguo  Ma  Meihu  Lin  Qinlu  Zhang  Lin  Li  Yan  Luo  Feijun 《Bioprocess and biosystems engineering》2015,38(10):2023-2034
Bioprocess and Biosystems Engineering - A simple optimization method of immobilization of avidin on magnetic nanoparticles (MNPs)’ surface was proposed in this study. The avidin-immobilized...  相似文献   

7.
《The Journal of cell biology》1984,99(6):1917-1926
To study the assembly of newly synthesized lipids with apoprotein A1, we administered [2-3H]glycerol to young chickens and determined the hepatic intracellular sites of lipid synthesis and association of nascent lipids with apoprotein A1. [2-3H]glycerol was rapidly incorporated into hepatic lipids, reaching maximal levels at 5 min, and this preceded the appearance of lipid radioactivity in the plasma. The liver was fractionated into rough and smooth endoplasmic reticulum and Golgi cell fractions. The isolated cell fractions were further subfractionated into membrane and soluble (content) fractions by treatment with 0.1 M Na2CO3, pH 11.3. At various times, the lipid radioactivity was measured in each of the intracellular organelles, in immunoprecipitable apoprotein A1, and in materials that floated at buoyant densities similar to those of plasma lipoproteins. Maximal incorporation occurred at 1 min in the rough endoplasmic reticulum, at 3-5 min in the smooth endoplasmic reticulum, and at 5 min in the Golgi cell fractions. The majority (66-93%) of radioactive glycerol was incorporated into triglycerides with smaller (4-27%) amounts into phospholipids. About 80% of the lipid radioactivity in the endoplasmic reticulum and 70% of that in the Golgi cell fractions was in the membranes. The radioactive lipids in the content subfraction were distributed in various density classes with most nascent lipids floating at a density less than or equal to 1.063 g/ml. Apoprotein A1 from the Golgi apparatus, obtained by immunoprecipitation, contained sixfold more nascent lipids than did that from the endoplasmic reticulum. These data indicate that [2-3H]glycerol is quickly incorporated into lipids of the endoplasmic reticulum and the Golgi cell fractions, that most of the nascent lipids are conjugated with apoproteins A1 in the Golgi apparatus, and that very little association of nascent lipid to apoprotein A1 occurs in the endoplasmic reticulum.  相似文献   

8.
To enhance diagnostic or therapeutic efficacy, novel nanomaterials must be engineered to function in biologically relevant environments, be visible by conventional fluorescent microscopy, and have multivalent loading capacity for easy detection or effective drug delivery. Here we report the fabrication of silica nanoparticles doped with quantum dots and superficially functionalized with amino and phosphonate groups. The amino groups were acylated with a water-soluble biotin-labeling reagent. The biotinylated nanoparticles were subsequently decorated with neutravidin by exploiting the strong affinity between neutravidin and biotin. The resultant neutravidin-decorated fluorescent silica nanoparticles stably dispersed under physiological conditions, were visible by conventional optical and confocal fluorescent microscopy, and could be further functionalized with macromolecules, nucleic acids, and polymers. We also coated the surface of the nanoparticles with biotinylated mouse anti-human CD3 (alphaCD3). The resultant fluorescent nanoassembly was taken up by Jurkat T cells through receptor-mediated endocytosis and was partially released to lysosomes. Thus, quantum dot-doped silica nanoparticles decorated with neutravidin represent a potentially excellent scaffold for constructing specific intracellular nanoprobes and transporters.  相似文献   

9.
Human serum high density apolipoproteins were reassociated with three different lecithin species substituted with radioactively labelled photosensitive azido fatty acids, bis([3H]-16-azidopalmitoyl)-, bis([3H]12-azidooleoyl)- and bis([3H]18-azidolinoleoyl)glycerophosphocholine. The lipoprotein particles were reconstituted from a mixture of azido-labelled phosphatidylcholine and non-labelled dioleoylglycerophosphocholine (1:9). Excess lipid was separated from the homogeneous particles by Bio-Gel A-5m. The molecular weight, stoichiometry, fluorescence and circular dichroism of the reconstituted particles were determined before and after photoactivation with covalent cross-linking of the phospholipids with the apoproteins. The physical parameters of the reconstituted lipoproteins remained unperturbed by the cross-linking reaction between the generated nitrenes and apolipoprotein A-I and A-II. Thus the hydrophobic interactions of the phospholipid molecules with the apoproteins have been proved for the first time by a chemical method.  相似文献   

10.
The treatment of aqueous solutions of plasmid DNA with the protein avidin results in significant changes in physical, chemical, and biochemical properties. These effects include increased light scattering, formation of micron-sized particles containing both DNA and protein, and plasmid protection against thermal denaturation, radical attack, and nuclease digestion. All of these changes are consistent with condensation of the plasmid by avidin. Avidin can be displaced from the plasmid at higher ionic strengths. Avidin is not displaced from the plasmid by an excess of a tetra-arginine ligand, nor by the presence of biotin. Therefore, this system offers the opportunity to reversibly bind biotin-labeled species to a condensed DNA–protein complex. An example application is the use of biotinylated gold nanoparticles. This system offers the ability to examine in better detail the chemical mechanisms involved in important radiobiological effects. Examples include protein modulation of radiation damage to DNA, and radiosensitization by gold nanoparticles  相似文献   

11.
1. Monoclonal antibodies, generated against chicken avidin, were characterized in Ouchterlony's immunodiffusion. 2. Of the nine antibodies three were non-precipitable but six could form clear visible precipitation lines with egg-white avidin in agarose gel. 3. The latter six antibodies could be divided into two groups according to their reactive pattern in immunodiffusion. 4. Antibodies belonging to the first group precipitated both dimeric as well as tetrameric avidin molecules, while those of the second group precipitated only the tetrameric avidin molecules. 5. The relevance of these results to the structure of avidin as well as possibilities to use monoclonal antibodies and the immunodiffusion technique to compare the structure of avidin induced by different factors are discussed.  相似文献   

12.
The effect of biotin binding on the thermal stability of streptavidin (STV) and avidin (AVD) was evaluated using differential scanning calorimetry. Biotin binding increases the midpoint of temperature Tm of thermally induced denaturation of STV and AVD in phosphate buffer from 75 and 83 degrees C to 112 and 117 degrees C at full biotin saturation, respectively. This thermostability is the highest reported for proteins coming from either mesophilic or thermophilic organisms. In both proteins, biotin also increases the calorimetric enthalpy and the cooperativity of the unfolding. Thermal stability of STV was also evaluated in the presence of high concentrations of urea or guanidinium hydrochloride (GuHCl). In 6 M GuHCl, STV remains as a tetramer and the Tm of the STV-biotin complex is centered at 108 degrees C, a few degrees below the value obtained in phosphate buffer. On the contrary, STV under fully saturating condition remains mainly in its dimeric form in 8 M urea and the thermogram shows two endotherms. The main endotherm at a lower temperature has been ascribed to the dimeric liganded state with a Tm of 87 degrees C, and the higher temperature endotherm to the tetrameric liganded form with a Tm of 106 degrees C. As the thermostability of unliganded protein in the presence of urea is unchanged upon binding we related the extremely high thermal stability of this protein to both an increase in structural ordering and compactness with the preservation of the tetramer integrity.  相似文献   

13.
Human serum albumin (HSA) nanoparticles emerge as promising carriers for drug delivery. Among challenges, one important issue is the design of HSA nanoparticles with a low mean size of ca. 50?nm and having a high drug payload. The original strategy developed here is to use sacrificial mesoporous nanosilica templates having a diameter close to 30?nm to drive the protein nanocapsule formation. This new approach ensures first an efficient high drug loading (ca. 30%) of Doxorubicin (DOX) in the porous silica by functionalizing silica with an aminosiloxane layer and then allows the one-step adsorption and the physical cross-linking of HSA by modifying the silica surface with isobutyramide (IBAM) groups. After silica template removal, homogenous DOX-loaded HSA nanocapsules (30–60?nm size) with high drug loading capacity (ca. 88%) are thus formed. Such nanocapsules are shown efficient in multicellular tumor spheroid models (MCTS) of human hepatocarcinoma cells by their significant growth inhibition with respect to controls. Such a new synthesis approach paves the way toward new protein based nanocarriers for drug delivery.  相似文献   

14.
We present a new type of enzyme-antibody conjugate that simplifies the labeling procedure and increases the sensitivity of enzyme-linked immunosorbent assay (ELISA). The conjugates were prepared through layer-by-layer immobilization of enzyme and antibody on a silica nanoparticle scaffold. A maximal amount of enzyme was immobilized on the nanoparticle, followed by antibody linkage through Dextran 500. The conjugate could be easily purified from unreacted reagents by simple centrifugations. In comparison with the conventional antibody-enzyme conjugate used in ELISA, which often has one or two enzyme molecules per antibody, the new type of conjugate contained more enzyme molecules per antibody and provided a much higher signal and increased sensitivity. When used in an ELISA detection of the hepatitis B surface antigen (HBsAg), the detection limit was three times lower than that of the commercially available ELISA kit.  相似文献   

15.
Virus-mediated gene delivery has been, to date, the most successful and efficient method for gene therapy. However, this method has been challenged because of serious safety concerns. Over the past decade, mesoporous silica nanoparticles (MSNs) have attracted much attention for intracellular delivery of nucleic acids. Delivery of cellular plasmid DNA (pDNA) is designed to replace the function of a defective gene and restore its normal function in the cell. Delivery of small interfering RNAs (siRNAs) can selectively knockdown genes by targeting specific mRNAs. The biocompatibility and unique structures of MSNs make these nanoparticles ideal candidates to act as biomolecule carriers. This concise review highlights current progress in the field of nucleic acid delivery using MSNs, specifically for delivery of pDNA, siRNA, and combinatorial delivery of nucleic acids and drugs. The review describes important design parameters presently being applied to MSNs to administer drugs and therapeutic nucleic acids.  相似文献   

16.
Simultaneous detection of multianalytes associated with a particular cancer is beneficial for disease diagnosis. Here, a facile immunosensing strategy was designed to allow simultaneous electrochemical detection of dual proteins, in a single run. CdSe and PbS water-soluble quantum dots (QDs) were prepared and coated on monodisperse silica nanoparticles as labels for proteins detection. Rabbit immunoglobulin G antigen (IgG) and carcinoembryonic antigen (CEA) were chosen as model proteins for analysis. After a typical sandwich immunoassay, CdSe and PbS QDs labels were introduced onto the Au substrates' surface, which were then dissolved and could be simultaneously monitored by square-wave-voltammetric (SWV) stripping measurements. Under selected conditions, IgG and CEA could be assayed in the ranges of 0.05-40 ng mL(-1) and 0.05-25 ng mL(-1), respectively. The proposed method possessed high sensitivity, good precision, and satisfactory reproducibility and regeneration.  相似文献   

17.
Novel phenanthroline derivatives and their europium(III) and zinc(II) complexes have been prepared in up to 92%. In contrast to the stable zinc complexes, the europium compounds exhibit a strong luminescence in THF solution. However, quenching of the emission is observed in DMSO indicating complete dissociation of the complexes back to free ligands in this solvent. 1H NMR studies of the Eu(III)-complexes 5 and 6 also confirmed the existence of different states depending on the solvent used. Moreover, it was found that compound 5 is stable in EtOH-PBS solutions; here a strong signal in the emission spectra corresponding to the europium ion was detected. No spectral changes were observed for the zinc(II) complexes, they were shown to be stable in the media. These metal complexes can be used as fluorescence markers for the diagnosis of oesophageal squamous carcinoma (OE21) cells at low concentrations. Cell images were acquired using the compounds 5, 7-9 as luminescent agents. The first images were taken already after 20 min incubation time at a very low concentration range (0.7-1.6 μM).  相似文献   

18.
Cyclodextrin glucanotransferase is a non-Leloir glycosyltransferase that directly employs the free energy of cleavage of starch to produce cyclodextrins. In presence of appropriate acceptors, this enzyme synthesizes oligosaccharides containing alpha(1-->4) bonds. We have investigated the covalent immobilization of CGTase onto different activated supports. Silica was aminated and further activated with glutaraldehyde. The maximum amount of bound protein was about 4 mg CGTase per gram of support; however, the catalytic efficiency of the immobilized enzyme was lower than 6%. Sepharose 4B activated with cyanogen bromide (CNBr-activated Sepharose) and Sepharose 4B with a spacer arm of 1,6-diaminohexane (EAH Sepharose) were also assayed. These gels react with the amino and carboxylic groups of CGTase, respectively. With CNBr-activated Sepharose, a low percentage of enzyme was bound to the support but with a significant catalytic efficiency (29%). A higher recovery of protein was obtained with EAH Sepharose (62%), but only 2.4% of the initial activity was present in the immobilized biocatalyst. The results were discussed in terms of CGTase structure and mechanism. In addition, the solvent accessibility of amino or carboxylic groups, calculated using the NACCESS software, was considered.  相似文献   

19.
Levels of biotin and avidin were assayed in eggs from Small White turkey hens having 12-15 week average hatchability of fertile egg records (HF) of 13 and 99%. The median level and concentration of avidin was higher in eggs of the 13% HF (2.72 mg and 42.5 micrograms/ml, respectively) as compared with the 99% HF (1.39 mg and 23.8 micrograms/ml, respectively). Calculations for total biotin to avidin binding in the eggs revealed that all eggs in the 13% HF and residual free avidin levels after total biotin was complexed to avidin. This complex formation is expected to have limited the availability of biotin for embryonic development.  相似文献   

20.
Using a fluorescent NBD amino acid, new protease substrates were developed that are attractive because of the excellent chemical stability and long wavelength of excitation (480 nm) of the NBD fluorophore. The fluorescent peptides are synthesized by Fmoc solid-phase peptide synthesis. An example peptide was efficiently immobilized onto a microarray surface using click chemistry, and its proteolysis was monitored by fluorescence imaging. Excellent site specificity was achieved for the protease. Fluorescent peptides are also used to monitor the conjugation efficiency onto a surface using a standard microarray scanner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号