首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Download : Download high-res image (179KB)
  2. Download : Download full-size image
  相似文献   

2.
Novel therapeutic strategies that promote wound healing seek to mimic the response of the body to wounding, to regenerate rather than repair injured tissues. Many synthetic or natural biomaterials have been developed for this purpose and are used to deliver wound therapeutics in a controlled manner that prevents unwanted and potentially harmful side-effects. Here, we review the natural and synthetic biomaterials that have been developed for protein and gene delivery to enhance tissue regeneration. Particular emphasis is placed on novel biomimetic materials that respond to environmental stimuli or release their cargo according to cellular demand. Engineering biomaterials to release therapeutic agents in response to physiologic signals mimics the natural healing process and can promote faster tissue regeneration and reduce scarring in severe acute or chronic wounds.  相似文献   

3.
The favorable biological properties of silk fibroin (SF) nanofiber membrane make it a good candidate for clinical applications as a device in bone and periodontal regenerative therapy. The purpose of this study is to evaluate the biocompatibility of the SF nanofiber membrane, and to examine its effect on bone regeneration in a rabbit calvarial model. To examine the biocompatibility of the electrospun SF membrane, we investigated cell proliferation, morphology, and differentiation. The bone regenerative efficacy of the membrane was evaluated in the calvarial defect of rabbits. The cell numbers and osteocalcin production labels were significantly increased in accordance with culture period. Cells had a stellate shape and broad cytoplasmic extensions on the membrane. The cells showed activity of ALPase that was comparable to culture dishes, and were calcified similarly to culture dishes. In in vivo tests, a complete bony union across the defects was observed after 8 weeks. At 12 weeks, the defect had completely healed with new bone. In conclusion, the SF nanofiber membrane was shown to possess good biocompatibility with enhanced bone regeneration and no evidence of any inflammatory reaction. These results strongly suggest that the SF membrane should be useful as a tool for guided bone regeneration.  相似文献   

4.
  1. Download : Download high-res image (253KB)
  2. Download : Download full-size image
  相似文献   

5.

Introduction

Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM).

Materials and Methods

The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5).

Results

PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups.

Conclusion

Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus.  相似文献   

6.
Current strategies for cell delivery in cartilage and bone regeneration   总被引:6,自引:0,他引:6  
Several cell-based tissue-engineering therapies are emerging to regenerate damaged tissues. These strategies use autologous cells in combination with bioresorbable delivery materials. Major functions of a delivery scaffold are to provide initial mechanical stability, homogenous three-dimensional cell distribution, improved tissue differentiation, suitable handling and properties for delivery and fixation into patients. Delivery of cells can be achieved using injectable matrices, soft scaffolds, membranes, solid load-bearing scaffolds or immunoprotective macroencapsulation. Thus, to expand the clinical potential, next generation therapies will depend on smart delivery concepts that make use of the regenerative potential of stem cells, morphogenetic growth factors and biomimetic materials.  相似文献   

7.
Many bioactive molecules like recombinant human bone morphogenetic protein 2 (rhBMP-2) have been developed for mineralized bone grafts, for which proper scaffolds are necessary to successfully apply the bioactive molecules. In this study, we tested the osteogenic efficacy of rhBMP-2 produced in-house in combination with gelatin sponge as the scaffold carrier in a rabbit radial defect model. The efficacy of the rhBMP-2 was determined by alkaline phosphatase activity assay of C2C12 cells. Two groups of ten rabbits each were treated with rhBMP-2/gelatin sponge, or gelatin sponge only. At 4 weeks, rhBMP-2/gelatin sponge grafts showed more bone regeneration than gelatin sponge grafts, as determined by X-ray radiography, micro-computed tomography, and histological analyses. At 8 weeks, rhBMP-2/gelatin sponge grafts exerted much stronger osteogenic effects. The study demonstrates the improved osteogenic efficacy of the rhBMP-2/gelatin sponge grafts in a rabbit radial bone defect model acting as a bone-inductive material. [BMB Reports 2013; 46(6): 328-333]  相似文献   

8.

Background

HA modified by bisphosphonate (BP) (HA-BP) was synthesized by chemical reaction and possessed promising properties such as self-healing, injection ability, and strong adhesion. The main aim of this study was to confirm its role in promoting osteogenic differentiation in vitro and bone regeneration in vivo.

Methods

The cell biocompatibility of this material was determined using the CCK-8 assay. Alkaline phosphatase (ALP), osteocalcin (OT), vascular endothelial growth factor (VEGF), and collagen I were assessed by quantitative real-time polymerase chain reaction (Q-PCR) in the treated group. The number and density of calcium nodules and ALP were evaluated by Alizarin Red staining and ALP staining. We have successfully developed an animal model simulating osteonecrosis of the femoral head (ONFH). Utilizing this animal model, the impact of HA-BP/CaP on bone formation was assessed. The amount of bone regeneration at 1 and 2 months after HA-BP/CaP injection was estimated by micro-computed tomography (micro-CT) analysis and H&E, collagen I, and periostin staining.

Results

The number of cells gradually increased in the experimental group over time and was close to that of the blank control group. ALP, collagen I, and VEGF expression was significantly higher in the experimental group than in the blank group (VEGF, ALP, both **p < 0.01; collagen I, ***p<0.001). In addition, the number and density of calcium nodules and ALP was clearly greater in the material group than in the control group.The quantification analysis showed that the mineral contents of regenerated bone at 1 and 2 months after HA-BP/CaP injection were significantly greater than those in the control group, according to micro-CT evaluation (**p<0.01). The amount of organic components in the HA-BP/CaP group was greater than that in the control group after decalcification and H&E staining. In addition, collagen I and periostin staining further confirmed the results of H&E staining.

Conclusion

This material can boost proliferation and osteogenic differentiation of MC3T3-E1 cells in vitro. It can intensely accelerate bone regeneration in vivo, which is a promising strategy for tissue engineering.  相似文献   

9.
The aim of this experiment was to elucidate the histological alterations after systemic administration of eldecalcitol (ELD) combined with guided bone regeneration during the restoration of bone defect healing in rats. The femurs of 8-week-old Wister rats were used to generate bone defect models. The defect was covered with a collagen membrane, and ELD group was administrated with eldecalcitol (50 ng/kg body weight) intragastrically once every other day. Femora were harvested at 1, 2, 4 and 8 weeks post-surgery. Decalcify tissue slices were made and used for histological and immunohistochemical examination. Bone biomarkers of RANKL, OPG and osteocalcin (OCN) were detected by western blot. The results revealed that the system administration of ELD could improve new bone formation demonstrated by the increased bone volume/tissue volume ratio and accelerated mineralization. ELD suppressed osteoclastic bone resorption by reducing the number of osteoclasts, decreasing the expression of cathepsin-K and the ratio of RANKL/OPG at the early stage of bone defect restoration (1 and 2 weeks) and upregulating OCN expression at the later stage of bone defect healing (4 and 8 weeks). These data suggested that systemic administration of eldecalcitol accelerated bone formation and promoted bone maturation by decreasing bone resorption and promoting bone mineralization during bone defect restoration.  相似文献   

10.
Naderi  N.  Griffin  M. F.  Mosahebi  A.  Butler  P. E.  Seifalian  A. M. 《Molecular biology reports》2020,47(3):2005-2013
Molecular Biology Reports - Current surgical reconstruction for soft tissue replacement involves lipotransfer to restore soft tissue replacements but is limited by survival and longevity of the fat...  相似文献   

11.
The three-dimensional (3D) plotting system is a rapidly-developing scaffold fabrication method for bone tissue engineering. It yields a highly porous and inter-connective structure without the use of cytotoxic solvents. However, the therapeutic effects of a scaffold fabricated using the 3D plotting system in a large segmental defect model have not yet been demonstrated. We have tested two hypotheses: whether the bone healing efficacy of scaffold fabricated using the 3D plotting system would be enhanced by bone marrow-derived mesenchymal stem cell (BMSC) transplantation; and whether the combination of bone morphogenetic protein-2 (BMP-2) administration and BMSC transplantation onto the scaffold would act synergistically to enhance bone regeneration in a large segmental defect model. The use of the combined therapy did increase bone regeneration further as compared to that with monotherapy in large segmental bone defects.  相似文献   

12.
Recombinant human bone morphogenetic proteins (rhBMPs) have been extensively investigated for developing therapeutic strategies aimed at the restoration and treatment of orthopaedic as well as craniofacial conditions. In this first part of the review, we discuss the rationale for the necessary use of carrier systems to deliver rhBMP-2 and rhBMP-7 to sites of bone tissue regeneration and repair. General requirements for growth factor delivery systems emphasizing the distinction between localized and release-controlled delivery strategies are presented highlighting the current limitations in the development of an effective rhBMP delivery system applicable in clinical bone tissue engineering.  相似文献   

13.
14.
AIM: To investigate the effect of stem cells from human exfoliated deciduous teeth(SHED) transplanted for bone regeneration in the dog mandibular defect.METHODS: In this prospective comparative study, SHEDs had been isolated 5 years ago from human exfoliated deciduous teeth. The undifferentiated stem cells were seeded into mandibular bone through-andthrough defects of 4 dogs. Similar defects in control group were filled with cell-free collagen scaffold. After 12 wk, biopsies were taken and morphometric analysis was performed. The percentage of new bone formation and foreign body reaction were measured in each case. The data were subject to statistical analysis using the Mann-Whitney U and Kruskalwalis statistical tests. Differences at P 0.05 was considered as significant level.RESULTS: There were no significant differences between control and SHED-seeded groups in connective tissue(P = 0.248), woven bone(P = 0.248) and compact bone(P = 0.082). There were not any side effects in transplanted SHED group such as teratoma or malignancy and abnormalities in this period.CONCLUSION: SHEDs which had been isolated and characterized 5 years ago and stored with cryopreservation banking were capable of proliferation and osteogenesis after 5 years, and no immune response was observed after three months of seeded SHEDs.  相似文献   

15.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily of growth factors and are used clinically to induce new bone formation. The purpose of this study was to evaluate receptor utilization by BMP-2, BMP-4, BMP-6, and BMP-7 in primary human mesenchymal stem cells (hMSC), a physiologically relevant cell type that probably mediates the in vivo effects of BMPs. RNA interference-mediated gene knockdown revealed that osteoinductive BMP activities in hMSC are elicited through the type I receptors ACVR1A and BMPR1A and the type II receptors ACVR2A and BMPR2. BMPR1B and ACVR2B were expressed at low levels and were not found to play a significant role in signaling by any of the BMPs evaluated in this study. Type II receptor utilization differed significantly between BMP-2/4 and BMP-6/7. A greater reliance on BMPR2 was observed for BMP-2/4 relative to BMP-6/7, whereas ACVR2A was more critical to signaling by BMP-6/7 than BMP-2/4. Significant differences were also observed for the type I receptors. Although BMP-2/4 used predominantly BMPR1A for signaling, ACVR1A was the preferred type I receptor for BMP-6/7. Signaling by both BMP-2/4 and BMP-6/7 was mediated by homodimers of ACVR1A or BMPR1A. A portion of BMP-2/4 signaling also required concurrent BMPR1A and ACVR1A expression, suggesting that BMP-2/4 signal in part through ACVR1A/BMPR1A heterodimers. The capacity of ACVR1A and BMPR1A to form homodimers and heterodimers was confirmed by bioluminescence resonance energy transfer analyses. These results suggest different mechanisms for BMP-2/4- and BMP-6/7-induced osteoblastic differentiation in primary hMSC.  相似文献   

16.
17.
18.
19.
Bone morphogenetic proteins (BMPs) have demonstrated effectiveness as bone regeneration agents whether delivered as recombinant proteins or via gene therapy. Current gene therapy approaches use vectors expressing single BMPs. In contrast, multiple BMPs are coordinately expressed during bone development and fracture healing. Furthermore, BMPs likely exist in vivo as heterodimeric molecules having enhanced biological activity. In the present study, we test the hypothesis that gene therapy-based bone regeneration can be enhanced by expressing combinations of BMPs. For in vitro studies, mesenchymal cell lines were transduced with individual adenoviruses containing BMP2, 4, or 7 cDNA under control of a CMV promoter (AdBMP2, 4, 7) or virus combinations. Significantly, combined transduction with AdBMP2 plus AdBMP7 or AdBMP4 plus AdBMP7 resulted in a synergistic stimulation of osteoblast differentiation. This synergy is best explained by formation of BMP2/7 and 4/7 heterodimers. To test in vivo biological activity, fibroblasts were transduced with specific virus combinations and implanted into C57BL6 mice. Consistent with in vitro results, strong synergy was observed using combined AdBMP2/BMP7 treatment, which induced twofold to threefold more bone than would be predicted based on the activity of individual AdBMPs. These studies show that dramatic enhancement of osteogenesis can be achieved using gene therapy to express specific combinations of interacting regenerative molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号