首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metallothionein (MT) gene therapy leads to resolution of liver fibrosis in mouse model, in which the activation of collagenases is involved in the regression of liver fibrosis. MT plays a critical role in zinc sequestration in the liver suggesting its therapeutic effect would be mediated by zinc. The present study was undertaken to test the hypothesis that zinc supplementation suppresses liver fibrosis. Male Kunming mice subjected to bile duct ligation (BDL) resulted in liver fibrosis as assessed by increased α-smooth muscle actin (α-SMA) and collagen I production/deposition in the liver. Zinc supplementation was introduced 4 weeks after BDL surgery via intragastric administration once daily for 2 weeks resulting in a significant reduction in the collagen deposition in the liver and an increase in the survival rate. Furthermore, zinc suppressed gene expression of α-SMA and collagen I and enhanced the capacity of collagen degradation, as determined by the increased activity of total collagenases and elevated mRNA and protein levels of MMP13. Therefore, the results demonstrate that zinc supplementation suppresses BDL-induced liver fibrosis through both inhibiting collagen production and enhancing collagen degradation.  相似文献   

2.

Background

Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension.

Methodology/Principal Findings

Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3−/− hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3−/− mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3−/− mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3−/− mice.

Conclusions

Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans.  相似文献   

3.
In bile duct-ligated (BDL) rats, cholangiocyte proliferation is regulated by neuroendocrine factors such as α-calcitonin gene-related peptide (α-CGRP). There is no evidence that the sensory neuropeptide substance P (SP) regulates cholangiocyte hyperplasia. Wild-type (WT, (+/+)) and NK-1 receptor (NK-1R) knockout (NK-1R(-/-)) mice underwent sham or BDL for 1 wk. Then we evaluated 1) NK-1R expression, transaminases, and bilirubin serum levels; 2) necrosis, hepatocyte apoptosis and steatosis, and the number of cholangiocytes positive by CK-19 and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling in liver sections; 3) mRNA expression for collagen 1α and α-smooth muscle (α-SMA) actin in total liver samples; and 4) PCNA expression and PKA phosphorylation in cholangiocytes. In cholangiocyte lines, we determined the effects of SP on cAMP and D-myo-inositol 1,4,5-trisphosphate levels, proliferation, and PKA phosphorylation. Cholangiocytes express NK-1R with expression being upregulated following BDL. In normal NK-1R(-/-) mice, there was higher hepatocyte apoptosis and scattered hepatocyte steatosis compared with controls. In NK-1R (-)/(-) BDL mice, there was a decrease in serum transaminases and bilirubin levels and the number of CK-19-positive cholangiocytes and enhanced biliary apoptosis compared with controls. In total liver samples, the expression of collagen 1α and α-SMA increased in BDL compared with normal mice and decreased in BDL NK-1R(-/-) compared with BDL mice. In cholangiocytes from BDL NK-1R (-)/(-) mice there was decreased PCNA expression and PKA phosphorylation. In vitro, SP increased cAMP levels, proliferation, and PKA phosphorylation of cholangiocytes. Targeting of NK-1R may be important in the inhibition of biliary hyperplasia in cholangiopathies.  相似文献   

4.
Complement factor C5a and its receptor C5aR are expressed in vulnerable atherosclerotic plaques; however, a causal relation between C5a and plaque rupture has not been established yet. Accelerated atherosclerosis was induced by placing vein grafts in male apoE?/? mice. After 24 days, when advanced plaques had developed, C5a or PBS was applied locally at the lesion site in a pluronic gel. Three days later mice were killed to examine the acute effect of C5a on late stage atherosclerosis. A significant increase in C5aR in the plaque was detectable in mice treated with C5a. Lesion size and plaque morphology did not differ between treatment groups, but interestingly, local treatment with C5a resulted in a striking increase in the amount of plaque disruptions with concomitant intraplaque haemorrhage. To identify the potential underlying mechanisms, smooth muscle cells and endothelial cells were treated in vitro with C5a. Both cell types revealed a marked increase in apoptosis after stimulation with C5a, which may contribute to lesion instability in vivo. Indeed, apoptosis within the plaque was seen to be significantly increased after C5a treatment. We here demonstrate a causal role for C5a in atherosclerotic plaque disruptions, probably by inducing apoptosis. Therefore, intervention in complement factor C5a signalling may be a promising target in the prevention of acute atherosclerotic complications.  相似文献   

5.
Complement deficiency ameliorates collagen-induced arthritis in mice   总被引:12,自引:0,他引:12  
Collagen-induced arthritis (CIA) is an experimental animal model of human rheumatoid arthritis being characterized by synovitis and progressive destruction of cartilage and bone. CIA is induced by injection of heterologous or homologous collagen type II in a susceptible murine strain. DBA/1J mice deficient of complement factors C3 (C3(-/-)) and factor B (FB(-/-)) were generated to elucidate the role of the complement system in CIA. When immunized with bovine collagen type II emulsified in CFA, control mice developed severe arthritis and high CII-specific IgG Ab titers. In contrast, the C3(-/-) and FB(-/-) were highly resistant to CIA and displayed decreased CII-specific IgG Ab response. A repeated bovine collagen type II exposure 3 wk after the initial immunization led to an increase in the Ab response in all mice and triggered arthritis also in the complement-deficient mice. Although the arthritic score of the C3(-/-) mice was low, the arthritis in FB(-/-) mice ranked intermediate with regard to C3(-/-) and control mice. We conclude that complement activation by both the classical and the alternative pathway plays a deleterious role in CIA.  相似文献   

6.
Following peripheral exposure to transmissible spongiform encephalopathies (TSEs), infectivity usually accumulates in lymphoid tissues before neuroinvasion. The host prion protein (PrPc) is critical for TSE agent replication and accumulates as an abnormal, detergent insoluble, relatively proteinase-resistant isoform (PrPSc) in diseased tissues. Early PrPSc accumulation takes place on follicular dendritic cells (FDCs) within germinal centers in lymphoid tissues of patients with variant Creutzfeldt-Jakob disease (vCJD), sheep with natural scrapie or rodents following experimental peripheral infection with scrapie. In mouse scrapie models, the absence of FDCs blocks scrapie replication and PrPSc accumulation in the spleen, and neuroinvasion is significantly impaired. The mechanisms by which the TSE agent initially localizes to lymphoid follicles and interacts with FDCs are unknown. Antigens are trapped and retained on the surface of FDCs through interactions between complement and cellular complement receptors. Here we show that in mice, both temporary depletion of complement component C3 or genetic deficiency of C1q significantly delays the onset of disease following peripheral infection, and reduces the early accumulation of PrPSc in the spleen. Thus, in the early stages of infection, C3 and perhaps C1q contribute to the localization of TSE infectivity in lymphoid tissue and may be therapeutic targets.  相似文献   

7.
Human oviductal cells produce complement‐3 (C3) and its derivative, iC3b. These molecules are important in immune responses. Our recent study suggested that iC3b also possessed embryotrophic activity and it stimulates the blastulation and hatching rates of in vitro cultured mouse embryos. The objective is to study the impact of C3 deficiency on early pregnancy in vivo using homozygous C3‐deficient (C3KO) and wild‐type (C3WT) mice. C3 protein was undetectable in the reproductive tissues of C3KO mice. Deficiency in C3 is associated with significantly longer estrous cycle (P = 0.037). No significant difference was found in the ovulation rate, total cell count in blastocysts and implantation rate between the wild‐type and the C3KO mice, though C3KO mice tended to have lower values in the latter two parameters. On day 15 of pregnancy, C3KO mice had fewer conceptus (P < 0.001) and higher resorption rate (P < 0.001) than that of C3WT mice. The fetal and placental weights (P < 0.001) were lower in the C3KO mice. The placenta of C3KO mice had smaller spongiotrophoblast (P = 0.001) and labyrinth (P = 0.037). Deficiency in C3 is associated with mild impairment in early pregnancy including longer estrous cycle and higher resorption rates after implantation. The impairment may be related to compromised placental development leading to under‐developed fetuses. Mol. Reprod. Dev. 76: 647–655, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Complement factor C4 in schizophrenia   总被引:2,自引:0,他引:2  
The complement factor C4 was studied in 165 schizophrenic patients and in 330 controls. A highly significant increase in the frequency of C4B deficiency (BQO) was found among the schizophrenic patients compared with controls (p less than 0.0005).  相似文献   

9.
Cholestasis-induced liver injury during bile duct obstruction causes an acute inflammatory response. To further characterize the mechanisms underlying the neutrophil-induced cell damage in the bile duct ligation (BDL) model, we performed experiments using wild-type (WT) and ICAM-1-deficient mice. After BDL for 3 days, increased ICAM-1 expression was observed along sinusoids, along portal veins, and on hepatocytes in livers of WT animals. Neutrophils accumulated in sinusoids [358 +/- 44 neutrophils/20 high-power fields (HPF)] and >50% extravasated into the parenchymal tissue. Plasma alanine transaminase (ALT) levels increased by 23-fold, and severe liver cell necrosis (47 +/- 11% of total cells) was observed. Chlorotyrosine-protein adducts (a marker for neutrophil-derived hypochlorous acid) and 4-hydroxynonenal adducts (a lipid peroxidation product) were detected in these livers. Neutrophils also accumulated in the portal venules and extravasated into the portal tracts. However, no evidence for chlorotyrosine or 4-hydroxynonenal protein adducts was detected in portal tracts. ICAM-1-deficient mice showed 67% reduction in plasma ALT levels and 83% reduction in necrosis after BDL compared with WT animals. The total number of neutrophils in the liver was reduced (126 +/- 25/20 HPF), and 85% of these leukocytes remained in sinusoids. Moreover, these livers showed minimal staining for chlorotyrosine and 4-hydroxynonenal adducts, indicating a substantially reduced oxidant stress and a diminished cytokine response. Thus neutrophils relevant for the aggravation of acute cholestatic liver injury in BDL mice accumulate in hepatic sinusoids, extravasate into the tissue dependent on ICAM-1, and cause cell damage involving reactive oxygen formation.  相似文献   

10.
Wang H  Zhang Y  Heuckeroth RO 《FEBS letters》2007,581(16):3098-3104
Plasminogen activator inhibitor-1 (PAI-1) increases injury in several liver, lung and kidney disease models. The objective of this investigation was to assess the effect of PAI-1 deficiency on cholestatic liver fibrosis and determine PAI-1 influenced fibrogenic mechanisms. We found that PAI-1(-/-) mice had less fibrosis than wild type (WT) mice after bile duct ligation. This change correlated with increased tissue-type plasminogen activator (tPA) activity, and increased matrix metalloproteinase-9 (MMP-9), but not MMP-2 activity. Furthermore, there was increased activation of the tPA substrate hepatocyte growth factor (HGF), a known anti-fibrogenic protein. In contrast, there was no difference in hepatic urokinase plasminogen activator (uPA) or plasmin activities between PAI-1(-/-) and WT mice. There was also no difference in the level of transforming growth factor beta 1 (TGF-beta1), stellate cell activation or collagen production between WT and PAI-1(-/-) animals. In conclusion, PAI-1 deficiency reduces hepatic fibrosis after bile duct obstruction mainly through the activation of tPA and HGF.  相似文献   

11.
Studies reported over 30 years ago revealed that latent, nonactivated C5 binds specifically and reversibly to C6 and C7. These reversible reactions are distinct from the essentially nonreversible associations with activated C5b that occur during assembly of the membrane attack complex, but they likely involve some, perhaps many, of the same molecular contacts. We recently reported that these reversible reactions are mediated by the C345C (NTR) domain at the C terminus of the C5 alpha-chain. Earlier work by others localized the complementary binding sites to a tryptic fragment of C6 composed entirely of two adjacent factor I modules (FIMs), and to a larger fragment of C7 composed of its homologous FIMs as well as two adjoining short consensus repeat modules. In this work, we expressed the tandem FIMs from C7 in bacteria. The mobility on SDS-polyacrylamide gels, lack of free sulfhydryl groups, and atypical circular dichroism spectrum of the recombinant product rC7-FIMs were all consistent with a native structure. Using surface plasmon resonance, we found that rC7-FIMs binds specifically to both C5 and the rC5-C345C domain with K(D) approximately 50 nM, and competes with C7 for binding to C5, as expected for an active domain. These results indicate that, like C6, the FIMs alone in C7 mediate reversible binding to C5. Based on available evidence, we suggest a model for an irreversible membrane attack complex assembly in which the C7 FIMs, but not those in C6, are bound to the C345C domain of C5 within the fully assembled complex.  相似文献   

12.
The complement system has been shown to mediate renal ischemia-reperfusion (I/R) injury. However, the contribution of complement factor C5a to I/R injury, in particular in the kidney, remains to be established. In this study, we investigated the impact of blocking the C5aR pathway on the inflammatory response and on the renal function in a murine model of I/R injury. First, we analyzed C5aR expression in kidneys of healthy mice. Intriguingly, we found expression on mesangial, as well as on tubular epithelial, cells. After I/R injury, C5aR expression was up-regulated in tubular epithelial cells. In addition, mRNA levels of CXC chemokines and TNF-alpha increased significantly and kidneys were heavily infiltrated by neutrophils. Blocking the C5aR pathway by a specific C5a receptor antagonist (C5aRA) abrogated up-regulation of CXC chemokines but not of TNF-alpha and reduced neutrophil infiltration by >50%. Moreover, application of the C5aRA significantly reduced loss of renal function. This improvement of function was independent of the presence of neutrophils because neutrophil depletion by mAb NIMP-R14 did not affect the protective effect of C5aRA treatment. Furthermore, blocking of the C5aR pathway had no influence on renal apoptosis. These data provide evidence that C5a is crucially involved in the pathogenesis of renal I/R injury by modulation of neutrophil-dependent as well as neutrophil-independent pathways, which include the regulation of CXC chemokines but not TNF-alpha or apoptotic pathways.  相似文献   

13.
The microenvironment of solid tumours is extremely acidic and this condition arises since the precancerous stage. This acidic milieu could therefore provide a useful target for both prophylactic and therapeutic approaches. In TRAMP transgenic mice, an in vivo model of prostate adenocarcinoma (AC), oral administration of alkaline water was devoid of unwanted side effects, and when started from an early age was as effective as NaHCO3 in significantly delaying tumour progression, while when started when prostate tumours were already present, a nonstatistically significant trend in the same direction was detected. These findings indicate that the use of alkalinizing drugs should be considered for chemoprevention and, in association with standard chemotherapy, for treatment of human prostate AC.  相似文献   

14.
Proteasome inhibition has recently been demonstrated to inhibit hepatic fibrogenesis in the bile duct-ligated (BDL) mouse by blocking stellate cell NF-kappaB activation. The effect of proteasome inhibition on liver injury, however, is unclear. Our aims were to assess the effect of the proteasome inhibitor bortezomib on liver injury in the BDL mouse. Liver injury was assessed in 7-day BDL mice treated with a single dose of bortezomib on day 4 after bile duct ligation. Despite NF-kappaB inhibition by bortezomib, liver injury and hepatocyte apoptosis were reduced in treated BDL mice. The antiapoptotic effect of bortezomib was likely mediated by an increase in hepatic cellular FLICE inhibitory protein (c-FLIP) levels, a potent antiapoptotic protein. Unexpectedly, numerous mitotic hepatocytes were observed in the bortezomib-treated BDL mice liver specimens. Consistent with this observation, PCNA immunoreactivity and cyclin A protein expression were also increased with bortezomib treatment. Bortezomib therapy was also associated with a decrease in numbers and activation of Kupffer cells/macrophages. In conclusion, these data suggest that the proteasome inhibitor bortezomib reduces hepatocyte injury in the BDL mouse by mechanisms associated with a reduction in hepatocyte apoptosis, a decrease in Kupffer cell/macrophage number and activation, and increased hepatocyte proliferation.  相似文献   

15.
Hepatocyte growth factor (HGF) plays an important role in angiogenesis, cell proliferation, antifibrosis, and antiapoptosis. Moreover, recent studies have highlighted the immunosuppressive effect of HGF in animal models of allogenic heart transplantation and autoimmune myocarditis and in studies in vitro as well. We also reported that HGF significantly suppresses dendritic cell function, thus down-regulating Ag-induced Th1-type and Th2-type immune responses in allergic airway inflammation. However, the immunosuppressive effect of HGF in many other situations has not been fully clarified. In the present study, using a mouse model of collagen-induced arthritis (CIA) and experiments in vitro, we examined the effect of HGF on autoimmune arthritis and then elucidated the mechanisms of action of HGF. To achieve sufficient delivery of HGF, we used biodegradable gelatin hydrogels as a carrier. HGF suppressed Ag-induced T cell priming by regulating the functions of dendritic cells in the Ag-sensitization phase with down-regulation of IL-10. In contrast, under continuous Ag stimulation HGF induced IL-10-producing immunocytes both in vivo and in vitro. Moreover, HGF potently inhibited the development of CIA with enhancing the Th2-type immune response. We also confirmed that HGF significantly suppressed the production of IL-17 by immunocytes. These results indicate that HGF suppresses the development of CIA through different ways at different phases. They also suggest that HGF could be an attractive tool for treating patients with rheumatoid arthritis.  相似文献   

16.
The aim of this study was to determine whether taurocholate prevents vagotomy-induced cholangiocyte apoptosis. After bile duct ligation (BDL) + vagotomy, rats were fed taurocholate for 1 wk in the absence or presence of wortmannin. Caspase involvement was evaluated by measurement of caspase 8, 9, and 3 activities. Proliferation was determined by morphometry and PCNA immunoblots. Changes in phosphatidylinositol 3-kinase (PI3-kinase) activity were estimated by the expression of the phosphorylated Akt protein. Apically located Na(+)-dependent bile acid transporter (ABAT) expression and activity were evaluated by immunoblots and [(3)H]taurocholate uptake, respectively. Cholangiocyte apoptosis increased, whereas proliferation decreased in BDL + vagotomy rats. Taurocholate feeding prevented vagotomy effects on cholangiocyte functions, which were abolished by wortmannin. ABAT expression and activity as well as phosphorylated Akt protein expression were reduced by vagotomy but restored by taurocholate. The activities of caspase 8, 9, and 3 increased in BDL + vagotomy rats but were restored by taurocholate. The protective effect of taurocholate was associated with maintenance of ABAT activity, downregulation of caspase 8, 9, and 3, and activation of PI3-kinase. Bile acids are important in modulating cholangiocyte proliferation in denervated livers.  相似文献   

17.
Hepatic encephalopathy (HE) arises from acute or chronic liver diseases and leads to several problems, including motor impairment. Animal models of chronic liver disease have extensively investigated the mechanisms of this disease. Impairment of locomotor activity has been described in different rat models. However, these studies are controversial and the majority has primarily analyzed activity parameters. Therefore, the aim of the present study was to evaluate locomotor and exploratory behavior in bile duct-ligated (BDL) rats to explore the spatial and temporal structure of behavior. Adult female Wistar rats underwent common bile duct ligation (BDL rats) or the manipulation of common bile duct without ligation (control rats). Six weeks after surgery, control and BDL rats underwent open-field, plus-maze and foot-fault behavioral tasks. The BDL rats developed chronic liver failure and exhibited a decrease in total distance traveled, increased total immobility time, smaller number of rearings, longer periods in the home base area and decreased percentage of time in the center zone of the arena, when compared to the control rats. Moreover, the performance of the BDL rats was not different from the control rats for the elevated plus-maze and foot-fault tasks. Therefore, the BDL rats demonstrated disturbed spontaneous locomotor and exploratory activities as a consequence of altered spatio-temporal organization of behavior.  相似文献   

18.
Transforming growth factor-beta (TGF-beta) signaling plays an important regulatory role during lung fibrogenesis. Smad3 was identified in the pathway for transducing TGF-beta signals from the cell membrane to the nucleus. Using mice without Smad3 gene expression, we investigated whether Smad3 could regulate bleomycin-induced pulmonary fibrosis in vivo. Mice deficient in Smad3 demonstrated suppressed type I procollagen mRNA expression and reduced hydroxyproline content in the lungs compared with wild-type mice treated with bleomycin. Furthermore, loss of Smad3 greatly attenuated morphological fibrotic responses to bleomycin in the mouse lungs, suggesting that Smad3 is implicated in the pathogenesis of pulmonary fibrosis. These results show that Smad3 contributes to bleomycin-induced lung injury and that Smad3 may serve as a novel target for potential therapeutic treatment of lung fibrosis.  相似文献   

19.
Complement factor C5a acting via C5a receptors (C5aR) is recognized as an anaphylotoxin and chemoattractant that exerts proinflammatory effects in many pathological states. The effects of C5a and C5aR in acute pancreatitis and in pancreatitis-associated lung injury were evaluated using genetically altered mice that either lack C5aR or do not express C5. Pancreatitis was induced by administration of 12 hourly injections of cerulein (50 microg/kg ip). The severity of pancreatitis was determined by measuring serum amylase, neutrophil sequestration in the pancreas, and acinar cell necrosis. The severity of lung injury was evaluated by measuring neutrophil sequestration in the lung and pulmonary microvascular permeability. In both strains of genetically altered mice, the severity of pancreatitis and pancreatitis-associated lung injury was greater than that noted in the comparison wild-type strains of C5aR- and C5-sufficient animals. This exacerbation of injury in the absence of C5a function indicates that, in pancreatitis, C5a exerts an anti-inflammatory effect. Potentially, C5a and its receptor are capable of both promoting and reducing the extent of acute inflammation.  相似文献   

20.
The common bile duct-ligated (CBDL) rat, which is widely used as a model of human cirrhosis, rapidly develops secondary biliary cirrhosis (SBC) within 4 weeks. The CBDL rat shows poor viability, however, a detailed examination of the causes of its death has not been made. In this study, we investigated the outcome of bile duct ligation in detail and attempted to extend the life span of this model by feeding the animals a diet supplemented with nutrients. Survival rate, blood chemistry, blood cell counts, plasma levels of K vitamins and liver histology were compared among CBDL rats fed a standard diet and an enriched diet. Sham-operated rats were used as a control. Six out of 18 CBDL rats fed the standard diet died within 32 days of operation. The cause of death was massive internal hemorrhage in various organs or body cavities. All CBDL rats fed the enriched diet survived more than 31 days, but the viability of CBDL rats was not significant between those fed the standard diet and the enriched diet. The degree of anemia correlated significantly with the prolongation of prothrombin time. Plasma vitamin K1 levels in CBDL rats were significantly lower than those in sham-operated rats, but vitamin K2 levels were similar. We suggest that massive hemorrhage, which was the direct cause of death, is caused by the impairment of hemostasis resulting from vitamin K deficiency. The enriched diet with vitamin K nutritional supplements seemed to contribute to the prolongation of the life span of CBDL rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号