首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor receptor (EGFR) is deemed to be one of the main molecular targets for diagnosis and treatment of cancer. It has been identified that EGFR involves in pathogenesis of some forms of human cancers. Monoclonal antibodies targeting EGFR could control the tumor cell growth, proliferation, and apoptosis by suppressing the signal transduction pathways. Nanobodies can be regarded as the smallest intact antigen binding fragments, derived from heavy chain-only antibodies existing in camelids. Here, we describe the identification of an EGFR-specific nanobody, referred to as OA-cb6, obtained from immunized camel with a cell line expressing high levels of EGFR. Utilizing flow cytometry (FACS) and blotting methods, we demonstrated that OA-cb6 nanobody binds specifically to EGFR expressing on the surface of A431 cells. In addition, OA-cb6 nanobody potently causes the inhibition of EGFR over expression, cell growth and proliferation. The antibody fragments can probably be regarded as worthwhile binding block for further rational design of anti-cancer therapy.  相似文献   

2.
Human monoclonal antibodies (mAbs) can routinely be isolated from phage display libraries against virtually any protein available in sufficient purity and quantity, but library design can influence epitope coverage on the target antigen. Here we describe the construction of a novel synthetic human antibody phage display library that incorporates hydrophilic or charged residues at position 52 of the CDR2 loop of the variable heavy chain domain, instead of the serine residue found in the corresponding germline gene. The novel library was used to isolate human mAbs to various antigens, including the alternatively-spliced EDA domain of fibronectin, a marker of tumor angiogenesis. In particular, the mAb 2H7 was proven to bind to a novel epitope on EDA, which does not overlap with the one recognized by the clinical-stage F8 antibody. F8 and 2H7 were used for the construction of chelating recombinant antibodies (CRAbs), whose tumor-targeting properties were assessed in vivo in biodistribution studies in mice bearing F9 teratocarcinoma, revealing a preferential accumulation at the tumor site.Key words: human antibody library, phage display, oncofetal fibronectin, vascular tumor targeting, scFv antibody fragments, chelating recombinant antibody (CRAb)  相似文献   

3.
It is well established that all camelids have unique antibodies circulating in their blood. Unlike antibodies from all other species, these special antibodies are devoid of light chains, and are composed of a heavy chain homodimer. These so-called heavy-chain antibodies (HCAbs) are expressed after a V-D-J rearrangement and require dedicated constant gamma genes. An immune response is raised in these HCAbs following a classical immunization protocol. These HCAbs are easily purified from serum, and their antigen-binding fragment interacts with parts of the target that are less antigenic to conventional antibodies. The antigen binding site of the dromedary HCAb comprises one single domain, referred to as VHH or nanobody (Nb), therefore, a strategy was designed to clone the Nb repertoire of an immunized dromedary and to select the Nb with specificity for our target antigens. The monoclonal Nb is produced well in bacteria, is very stable and highly soluble, and it binds the antigen with high affinity and specificity. Currently, the recombinant Nb has been developed successfully for research purposes, as a probe in biosensors, to diagnose infections, or to treat diseases such as cancer or trypanosomiasis.  相似文献   

4.
《MABS-AUSTIN》2013,5(6):584-595
The epidermal growth factor receptor (EGFR) is frequently dysregulated in human malignancies and a validated target for cancer therapy. Two monoclonal anti-EGFR antibodies (cetuximab and panitumumab) are approved for clinical use. However, the percentage of patients responding to treatment is low and many patients experiencing an initial response eventually relapse. Thus, the need for more efficacious treatments remains. Previous studies have reported that mixtures of antibodies targeting multiple distinct epitopes are more effective than single mAbs at inhibiting growth of human cancer cells in vitro and in vivo. The current work describes the rational approach that led to discovery and selection of a novel anti-EGFR antibody mixture Sym004, which is currently in Phase 2 clinical testing. Twenty-four selected anti-EGFR antibodies were systematically tested in dual and triple mixtures for their ability to inhibit cancer cells in vitro and tumor growth in vivo. The results show that targeting EGFR dependent cancer cells with mixtures of antibodies is superior at inhibiting their growth both in vitro and in vivo. In particular, antibody mixtures targeting non-overlapping epitopes on domain III are efficient and indeed Sym004 is composed of two monoclonal antibodies targeting this domain. The superior growth inhibitory activity of mixtures correlated with their ability to induce efficient EGFR degradation.  相似文献   

5.
Intracellular expression of recombinant antibodies (intrabodies) allows to interfere with the functions of oncogenic or viral molecules expressed in different cell compartments and has therefore a vast clinical potential in therapy. Although the use of phage-display libraries has made it possible to select Fab or single chain Fv (scFv) antibody fragments usable for intracellular targeting, a major source of recombinant antibodies for therapeutic use still remains hybridoma B cells producing well-characterized monoclonal antibodies (mAbs). However, the cloning and the intracellular expression of antibody fragments derived from mAbs can be markedly hampered by a number of technical difficulties that include failure of cloning functional variable regions as well as lack of binding of the antibody fragments to the targeted molecule in an intracellular environment. We discuss herein various molecular methods that have been developed to generate functional recombinant antibody fragments usable as anti-tumor triggering agents when expressed in tumor cells. Such antibodies can neutralize or modify the activity of oncogenic molecules when addressed in specific subcellular compartments and/or they can be used to trigger anti-tumor immunity when expressed on tumor cell surface.  相似文献   

6.
基于重链抗体构建的单域抗体研究进展   总被引:2,自引:0,他引:2  
崔华清  王清明   《生物工程学报》2005,21(3):497-501
在骆驼血清中存在天然的缺失轻链的重链抗体(heavy chainantibody ,HCAb) ,克隆重链抗体的可变区构建的只由一个重链可变区组成的单域抗体称为VHH抗体(variabledomainofheavychainofheavy chainantibody ,VHH)。研究发现,VHH抗体具有易表达、可溶性好、稳定性强等优点。另外,骆驼的重链抗体与人VH3家族抗体同源,对人VH3家族抗体的重链可变区进行类似VHH的特征性改造,可以使这些抗体在保持亲和力、特异性不变或者变化很小的情况下,优化抗体的其它性质。已有的研究表明VHH抗体作为一种小型化的基因工程抗体在基础研究、药物开发等领域有广阔的应用前景。  相似文献   

7.
In the present study, we have developed a novel one-arm single chain Fab heterodimeric bispecific IgG (OAscFab-IgG) antibody format targeting the insulin-like growth factor receptor type I (IGF-1R) and the epidermal growth factor receptor (EGFR) with one binding site for each target antigen. The bispecific antibody XGFR is based on the “knob-into-hole” technology for heavy chain heterodimerization with one heavy chain consisting of a single chain Fab to prevent wrong pairing of light chains. XGFR was produced with high expression yields and showed simultaneous binding to IGF-1R and EGFR with high affinity. Due to monovalent binding of XGFR to IGF-1R, IGF-1R internalization was strongly reduced compared with the bivalent parental antibody, leading to enhanced Fc-mediated cellular cytotoxicity. To further increase immune effector functions triggered by XGFR, the Fc portion of the bispecific antibody was glycoengineered, which resulted in strong antibody-dependent cell-mediated cytotoxicity activity. XGFR-mediated inhibition of IGF-1R and EGFR phosphorylation as well as A549 tumor cell proliferation was highly effective and was comparable with a combined treatment with EGFR (GA201) and IGF-1R (R1507) antibodies. XGFR also demonstrated potent anti-tumor efficacy in multiple mouse xenograft tumor models with a complete growth inhibition of AsPC1 human pancreatic tumors and improved survival of SCID beige mice carrying A549 human lung tumors compared with treatment with antibodies targeting either IGF-1R or EGFR. In summary, we have applied rational antibody engineering technology to develop a heterodimeric OAscFab-IgG bispecific antibody, which combines potent signaling inhibition with antibody-dependent cell-mediated cytotoxicity induction and results in superior molecular properties over two established tetravalent bispecific formats.  相似文献   

8.
The recognition that few human diseases are thoroughly addressed by mono-specific, monoclonal antibodies (mAbs) continues to drive the development of antibody therapeutics with additional specificities and enhanced activity. Historically, efforts to engineer additional antigen recognition into molecules have relied predominantly on the reformatting of immunoglobulin domains. In this report we describe a series of fully functional mAbs to which additional specificities have been imparted through the recombinant fusion of relatively short polypeptides sequences. The sequences are selected for binding to a particular target from combinatorial libraries that express linear, disulfide-constrained, or domain-based structures. The potential for fusion of peptides to the N- and C- termini of both the heavy and light chains affords the bivalent expression of up to four different peptides. The resulting molecules, called zybodies, can gain up to four additional specificities, while retaining the original functionality and specificity of the scaffold antibody. We explore the use of two clinically significant oncology antibodies, trastuzumab and cetuximab, as zybody scaffolds and demonstrate functional enhancements in each case. The affect of fusion position on both peptide and scaffold function is explored, and penta-specific zybodies are demonstrated to simultaneously engage five targets (ErbB2, EGFR, IGF-1R, Ang2 and integrin αvβ3). Bispecific, trastuzumab-based zybodies targeting ErbB2 and Ang2 are shown to exhibit superior efficacy to trastuzumab in an angiogenesis-dependent xenograft tumor model. A cetuximab-based bispecific zybody that targeting EGFR and ErbB3 simultaneously disrupted multiple intracellular signaling pathways; inhibited tumor cell proliferation; and showed efficacy superior to that of cetuximab in a xenograft tumor model.  相似文献   

9.
Production and application of therapeutic monoclonal antibodies are second only to vaccines in the world pharmaceutical market. The most common therapeutic antibodies are monoclonal antibodies (mAbs) of the IgG isotype that are produced in eukaryotic CHO cells. In recent years, there has been a considerable interest in developing treatment medications based on IgA antibodies, which can have a wide range of effector functions on human mucous membranes. To study the expression level of immunoglobulin A (IgA) in mammal cells, we designed a set of bipromoter (CMV and EF1α) vectors. The vectors contain gene fragments that encode the heavy chain variable domain (VH) and the light chain variable domain (VL) of the human monoclonal antibody FI6v3 against the hemagglutinin of influenza virus A. They also contain gene fragments that encode the light chain (kappa type) constant domain and the heavy chain constant domain of the human antibody IgA1. The expression vectors differed in the orientation of the promoters and the presence or absence of introns. Two variants of the full-length light and heavy chains were cloned into a eukaryotic expression vector in head-to-head and head-to-tail orientations. The resulting plasmids were transfected into CHO-DG44 and HEK-293T cells. The antibody expression level for the stable transfection of CHO-DG44 and HEK-293T cell cultures was determined by ELISA. The results of the experiments showed that the expression of FI6v3-IgA1 antibodies significantly increased when eukaryotic cells were transfected with the plasmid pBiPr-ABIgA1FI6-Iht in which the heavy chain of IgA1 contains introns and the promoters are arranged head-to-tail.  相似文献   

10.
A panel of 16 monoclonal antibodies (mAb) were produced against rat T-kininogen to characterize this family of proteins. These mAbs bound 125I-T-kininogen by radioimmunoassay as well as reacting strongly with immobilized T-kininogen in an enzyme-linked immunosorbent assay (ELISA). The reactivity of these antibodies with proteolytic fragments of T-kininogen demonstrated the recognition of several different epitopes. One antibody was specific for the domain 1 of the heavy chain and/or the light chain, twelve antibodies were specific for domain 2 and three antibodies were specific for domain 3. All monoclonal antibodies recognized the two forms of T-kininogen encoded by the two different T-kininogen genes, TI and TII kininogen, except antibody TK 16-3.1 which uniquely reacted with TII kininogen. Two antibodies recognizing domain 2 cross-reacted with the high-molecular-mass kininogen (H-kininogen), whereas all the other monoclonal antibodies were specific to T-kininogen and did not recognize the heavy chain of H-kininogen. None of the antibodies tested altered the thiol protease inhibitory activity of T-kininogen, its partial proteolysis by rat mast cell chymase or the hydrolysis of H-kininogen by rat urinary kallikrein. The use of these antibodies in the development of sensitive ELISA to measure T-kininogen levels in plasma, urine, liver microsomes and hepatocytes is described. Two different forms of T-kininogen were distinguished by these monoclonal antibodies in Western blotting using rat plasma. The localization of T-kininogen was defined using these monoclonal antibodies by immunohistochemistry in rat liver hepatocytes and rat kidney.  相似文献   

11.
High-precision tumor targeting with conventional therapeutics is based on the concept of the ideal drug as a "magic bullet"; this became possible after techniques were developed for production of monoclonal antibodies (mAbs). Innovative DNA technologies have revolutionized this area and enhanced clinical efficiency of mAbs. The experience of applying small-size recombinant antibodies (monovalent binding fragments and their derivatives) to cancer targeting showed that even high-affinity monovalent interactions provide fast blood clearance but only modest retention time on the target antigen. Conversion of recombinant antibodies into multivalent format increases their functional affinity, decreases dissociation rates for cell-surface and optimizes biodistribution. In addition, it allows the creation of bispecific antibody molecules that can target two different antigens simultaneously and do not exist in nature. Different multimerization strategies used now in antibody engineering make it possible to optimize biodistribution and tumor targeting of recombinant antibody constructs for cancer diagnostics and therapy.  相似文献   

12.
The epidermal growth factor receptor (EGFR) is frequently dysregulated in human malignancies and a validated target for cancer therapy. Two monoclonal anti-EGFR antibodies (cetuximab and panitumumab) are approved for clinical use. However, the percentage of patients responding to treatment is low and many patients experiencing an initial response eventually relapse. Thus, the need for more efficacious treatments remains. Previous studies have reported that mixtures of antibodies targeting multiple distinct epitopes are more effective than single mAbs at inhibiting growth of human cancer cells in vitro and in vivo. The current work describes the rational approach that led to discovery and selection of a novel anti-EGFR antibody mixture Sym004, which is currently in Phase 2 clinical testing. Twenty-four selected anti-EGFR antibodies were systematically tested in dual and triple mixtures for their ability to inhibit cancer cells in vitro and tumor growth in vivo. The results show that targeting EGFR dependent cancer cells with mixtures of antibodies is superior at inhibiting their growth both in vitro and in vivo. In particular, antibody mixtures targeting non-overlapping epitopes on domain III are efficient and indeed Sym004 is composed of two monoclonal antibodies targeting this domain. The superior growth inhibitory activity of mixtures correlated with their ability to induce efficient EGFR degradation.Key words: EGFR, antibody synergy, functional screening, epitope binning, antibody combinations  相似文献   

13.
我们采用RT-PCR,从小鼠杂交瘤细胞中扩增并克隆了抗破伤风类毒素(TT)抗体轻、重链可变区,重链Fd区基因,测定了其VH、Vk序列。并在大肠杆菌中表达了Fd片段,ELISA分析的结果表明Fd片段具有抗原结合的能力,但特异性很差。进一步采用SOE,和PCR技术,将VH、VK基因与ScFv连接片段组装成单链抗体(ScFv)基因片段,以及将人重链CH1和Fab基因连接片段组装成Fab基因片段。将它们分别插入含噬菌体fd外壳蛋白3基因的phagem-id pHEN 1中,在辅助噬菌体M 13-VCS作用下,噬菌体表面表达了抗TT的噬菌体单链抗体(phage-ScFv)与噬菌体Fab(phage-Fab),经ELISA检测,表明它们都能与TT特异结合。  相似文献   

14.
The role of therapeutic antibodies in drug discovery   总被引:10,自引:0,他引:10  
The last 5 years have seen a major upturn in the fortune of therapeutic monoclonal antibodies (mAbs), with nine mAbs approved for clinical use during this period and more than 70 now in clinical trials beyond phase II. Sales are expected to reach $4 billion per annum worldwide in 2002 and $15 billion by 2010. This success can be related to the engineering of mouse mAbs into mouse/human chimaeric antibodies or humanized antibodies, which have had a major effect on immunogenicity, effector function and half-life. The issue of repeated antibody dosing at high levels with limited toxicity was essential for successful clinical applications. Emerging technologies (phage display, human antibody-engineered mice) have created a vast range of novel, antibody-based therapeutics, which specifically target clinical biomarkers of disease. Modified recombinant antibodies have been designed to be more cytotoxic (toxin delivery), to enhance effector functions (bivalent mAbs) and to be fused with enzymes for prodrug therapy and cancer treatment. Antibody fragments have also been engineered to retain specificity and have increased the penetrability of solid tumours (single-chain variable fragments). Radiolabelling of antibodies has now been shown to be effective for cancer imaging and targeting. This article focuses on developments in the design and clinical use of recombinant antibodies for cancer therapy.  相似文献   

15.
昝虹  叶敏 《实验生物学报》1997,30(3):285-292
The heavy and light chain variable region genes of anti-tetanus toxoid (TT) antibody and the heavy chain Fd genes were amplified and cloned through RT-PCR from mouse hybridoma cells. The sequences of VH and VK were determined. Fd gene fragments were expressed in E. coli. The ELISA results indicated that the expressed Fd showed antigen binding activity but was nonspecific. Furthermore, through SOE and PCR techniques, the VH and VK gene fragments together with ScFv linker were assembled into single chain antibody (ScFv) gene fragment. While together with human heavy chain CH 1 gene fragment and Fab linker, they were assembled into chimeric Fab gene fragment. The two assembled gene fragments were separately inserted into phagemid pHEN 1, which was a fd-based vector containing gene 3 encoding the minor coat protein. In presence of helper phage M 13-VCS the anti-TT phage-ScFv or phage-Fab were displayed on the surface of phage particles respectively. Results from phage-ELISA indicated that both phage antibodies were TT-specific.  相似文献   

16.
Molecular details of epidermal growth factor receptor (EGFR) targeting by nimotuzumab, a therapeutic anti-cancer antibody, have been largely unknown. The current study delineated a functional map of their interface, based on phage display and extensive mutagenesis of both the target antigen and the Fv antibody fragment. Five residues in EGFR domain III (R353, S356, F357, T358, and H359T) and the third hypervariable region of nimotuzumab heavy chain were shown to be major functional contributors to the interaction. Fine specificity differences between nimotuzumab and other anti-EGFR antibodies were revealed. Mapping information guided the generation of a plausible in silico binding model. Knowledge about the epitope/paratope interface opens new avenues for the study of tumor sensitivity/resistance to nimotuzumab and for further engineering of its binding site. The developed mapping platform, also validated with the well-known cetuximab epitope, allows a comprehensive exploration of antigenic regions and could be expanded to map other anti-EGFR antibodies.  相似文献   

17.
《MABS-AUSTIN》2013,5(4):1013-1025
Molecular details of epidermal growth factor receptor (EGFR) targeting by nimotuzumab, a therapeutic anti-cancer antibody, have been largely unknown. The current study delineated a functional map of their interface, based on phage display and extensive mutagenesis of both the target antigen and the Fv antibody fragment. Five residues in EGFR domain III (R353, S356, F357, T358, and H359T) and the third hypervariable region of nimotuzumab heavy chain were shown to be major functional contributors to the interaction. Fine specificity differences between nimotuzumab and other anti-EGFR antibodies were revealed. Mapping information guided the generation of a plausible in silico binding model. Knowledge about the epitope/paratope interface opens new avenues for the study of tumor sensitivity/resistance to nimotuzumab and for further engineering of its binding site. The developed mapping platform, also validated with the well-known cetuximab epitope, allows a comprehensive exploration of antigenic regions and could be expanded to map other anti-EGFR antibodies.  相似文献   

18.

Background  

EGF receptor variant III (EGFRvIII) is the most common variant of the EGF receptor observed in human tumors. It results from the in frame deletion of exons 2-7 and the generation of a novel glycine residue at the junction of exons 1 and 8. This novel juxtaposition of amino acids within the extra-cellular domain of the EGF receptor creates a tumor specific and immunogenic epitope. EGFRvIII expression has been seen in many tumor types including glioblastoma multiforme (GBM), breast adenocarcinoma, non-small cell lung carcinoma, ovarian adenocarcinoma and prostate cancer, but has been rarely observed in normal tissue. Because this variant is tumor specific and highly immunogenic, it can be used for both a diagnostic marker as well as a target for immunotherapy. Unfortunately many of the monoclonal and polyclonal antibodies directed against EGFRvIII have cross reactivity to wild type EGFR or other non-specific proteins. Furthermore, a monoclonal antibody to EGFRvIII is not readily available to the scientific community.  相似文献   

19.
The epidermal growth factor receptor (EGFR) is overexpressed in many epithelial cancers, an observation often correlated with poor clinical outcome. Overexpression of the EGFR is commonly caused by EGFR gene amplification and is sometimes associated with expression of a variant EGFR (de2-7 EGFR or EGFRvIII) bearing an internal deletion in its extracellular domain. Monoclonal antibody (mAb) 806 is a novel EGFR antibody with significant antitumor activity that recognizes both the de2-7 EGFR and a subset of the wild type (wt) EGFR when overexpressed but does not bind the wt EGFR expressed in normal tissues. Despite only binding to a low proportion of the wt EGFR expressed in A431 tumor cells (approximately 10%), mAb 806 displays robust antitumor activity against A431 xenografts grown in nude mice. To elucidate the mechanism leading to its unique specificity and mode of antitumor activity, we have determined the EGFR binding epitope of mAb 806. Analysis of mAb 806 binding to EGFR fragments expressed either on the surface of yeast or in an immunoblot format identified a disulfide-bonded loop (amino acids 287-302) that contains the mAb 806 epitope. Indeed, mAb 806 binds with apparent high affinity (approximately 30 nm) to a synthetic EGFR peptide corresponding to these amino acids. Analysis of EGFR structures indicates that the epitope is fully exposed only in the transitional form of the receptor that occurs because EGFR changes from the inactive tethered conformation to a ligand-bound active form. It would seem that mAb 806 binds this small proportion of transient receptors, preventing their activation, which in turn generates a strong antitumor effect. Finally, our observations suggest that the generation of antibodies to transitional forms of growth factor receptors may represent a novel way of reducing normal tissue targeting yet retaining antitumor activity.  相似文献   

20.
The immunoglobulin (Ig) constant CH2 domain is critical for antibody effector functions. Isolated CH2 domains are promising as scaffolds for construction of libraries containing diverse binders that could also confer some effector functions. However, previous work has shown that an isolated murine CH2 domain is relatively unstable to thermally induced unfolding. To explore unfolding mechanisms of isolated human CH2 and increase its stability γ1 CH2 was cloned and a panel of cysteine mutants was constructed. Human γ1 CH2 unfolded at a higher temperature (Tm = 54.1 °C, as measured by circular dichroism) than that previously reported for a mouse CH2 (41 °C). One mutant (m01) was remarkably stable (Tm = 73.8 °C). Similar results were obtained by differential scanning calorimetry. This mutant was also significantly more stable than the wild-type CH2 against urea induced unfolding (50% unfolding at urea concentration of 6.8 m versus 4.2 m). The m01 was highly soluble and monomeric. The existence of the second disulfide bond in m01 and its correct position were demonstrated by mass spectrometry and nuclear magnetic resonance spectroscopy, respectively. The loops were on average more flexible than the framework in both CH2 and m01, and the overall secondary structure was not affected by the additional disulfide bond. These data suggest that a human CH2 domain is relatively stable to unfolding at physiological temperature, and that both CH2 and the highly stable mutant m01 are promising new scaffolds for the development of therapeutics against human diseases.Monoclonal antibodies (mAbs)2 with high affinity and specificity are now well established therapeutics and invaluable tools for biological research. It appears that their use will continue to expand in both targets and disease indications. However, a fundamental problem for full-size mAbs that limits their applications is their poor penetration into tissues (e.g. solid tumors) and poor or absent binding to regions on the surface of some molecules (e.g. on the HIV envelope glycoprotein) that are accessible by molecules of smaller size. Antibody fragments, e.g. Fabs (∼60 kDa) or single chain Fv fragments (scFvs) (20∼30 kDa), are significantly smaller than full-size antibodies (∼150 kDa), and have been used as imaging reagents and candidate therapeutics. Even smaller fragments of antibodies are of great interest and advantageous for pharmaceutical applications including cancer targeting and imaging.During the last decade a large amount of work has been aimed at developing of small size binders with scaffolds based on various highly stable human and non-human molecules (18). A promising direction is the development of binders based on the heavy or light chain variable region of an antibody; these fragments ranging in size from 11 kDa to 15 kDa were called “domain antibodies” or “dAbs” (7, 9). A unique kind of antibodies composed only of heavy chains are naturally formed in camels, dromedaries, and llamas, and their variable regions can also recognize antigens as single domain fragments (10). Not only is the overall size of the dAbs much smaller than that of full-size antibodies but also their paratopes are concentrated over a smaller area so that the dAbs provide the capability of interacting with novel epitopes that are inaccessible to conventional antibodies or antibody fragments with paired light and heavy chain variable domains.The structure of the constant antibody domains is similar to that of the variable domains consisting of β-strands connected mostly with loops or short helices. The second domain of the α, δ, and γ heavy chain constant regions, CH2, is unique in that it exhibits very weak carbohydrate-mediated interchain protein-protein interactions in contrast to the extensive interchain interactions that occur between the other domains. The expression of murine CH2 in bacteria, which does not support glycosylation, results in a monomeric domain (11). It has been hypothesized that the CH2 domain (CH2 of IgG, IgA, and IgD, and CH3 of IgE and IgM) could be used as a scaffold and could offer additional advantages compared with those of dAbs because it contains binding sites or portions of binding sites conferring effector and stability functions (12).It was found previously that an isolated murine CH2 is relatively unstable at physiological temperature with a temperature of 50% unfolding (Tm) slightly higher than 37 °C (11). We have hypothesized that human CH2 would exhibit different stability because of significant differences in the sequence compared with its murine counterpart. Therefore, we have extensively characterized the stability of an isolated unglycosylated single CH2 domain. We found that its stability is significantly higher than the previously reported for the murine CH2. We further increased the stability of the human CH2 by engineering an additional disulfide bond between the A and G strands. One of the newly developed mutants, denoted as m01, exhibited significantly higher stability (Tm = 73.8 °C) than that of wild type CH2. We suggest that both the wild type CH2 and the newly developed mutant, m01, could be used as scaffolds for binders. These results also demonstrate for the first time that the stability of constant antibody domains can be dramatically increased by engineering of an additional disulfide bond. The increase in stability of isolated domains may result in an increase in stability of larger antibody fragments, e.g. Fc, and therefore could have implications as a general method for increasing antibody stability. Thus, it appears that further development of CH2 and its more stable variants as scaffolds could provide new opportunities for identification of potentially useful therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号