首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type II alveolar epithelial cells were isolated from fetal rat lung by differential adherence in monolayer culture. The preparation had a high degree of purity, as assessed by phase contrast microscopy and immunocytochemistry. Purity, based on reactivity with specific anti-adult lung serum (SAALS), which recognizes only type II cells, was 91% for cells isolated from 19-day fetal lungs and 79% for cells isolated from 21-day fetal lungs. The lower purity of type II cells in cultures derived from 1-day postnatal rat lungs (51% cells reactive with SAALS) is probably due to a lower tendency of the type II cells from neonatal rats to adhere to culture dishes than of type II cells from fetal rats. Type II cells isolated from 21-day fetal lungs contained a higher percentage phosphatidylglycerol and incorporated [Me-3H]choline faster into phosphatidylcholine (PC) than type II cells isolated from 19-day fetal lungs. Moreover, in cell preparations derived from lungs at fetal day 21, a higher percentage of epithelial cells contained lamellar bodies than in preparations derived from lungs at fetal day 19. The observation of these differences in the stage of maturation indicates that these differences, which are typical features of the original material, are not obliterated by differentiation during the culture. Type II cells isolated according to the present procedure were capable of synthesizing PC with a high percentage of the disaturated species. This method for the isolation of fetal type II cells may be a useful tool in studies concerning surfactant synthesis and its regulation in the fetal lung.  相似文献   

2.
3.
4.
5.
Maturation of fetal alveolar type II epithelial cells in utero is characterized by specific changes to lung surfactant phospholipids. Here, we quantified the effects of hormonal differentiation in vitro on the molecular specificity of cellular and secreted phospholipids from human fetal type II epithelial cells using electrospray ionization mass spectrometry. Differentiation, assessed by morphology and changes in gene expression, was accompanied by restricted and specific modifications to cell phospholipids, principally enrichments of shorter chain species of phosphatidylcholine (PC) and phosphatidylinositol, that were not observed in fetal lung fibroblasts. Treatment of differentiated epithelial cells with secretagogues stimulated the secretion of functional surfactant-containing surfactant proteins B and C (SP-B and SP-C). Secreted material was further enriched in this same set of phospholipid species but was characterized by increased contents of short-chain monounsaturated and disaturated species other than dipalmitoyl PC (PC16:0/16:0), principally palmitoylmyristoyl PC (PC16:0/14:0) and palmitoylpalmitoleoyl PC (PC16:0/16:1). Mixtures of these PC molecular species, phosphatidylglycerol, and SP-B and SP-C were functionally active and rapidly generated low surface tension on compression in a pulsating bubble surfactometer. These results suggest that hormonally differentiated human fetal type II cells do not select the molecular composition of surfactant phospholipid on the basis of saturation but, more likely, on the basis of acyl chain length.  相似文献   

6.
Pulmonary surfactant is a lipoprotein complex that functions to reduce surface tension at the air liquid interface in the alveolus of the mature lung. In late gestation glycogen-laden type II cells shift their metabolic program toward the synthesis of surfactant, of which phosphatidylcholine (PC) is by far the most abundant lipid. To investigate the cellular site of surfactant PC synthesis in these cells we determined the subcellular localization of two key enzymes for PC biosynthesis, fatty acid synthase (FAS) and CTP:phosphocholine cytidylyltransferase-alpha (CCT-alpha), and compared their localization with that of surfactant storage organelles, the lamellar bodies (LBs), and surfactant proteins (SPs) in fetal mouse lung. Ultrastructural analysis showed that immature and mature LBs were present within the glycogen pools of fetal type II cells. Multivesicular bodies were noted only in the cytoplasm. Immunogold electron microscopy (EM) revealed that the glycogen pools were the prominent cellular sites for FAS and CCT-alpha. Energy-filtering EM demonstrated that CCT-alpha bound to phosphorus-rich (phospholipid) structures in the glycogen. SP-B and SP-C, but not SP-A, localized predominantly to the glycogen stores. Collectively, these data suggest that the glycogen stores in fetal type II cells are a cellular site for surfactant PC synthesis and LB formation/maturation consistent with the idea that the glycogen is a unique substrate for surfactant lipids.  相似文献   

7.
Two newly described surfactant proteolipids (SPL), Phe and pVal, are produced by proteolytic processing of distinct precursors of Mr = 40,000 and 22,000, respectively. These proteins are structurally related and intimately associated with surfactant phospholipids. We now demonstrate the expression of both SPL(Phe) and SPL(pVal) in explants of human fetal lung from 16-24 weeks of gestation. Content, synthesis, and mRNA for the proteolipids were low prior to organ culture of fetal lung. Induction of synthesis of the proteolipids occurred rapidly in explant culture in the absence of exogenous hormones and was enhanced by addition of dexamethasone. Increased synthesis of the proteolipids was detected by enzyme-linked immunosorbent assay and by [35S]methionine incorporation into the glycosylated Mr = 40,000-43,000 SPL (Phe) precursor. The response to dexamethasone occurred rapidly and contrasted with effects of dexamethasone on the expression of surfactant-associated protein- (SAP) 35, a distinct surfactant glycoprotein. 8-Br-cAMP did not significantly increase proteolipid content but markedly increased synthesis of SAP-35 in identical cultures. Increased proteolipid content was associated with increased mRNA for each protein as determined by the Northern blot analysis. Proteolipid RNA was also increased by 8-Br-cAMP, however, not to the extent observed with the glucocorticoid. Immunohistochemical analysis of fetal lung with anti-proteolipid antiserum confirmed that the dexamethasone-enhanced synthesis of the proteins by Type II epithelial cells. The time and hormone dependence of the regulation of expression of both SPL(Phe) and SPL(pVal) precursors were distinct from that of SAP-35. Expression of the surfactant proteolipids increased during explant culture of human fetal lung and was further enhanced by glucocorticoid. Developmental and hormonal regulation of the surfactant proteolipids may be important factors in surfactant function at birth.  相似文献   

8.
Surfactant protein A (SP-A) is the most abundant of the surfactant-associated proteins. SP-A is involved in the formation of tubular myelin, the modulation of the surface tension-reducing properties of surfactant phospholipids, the metabolism of surfactant phospholipids, and local pulmonary host defense. We hypothesized that elimination of SP-A would alter the regulation of SP-B gene expression and the formation of tubular myelin. Midtrimester human fetal lung explants were cultured for 3-5 days in the presence or absence of an antisense 18-mer phosphorothioate oligonucleotide (ON) complementary to SP-A mRNA. After 3 days in culture, SP-A mRNA was undetectable in antisense ON-treated explants. After 5 days in culture, levels of SP-A protein were also decreased by antisense treatment. SP-B mRNA levels were not affected by the antisense SP-A ON treatment. However, there was decreased tubular myelin formation in the antisense SP-A ON-treated tissue. We conclude that selective elimination of SP-A mRNA and protein results in a decrease in tubular myelin formation in human fetal lung without affecting SP-B mRNA. We speculate that SP-A is critical to the formation of tubular myelin during human lung development and that the regulation of SP-B gene expression is independent of SP-A gene expression.  相似文献   

9.
In a previous paper (Otto-Verberne et al., Anat. Embryol. 178, 29-39 (1988) we reported that the type II alveolar epithelial cell can be identified in fetal human lung on the basis of morphological and immunological characteristics from 10 to 12 weeks after conception (a.c.) onward. For immunological recognition we used a lung-specific antibody, called SALS-Hu (specific anti-lavage serum, rabbit antihuman). The present immunoblotting experiments, after one-and two-dimensional electrophoresis, showed that SALS-Hu-reactive proteins in lavage fractions obtained from alveolar proteinosis patients exhibited molecular masses of mainly 29, 31 to 36, and 62 to 66 kDa. All SALS-Hu-reactive proteins migrated in the same acidic isoelectric point range (pI 4.4-5.1) and were almost undetectable when we used SALS-Hu preabsorbed with recombinant surfactant-associated protein A. We concluded that SALS-Hu recognizes exclusively isoforms of the major surfactant-associated protein, SP-A. In vitro translation assays in which we used mRNA isolated from adult human lung confirmed that SALS-Hu recognized the 29 to 31 kDa SP-A precursor proteins. These SALS-Hu-immunoreactive precursors for SP-A were already detectable (though in much lower amounts) in human fetuses aged 17 to 18 weeks, indicating that mRNA coding for SP-A is present at that time. We concluded that the cytoplasmic staining of fetal (from 10-12 weeks a.c. onward) and adult human type II cells by SALS-Hu is due to the presence of SP-A.  相似文献   

10.
11.
Surfactant protein A (SP-A): the alveolus and beyond.   总被引:6,自引:0,他引:6  
Surfactant protein A (SP-A) is the major protein component of pulmonary surfactant, a material secreted by the alveolar type II cell that reduces surface tension at the alveolar air-liquid interface. The function of SP-A in the alveolus is to facilitate the surface tension-lowering properties of surfactant phospholipids, regulate surfactant phospholipid synthesis, secretion, and recycling, and counteract the inhibitory effects of plasma proteins released during lung injury on surfactant function. It has also been shown that SP-A modulates host response to microbes and particulates at the level of the alveolus. More recently, several investigators have reported that pulmonary surfactant phospholipids and SP-A are present in nonalveolar pulmonary sites as well as in other organs of the body. We describe the structure and possible functions of alveolar SP-A as well as the sites of extra-alveolar SP-A expression and the possible functions of SP-A in these sites.  相似文献   

12.
Secretion of [3H]phosphatidylcholine ([3H]PC) from isolated rat pulmonary type II epithelial cells was inhibited by the surfactant-associated protein of Mr = 35,000 (SAP-35) purified from canine lung surfactant. SAP-35 inhibited [3H]PC secretion in a dose-dependent manner and significantly inhibited basal, phorbol ester, beta-adrenergic, and P2-purinergic agonist-induced [3H]PC secretion. SAP-35 significantly inhibited [3H]PC secretion from 1 to 3 h after treatment. The IC50 for inhibition of [3H]PC secretion by canine SAP-35 was 1-5 X 10(-6) g/ml and was similar for inhibition of both basal and secretagogue-stimulated release. Heat denaturation of SAP-35, addition of monoclonal anti-SAP-35 antibody, reduction and alkylation of SAP-35, or association of SAP-35 with phospholipid vesicles reversed the inhibitory effect on secretagogue-induced secretion. Inhibitory effects of SAP-35 were observed 3 h after cells were washed with buffer that did not contain SAP-35. Although SAP-35 enhanced reassociation of surfactant phospholipid with isolated type II cells, its inhibitory effect on secretion of [3H]PC did not result from stimulation of reuptake of secreted [3H]PC by type II cells. The inhibition of phospholipid secretion by SAP-35 was also not due to inhibition of PC or disaturated PC synthesis by SAP-35. SAP-35, the major phospholipid-associated protein in pulmonary surfactant, is a potent inhibitor of surfactant secretion from type II cells in vitro and may play an important role in homeostasis of surfactant in the alveolar space.  相似文献   

13.
14.
Ontogeny of surfactant apoprotein D, SP-D, in the rat lung   总被引:1,自引:0,他引:1  
Surfactant protein D (SP-D) is a collagenous surfactant-associated glycoprotein synthesized by alveolar type II cells. Antiserum against rat SP-D was raised in rabbits and an enzyme-linked immunosorbant assay (ELISA) has been developed using anti-rat SP-D IgG. In the present study we examined the developmental profile of SP-D in the rat lung compared with that of surfactant protein A (SP-A). SP-A content in the lungs increased during late gestation and reached its maximum on day 1 of neonate, and then gradually decreased until at least day 5. SP-D content during early gestation was less than 10 ng/mg protein until day 18, but on day 19 there was a 4-fold increase in SP-D (compared to that on day 18). It increased twice between day 21 and the day of birth, when it reached the adult level of 250 ng/mg protein, which is about one fourth that of the adult level of SP-A. Unlike SP-A there seemed to be no decrease in SP-D content after birth. These results demonstrate that SP-D is regulated developmentally as are the other components of surfactant, but the inconsistency in the developmental profiles of SP-A and SP-D suggests that these proteins may play different roles in lung maturation.  相似文献   

15.
1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] has been reported to stimulate lung maturity, alveolar type II cell differentiation, and pulmonary surfactant synthesis in rat lung. We hypothesized that 1,25(OH)(2)D(3) stimulates expression of surfactant protein-A (SP-A), SP-B, and SP-C in human fetal lung and type II cells. We found that immunoreactive vitamin D receptor was detectable in fetal lung tissue and type II cells only when incubated with 1,25(OH)(2)D(3). 1,25(OH)(2)D(3) significantly decreased SP-A mRNA in human fetal lung tissue but did not significantly decrease SP-A protein in the tissue. In type II cells, 1,25(OH)(2)D(3) alone had no significant effect on SP-A mRNA or protein levels but reduced SP-A mRNA and protein in a dose-dependent manner when the cells were incubated with cAMP. SP-A mRNA levels in NCI-H441 cells, a nonciliated bronchiolar epithelial (Clara) cell line, were decreased in a dose-dependent manner in the absence or presence of cAMP. 1,25(OH)(2)D(3) had no significant effect on SP-B mRNA levels in lung tissue but increased SP-B mRNA and protein levels in type II cells incubated in the absence or presence of cAMP. Expression of SP-C mRNA was unaffected by 1,25(OH)(2)D(3) in lung tissue incubated +/- cAMP. These results suggest that regulation of surfactant protein gene expression in human lung and type II cells by 1,25(OH)(2)D(3) is not coordinated; 1,25(OH)(2)D(3) decreases SP-A mRNA and protein levels in both fetal lung tissue and type II cells, increases SP-B mRNA and protein levels only in type II cells, and has no effect on SP-C mRNA levels.  相似文献   

16.
Pulmonary surfactant protein A (SP-A), a main component of lung-specific lipid-protein complex (pulmonary surfactant), is characterized by a collagen-like sequence in its amino terminal half and by N-linked glycosylation. The structural characteristics necessary for the various functions of SP-A are not yet completely understood. In the present study we examined the roles of the oligosaccharide moiety of SP-A and its collagenous domain in causing the aggregation of phospholipid liposomes and enhancing the uptake of phospholipids by type II cells. SP-A in the deglycosylated form increased turbidity, measured to evaluate liposome aggregation, to some extent at 400 nm, but this ability of the deglycosylated protein appeared to be less than that of control SP-A. The collagenase-resistant fragment of SP-A completely failed to aggregate phospholipid liposomes. Deglycosylated SP-A was able to enhance the uptake of phospholipids by type II cells, whereas removal of the collagenous domain of SP-A resulted in the loss of the ability to enhance phospholipid uptake.  相似文献   

17.
Synthesis of pulmonary surfactant-associated glycoproteins of Mr 28,000-36,000 (SP-A) and Mr 42,000-46,000 (proSP-B) has been identified in a continuous cell line derived from a human lung adenocarcinoma. SP-A was detected by immunoblot analysis, ELISA assay and by [35S]methionine labelling of the cells. SP-A was secreted into the media as an endoglycosidase F sensitive glycoprotein which co-migrated with the isoforms of SP-A identified in human lavage fluid by 2D-IEF-SDS-PAGE. Hybridization of cellular RNA with SP-A-specific cDNA identified an abundant 2.2 kb mRNA species, identical to that observed in human lung. SP-A RNA and protein content were markedly inhibited by dexamethasone in a dose-dependent fashion. Under identical culture conditions, synthesis of a distinct surfactant protein, SP-B, was markedly stimulated by the glucocorticoid. The SP-B precursor was secreted into the media as heterogeneous Mr 42,000-46,000 protein, pI 4.6-5.1, and was sensitive to endoglycosidase F. Synthesis of proSP-B was enhanced by the glucocorticoid in a dose-dependent fashion and was associated with increased SP-B mRNA of 2.0 kb detected by Northern blot analysis. The cell line secreted proSP-B as Mr 42,000-46,000 glycosylated protein and did not process the precursor to the Mr 7000-8000 surfactant peptide. In summary, a human adenocarcinoma cell line has been identified which synthesizes and secretes two surfactant-associated proteins, SP-A and proSP-B. Glucocorticoid enhanced SP-B but inhibited SP-A expression in this cell line. The identification of a continuous cell line secreting surfactant proteins may be useful in the study of synthesis and secretion of these important proteins and for production of the proteins for clinical uses.  相似文献   

18.
Three phospholipid transfer proteins, namely proteins I, II and III, were purified from the rabbit lung cytosolic fraction. The molecular masses of phospholipid transfer proteins I, II and III are 32 kilodaltons (kDa), 22 kDa and 32 kDa, respectively; their isoelectric point values are 6.5, 7.0 and 6.8, respectively. Phospholipid transfer proteins I and III transferred phosphatidylcholine (PC) and phosphatidylinositol (PI) from donor unilamellar liposomes to acceptor multilamellar liposomes; protein II transferred PC but not PI. All the three phospholipid transfer proteins transferred phosphatidylethanolamine poorly and showed no tendency to transfer triolein. The transfer of [14C]PC from unilamellar liposomes to multilamellar liposomes facilitated by each protein was affected differently by the presence of acidic phospholipids in the PC unilamellar liposomes. In an equal molar ratio of acidic phospholipid and PC, phosphatidylglycerol (PG) reduced the activities of proteins I and III by 70% (P = 0.0004 and 0.0032, respectively) whereas PI and phosphatidylserine (PS) had an insignificant effect. In contrast, the protein II activity was stimulated 2-3-times more by either PG (P = 0.0024), PI (P = 0.0006) or PS (P = 0.0038). In addition, protein II transferred dioleoylPC (DOPC) about 2-times more effectively than dipalmitoylPC (DPPC) (P = 0.0002), whereas proteins I and III transferred DPPC 20-40% more effectively than DOPC but this was statistically insignificant. The markedly different substrate specificities of the three lung phospholipid transfer proteins suggest that these proteins may play an important role in sorting intracellular membrane phospholipids, possibly including lung surfactant phospholipids.  相似文献   

19.
20.
CD208 DC lysosomal-associated protein is a marker of activated human dendritic cells; however, recently it was described as a marker of adult type II pneumocytes in many species including humans and sheep. Our hypothesis was that CD208 is developmentally regulated in lung pneumocytes. Lamb lungs at varying stages of development were stained immunohistochemically for CD208 and with Nile red (a fluorescent stain for lamellar bodies of type II cells) along with pulmonary markers of maturation (glycogen stores and surfactant protein A [SP-A] expression) or proliferation (Ki-67). CD208 staining and Nile red were localized to rare pneumocytes in young fetal lambs (day 115), increasing in frequency and stain intensity with age. Periodic acid-Schiff staining of glycogen granules was most prominent in the young lambs (day 115) with reduced staining through advancing lung development. SP-A was detected in pulmonary epithelia and staining in alveoli increased through gestation with decreased staining at 2 weeks of age. Intranuclear Ki-67 staining decreased through late gestation but was increased in 2-week-old lambs. Ontogeny of CD208 staining and depletion of glycogen were correlated (p<0.0001) and consistent with the premise that CD208 is localized to developing lamellar bodies. The findings suggest that CD208 antigen expression may serve as a marker for pneumocyte maturation in the developing fetal lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号