首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A manganese-containing superoxide dismutase (EC 1.15.1.1) was fully characterized from leaves of the higher plant Pisum sativum L., var. Lincoln. The amino acid composition determined for the enzyme was compared with that of a wide spectrum of superoxide dismutases and found to have a highest degree of homology with the mitochondrial manganese superoxide dismutases from rat liver and yeast. The enzyme showed an apparent pH optimum of 8.6 and at 25°C had a maximum stability at alkaline pH values. By kinetic competition experiments, the rate constant for the disproportionation of superoxide radicals by pea leaf manganese superoxide dismutase was found to be 1.61 × 109 molar−1·second−1 at pH 7.8 and 25°C. The enzyme was not sensitive to NaCN or to H2O2, but was inhibited by N3. The sulfhydryl reagent p-hydroxymercuribenzoate at 1 mm concentration produced a nearly complete inhibition of the manganese superoxide dismutase activity. The metal chelators o-phenanthroline, EDTA, and diethyldithiocarbamate all inhibited activity slightly in decreasing order of intensity. A comparative study between this higher plant manganese superoxide dismutase and other dismutases from different origins is presented.  相似文献   

2.
Heat shock proteins are induced at normal temperatures by oxidants and during reoxygenation following hypoxia. We now report cyanide-resistant O2 consumption increased 30-50% in rat lungs exposed to heat shock or reoxygenation following hypoxia. The synthesis of Cu,Zn superoxide dismutase, but not Mn superoxide dismutase, was increased in rat lung slices by in vivo hyperthermia (39 degrees C), by in vitro heat shock (41 degrees C), and during incubation of lung slices with the Cu chelator diethyldithiocarbamate, which decreased the activity of Cu,Zn superoxide dismutase. The heat shock-induced increase in Cu,Zn superoxide dismutase developed 2 h later than the induction of heat shock proteins and was not blocked by actinomycin D. The rates of synthesis of both superoxide dismutases were decreased 50% by hypoxia and failed to increase during reoxygenation. During hypoxia the activity of Cu,Zn superoxide dismutase decreased about 50%, but the activity of Mn superoxide dismutase remained unchanged. We conclude that hyperthermia increases the synthesis of Cu,Zn superoxide dismutase, the synthesis of Cu,Zn superoxide dismutase and Mn superoxide dismutase are not coordinately regulated by hyperthermia or by the oxidant stress produced by lowering the activity of Cu,Zn superoxide dismutase, and the synthesis of heat shock proteins and Cu,Zn superoxide dismutase are regulated at different levels of gene expression.  相似文献   

3.
The synthesis and subcellular localization of the two superoxide dismutases of Dactylium dendroides were studied in relation to changes in copper and manganese availability. Cultures grew normally at all medium copper concentrations used (10 nM to 1 mM). In the presence of high (10 μM) copper, manganese was poorly absorbed in comparison to the other metals in the medium. However, cells grown at 10 nM copper exhibited a 3.5-fold increase in manganese content, while the concentration of the other metals remained constant. Cultures grown at 10 nM copper or more had 80% Cu/Zn enzyme and 20% mangani enzyme; the former was entirely in the cytosol, and the latter was mitochondrial. Removal of copper from the medium resulted in decreased Cu/Zn superoxide dismutase synthesis with a concomitant increase in the mangani enzyme such that total cellular superoxide dismutase activity remained constant. The mangani enzyme in excess of the 20% was present in the non-mitochondrial fraction. The mitochondria, therefore, show no variability with respect to superoxide dismutase content, whereas the soluble fraction varies from 100 to 13% Cu/Zn superoxide dismutase. Copper-starved cells that were synthesizing predominantly mangani superoxide dismutase could be switched over to mostly Cu/Zn superoxide dismutase synthesis by supplementing the medium with copper during growth. Immunoprecipitation experiments suggest that the decrease in Cu/Zn activity at low copper concentration is a result of decreased synthesis of that protein rather than the production of an inactive apoprotein.  相似文献   

4.
Superoxide dismutase (SOD, EC 1.15.1.1) is an important metal-containing antioxidant enzyme that provides the first line of defense against toxic superoxide radicals by catalyzing their dismutation to oxygen and hydrogen peroxide. SOD is classified into four metalloprotein isoforms, namely, Cu/Zn SOD, Mn SOD, Ni SOD and Fe SOD. The structural models of soybean SOD isoforms have not yet been solved. In this study, we describe structural models for soybean Cu/Zn SOD, Mn SOD and Fe SOD and provide insights into the molecular function of this metal-binding enzyme in improving tolerance to oxidative stress in plants.  相似文献   

5.

Background

CuZn-Superoxide dismutase (SOD) is a unique enzyme, which can catalyzes the dismutation of inevitable metabolic product i.e.; superoxide anion into molecular oxygen and hydrogen peroxide. The enzyme has gained wide interest in pharmaceutical industries due to its highly acclaimed antioxidative properties. The recombinant expression of this protein in its enzymatically active and stable form is highly desired and hence optimization of culture conditions and characterization of the related biochemical properties are essential to explore the significance of the enzyme in physiological, therapeutic, structural and transgenic research.

Results

High-level expression of the chloroplastic isoform of Pisum sativum CuZn-SOD was achieved at 18°C, upon isopropyl β-D-1-thiogalactopyranoside induction and the process was optimized for maximum recovery of the protein in its soluble (enzymatically active) form. Both crude and purified protein fractions display significant increase in activity following supplementation of defined concentration Cu (CuSO4) and Zn (ZnSO4). Yield of the purified recombinant protein was ~ 4 mg L−1 of culture volume and the bacterial biomass was ~ 4.5 g L−1. The recombinant pea chloroplastic SOD was found to possess nearly 6 fold higher superoxide dismutase activity and the peroxidase activity was also 5 fold higher as compared to commercially available CuZn-superoxide dismutase. The computational, spectroscopic and biochemical characterization reveals that the protein harbors all the characteristics features of this class of enzyme. The enzyme was found to be exceptionally stable as evident from pH and temperature incubation studies and maintenance of SOD activity upon prolonged storage.

Conclusions

Overexpression and purification strategy presented here describes an efficient protocol for the production of a highly active and stable CuZn-superoxide dismutase in its recombinant form in E. coli system. The strategy can be utilized for the large-scale preparation of active CuZn-superoxide dismutase and thus it has wide application in pharmaceutical industries and also for elucidating the potential of this protein endowed with exceptional stability and activity.

Electronic supplementary material

The online version of this article (doi:10.1186/s12896-015-0117-0) contains supplementary material, which is available to authorized users.  相似文献   

6.
Hansenula polymorpha CBS 4732 was studied during cultivation on methanol and different glucose concentrations. Activities of Cu/Zn and Mn superoxide dismutase, catalase and methanol oxidase were investigated. During cultivation on methanol, increased superoxide dismutase and catalase activities and an induced methanol oxidase were achieved. Transfer of a methanol grown culture to medium with a high glucose concentration caused growth inhibition, low consumption of carbon, nitrogen and phosphate substrates, methanol oxidase inactivation as well as decrease of catalase activity (21.8 +/- 0.61 deltaE240 x min(-1) x mg protein(-1)). At the same time, a high value for superoxide dismutase enzyme was found (42.9 +/- 0.98 U x mg protein(-1), 25% of which was represented by Mn superoxide dismutase and 75% - by the Cu/Zn type). During derepression methanol oxidase was negligible (0.005 +/- 0.0001 U x mg protein(-1)), catalase tended to be the same as in the repressed culture, while superoxide dismutase activity increased considerably (63.67 +/- 1.72 U x mg protein(-1), 69% belonging to the Cu/Zn containing enzyme). Apparently, the cycle of growth inhibition and reactivation of Hansenula polymorpha CBS 4732 cells is strongly connected with the activity of the enzyme superoxide dismutase.  相似文献   

7.
A full-length complementary DNA clone encoding a cytosolic Cu/Zn superoxide dismutase with a M(r) of 15,588 Da was isolated from a Taenia solium larvae complementary DNA library. Comparison analysis of its deduced amino acid sequence revealed a 71% identity with Schistosoma mansoni, 57.2-59.8% with mammalian and less than 54% with other helminth cytosolic Cu/Zn superoxide dismutase. The characteristic motifs and the amino acid residues involved in coordinating copper and zinc enzymatic function are conserved. The T. solium Cu/Zn superoxide dismutase was expressed in the pRSET vector. Enzymatic and filtration chromatographic analysis showed a recombinant enzyme with an activity of 2,941 U/mg protein and a native M(r) of 37 kDa. Inhibition assays using KCN, H(2)O(2), NaN(3) and SDS indicated that Cu/Zn is the metallic cofactor in the enzyme. Thiabendazole (500 microM) and albendazole (300 microM) completely inhibited the activity of T. solium Cu/Zn superoxide dismutase. Thiabendazole had no effect on bovine Cu/Zn superoxide dismutase; in contrast, albendazole had a moderate effect on it at same concentrations. Antibodies against T. solium Cu/Zn superoxide dismutase did not affect the enzymatic function; nevertheless, it cross reacts with several Taenia species, but not with trematodes, nematodes, pig, human and bovine Cu/Zn superoxide dismutase enzymes. Western blot analysis indicated the enzyme was expressed in all stages. These results indicate that T. solium possesses a Cu/Zn superoxide dismutase enzyme that can protect him from oxidant-damage caused by the superoxide anion.  相似文献   

8.
Thermal stability of antioxidant defense enzymes was investigated in leaf and inflorescence of heat adaptive weed Chenopodium album. Leaf samples were taken at early and late seedling stage in December (LD, 20 °C/4 °C) and March (LM, 31 °C/14 °C). Young inflorescence (INF) was sampled at flowering in April (40 °C/21 °C). LD, LM and INF crude protein extracts were subjected to elevated temperatures (5 to 100 °C) for 30′. Superoxide dismutase (SOD) was the most heat stable enzyme followed by Ascorbate peroxidase (APX). Two heat stable SOD isozymes were visible on native-PAGE at 100 °C in both leaf and INF. Some heat stable APX isozymes were more abundant in INF than leaf. Thermostability of catalase (CAT) increased with age and increasing ambient temperatures in leaves. CAT activity was observed up to 60 °C in leaves and INF while peroxidase (POX) retained activity up to 100 °C in INF due to one thermostable isozyme. Glutathione reductase (GR), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and monodehydroascorbate reductase (MDHAR) showed activity up to 70 °C in both leaves and INF. DHAR activity was stable up to 60 °C while GR and MDHAR declined sharply after 40 °C. Constitutive heat stable isozymes of SOD and APX in leaves and INF may contribute towards heat tolerance in C. album.  相似文献   

9.
Nectarin I, a protein that accumulates in the nectar of Nicotiana sp. , was determined to contain superoxide dismutase activity by colorimetric and in-gel assays. This activity was found to be remarkably thermostable. Extended incubations at temperatures up to 90 degrees C did not diminish the superoxide dismutase activity of nectarin I. This attribute allowed nectarin I to be purified to homogeneity by heat denaturation of the other nectar proteins. By SDS-polyacrylamide gel electrophoresis, nectarin I appeared as a 29-kDa monomer. If the protein sample was not boiled prior to loading the gel, then nectarin I migrated as 165-kDa oligomeric protein. By matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, the protomer subunit was found to be a 22.5-kDa protein. Purified nectarin I contained 0.5 atoms of manganese/monomer, and the superoxide dismutase activity of nectarin I was not inhibited by either H(2)O(2) or NaCN. Following denaturation, the superoxide dismutase activity was restored after Mn(2+) addition. Addition of Fe(2+), Cu(2+), Zn(2+), and Cu(2+)/Zn(2+) did not restore superoxide dismutase activity. The quaternary structure of the reconstituted enzyme was examined, and only tetrameric and pentameric aggregates were enzymatically active. The reconstituted enzyme was also shown to generate H(2)O(2). Putative nectarin I homologues were found in the nectars of several other plant species.  相似文献   

10.
《Free radical research》2013,47(1):269-278
The active site Cu ion in Cu,Zn superoxide dismutase is alternately oxidized and reduced during the enzymatic dismutation of superoxide to hydrogen peroxide and molecular oxygen. For oxidized Cu,Zn superoxide dismutase, an atomic structure has been determined for the human enzyme at 2.5 A resolution. The resolution of the bovine enzyme structure has been extended to 1.8 A. Atomic resolution data has been, collected for reduced and inhibitor-bound Cu,Zn superoxide dismutases. and the interpretation of the' electron density difference maps is in progress. The geometry and molecular surfaces of the active sites in these structures, together with biochemical data, suggest a specific model for the enzyme mechanism. Similarities in the active site geometry of the Mn and Fe superoxide dismutases with the Cu.Zn enzyme suggest that dismutation in these enzymes may follow a similar mechanism.  相似文献   

11.
The combined effects of Mn and oxygen on lignin peroxidase (LIP) activity and isozyme composition in Phanerochaete chrysosporium were studied by using shallow stationary cultures grown in the presence of limited or excess N. When no Mn was added, LIP was formed in both N-limited and N-excess cultures exposed to air, but no LIP activity was observed at Mn concentrations greater than 13 mg/liter. In oxygen-flushed, N-excess cultures, LIP was formed at all Mn concentrations, and the peak LIP activity values in the extracellular fluid were nearly identical in the presence of Mn concentrations ranging from 3 to 1,500 mg/liter. When the availability of oxygen to cultures exposed to air was increased by growing the fungus under nonimmersed liquid conditions, higher levels of Mn were needed to suppress LIP formation compared with the levels needed in shallow stationary cultures. The composition of LIP isozymes was affected by the levels of N and Mn. Addition of veratryl alcohol to cultures exposed to air did not eliminate the suppressive effect of Mn on LIP formation. A deficiency of Mn in N-excess cultures resulted in lower biomass and a lower rate of glucose consumption than in the presence of Mn. In addition, almost no activity of the antioxidant enzyme Mn superoxide dismutase was observed in Mn-deficient, N-excess cultures, but the activity of this enzyme increased as the Mn concentration increased from 3 to 13 mg/liter. No Zn/Cu superoxide dismutase activity was observed in N-excess cultures regardless of the Mn concentration.  相似文献   

12.
Effect of temperature on nitrogenase functioning in cowpea nodules   总被引:4,自引:2,他引:2       下载免费PDF全文
Nitrogenase (EC 1.7.99.2) activity of a cowpea (Vigna unguiculata (L.) Walp cv Caloona) symbiosis formed with a Rhizobium strain (176A27) lacking uptake hydrogenase and maintained under conditions of a 12-hour day at an air temperature of 30°C (800-1000 microeinsteins per square meter per second) and a 12-hour night at an air temperature of 20°C showed a marked diurnal variation in ratio of nitrogen fixed to hydrogen evolved. As little as 0.3 micromole nitrogen was fixed per micromole hydrogen evolved in the photoperiod versus up to 0.6 in the dark period. In plants maintained under the same diurnal illumination regime but at constant (day and night) air temperature (30°C), this difference was abolished and a relatively constant ratio of nitrogen fixed to hydrogen evolved (around 0.3 micromole per micromole) was observed day and night. Exposure of nodulated roots to a range of temperatures maintained for 2 hours in a single photoperiod indicated that, whereas hydrogen evolution increased with increasing temperature from 15°C to a maximum around 35°C, nitrogen fixation was largely unaffected over this temperature range. Both functions of the enzyme declined sharply at temperatures above 38°C. A similar general response of nitrogen fixation to root temperature was observed in glasshouse-grown, sand-cultured plants maintained under a range of temperatures (from 15 to 35°C) for a 14-day period in mid vegetative growth. The effect of temperature on the proportion of electrons allocated to proton reduction compared with nitrogen reduction showed a linearly increasing relationship (correlation coefficient = 0.96) between 15°C and 47°C.  相似文献   

13.
Pinus mugo needles were sampled at different altitudes (1420, 1590 and 1920 m a.s.l.) to analyse levels of oxidative stress and changes in maximum photochemical efficiency of PSII. Polyacrylamide gel electrophoresis demonstrated that almost all superoxide dismutase activity represented Cu/Zn superoxide dismutase, and only 4-6% represents Mn superoxide dismutase. In extracts from plants sampled at 1590 and 1920 m a.s.l., lower activity of Cu/Zn superoxide dismutase was found. Comparing these data with immunoblots, it can be concluded that the differences in superoxide dismutase activity was related to protein amount. In needles from higher altitudes, a decrease in catalase activity was detected, as opposed to the protein amount, which was higher in needles from the higher stands. Considering the decrease in catalase and Cu/Zn superoxide dismutase activities in needles collected at 1590 and 1920 m a.s.l., we suggest that higher levels of oxidative stress may induce changes in photochemical efficiency of PSII.  相似文献   

14.
Aspects of the utilization of copper by the fungus, Dactytium dendroides, have been studied. The organism grows normally at copper levels below 10 nM. Cells grown in medium containing 30 nM copper or less concentrate exogenous metal at all levels of added copper; copper uptake is essentially complete within 15 min and is not inhibited by cycloheximide, dinitrophenol or cyanide. These results indicate that copper absorption is not an energy-dependent process. The relationship between fungal copper status and the activities of three copper-containing enzymes, galactose oxidase, an extracellular enzyme, the cytosolic, Cu/Zn superoxide dismutase and cytochrome oxidase, has also been established. The synthesis of galactose oxidase protein (haloenzyme plus apo-enzyme) is independent of copper concentration. Cells grown in copper-free medium (< 10 nM copper) excrete normal amounts of galactose oxidase as an apoprotein. At medium copper levels below 5 μM, new cultures contain enough total copper to enable the limited number of cells to attain sufficient intracellular copper to support hologalactose oxidase production. As a result of cell division, however, the amount of copper available per cell drops to a threshold of approx. 10 ng/mg below which point only apogalactose oxidase is secreted. Above 5 μM medium copper, holoenzyme secretion is maintained throughout cell growth.The levels of the Cu/Zn superoxide dismutase respond differently in that the protein itself apparently is synthesized in only limited amounts in copper-depleted cells. Total cellular superoxide dismutase activity is maintained under such conditions by an increase in activity associated with the mitochondrial, CN?-insensitive, manganese form of this enzyme. Cells grown at 10 μM copper shown 83% of their superoxide dismutase activity to be contributed by the Cu/Zn form compared to a 17% contribution to the total activity in cells grown at 30 nM copper, indicating that the biosynthesis of the Cu/Zn and Mn-containing enzymes is coordinated. The data show that the level of copper modulates the synthesis of the cytosolic superoxide dismutase. In contrast, the cytochrome oxidase activity of D. dendroides is independent of cellular copper levels obtainable. Thus, the data also suggest that these three enzymes utilize different cellular copper pools. As cells are depleted of copper by cell division, the available copper is used to maintain Cu/Zn superoxide dismutase and cytochrome oxidase activity; at very low levels of copper, only the latter activity is maintained. The induction of the manganisuperoxide dismutase in copper-depleted cells should have practical value in the isolation of this protein.  相似文献   

15.
Antioxidant metabolites in eastern white pine (Pinus strobus L.) needles increased two- to fourfold from the summer to the winter season. Antioxidant enzymes in needle tissue increased between 2- and 122-fold during this same period. These seasonal changes were determined by monitoring ascorbate and glutathione concentrations and the activity of ascorbate peroxidase, glutathione reductase (GR), and superoxide dismutase. Levels of antioxidant metabolites and enzymes were observed always to be lowest during the summer, or active growing season, and highest during the winter, or dormant season. These data correlated well with the thermal kinetic window for purified GR obtained from summer needles. The minimum, apparent Km,NADPH for two isoforms of GR (GRA and GRB) occurred at 5 and 10°C, respectively. The upper limit of the thermal kinetic window (200% of the minimum Km) for GRA and GRB was 20 and 25°C, respectively, indicating that needle temperatures exceeding 25°C may result in impairment of antioxidant metabolism. The needle content and kinetic properties of GR, the increased activities of other enzymes, and the high substrate concentrations observed during the winter are consistent with the protective function this pathway may provide against photooxidative, winter injury.  相似文献   

16.
《Free radical research》2013,47(1):349-361
Copper/zinc superoxide dismutase is typically an enzyme of eukaryotes. The presence of the enzyme in the ponyfish symbiont Photobocterium leiognothi and some free living bacteria does not have an immediate explanation. Amino acid sequence alignment of 19 Cu/Zn superoxide disrnutases shows 21 invariant residues in key positions related to maintenance of the β-barrel fold, the active site structure including the electrostatic channel loop, and dimer contacts. Nineteen other residues are invariant in 18 of the 19 sequences. Thirteen of these nearly invariant residues show substitutions in Photobocterium Cu/Zn superoxide dismutase. Copper/zinc superoxide disrnutase from the trematode Schisiosoma mansoni shows an N-terminal sub-domain with a hydrophobic leader peptide. as in human extracellular superoxide dismutase which is a Cu/Zn enzyme. The latter also has a C-terminal sub-domain with preponderance of hydrophilic and positively charged residues. The amino acid sequence of this superoxide dismutase between the N-terminal and C-terminal regions shares many features of cytosolic Cu/Zn superoxide dismutase. including 20 of the 21 invariant residues found in 19 Cu/Zn enzymes, suggesting a similar type of β-barrel fold and active site structure for the extracellular enzyme.  相似文献   

17.
Inducible nitric oxide synthase (iNOS) and superoxide dismutase (SOD) play an important role in the pathology of ischemia-reperfusion. This study sought to determine if the proinflammatory effects of complement modulate iNOS and SOD in the rat after gastrointestinal ischemia and reperfusion (GI/R). An inhibitory or noninhibitory anti-complement component 5 (C5) monoclonal antibody (18A or 16C, respectively) was administered before GI/R. RT-PCR revealed a significant increase in intestinal iNOS mRNA compared with sham after GI/R that was attenuated significantly by 18A. Immunohistochemistry demonstrated increased iNOS protein expression within the intestinal crypts after GI/R. Cu/Zn SOD (mRNA and protein) was unaffected by GI/R, whereas Cu/Zn SOD activity was reduced significantly. Mn SOD protein expression was decreased significantly by GI/R. Anti-C5 preserved Cu/Zn SOD activity and Mn SOD protein expression. Staining for nitrotyrosine showed that anti-C5 treatment reduced protein nitration in the reperfused intestine. Immunohistochemistry demonstrated prominent phosphorylated (p) inhibitory factor-kappaB (IkappaB)-alpha staining of intestinal tissue after GI/R, whereas anti-C5 reduced p-IkappaB-alpha expression. These data indicate that complement may mediate tissue damage during GI/R by increasing intestinal iNOS and decreasing the activity and protein levels of Cu/Zn SOD and Mn SOD, respectively.  相似文献   

18.
Four experiments were done to characterize the interactions of copper, iron, and ascorbic acid with manganese in rats. All experiments were factorially arranged Dietary Mn concentrations were less than 1 micrograms/g (Mn0) and 50 micrograms/g (Mn+). Dietary Cu was less than 1 mg/g (Cu0) and 5 micrograms/g (Cu+); dietary Fe was 10 micrograms/g (Fe10) and 140 micrograms/g (Fe140). Ascorbic acid (Asc) was not added to the diet or added at a concentration of 10 g/kg diet. Experiment 1 had two variables, Mn and Cu; in Experiment 2, the variables were Mn and Asc. In Experiment 3, the variables were Mn, Cu, and Asc; in Experiment 4, they were Mn, Cu, and Fe. Definite interactions between Mn and Cu were observed, but they tended to be less pronounced than interactions between Mn and Fe. Cu depressed absorption of 54Mn and accelerated its turnover. In addition, adequate Cu (Cu+), compared with Cu0, depressed liver, plasma, and whole blood Mn of rats. Absorption of 67Cu was higher in animals fed Mn0 diets than in those fed Mn+. Ascorbic acid depressed Mn superoxide dismutase activity and increased Cu superoxide dismutase activity in the heart. The addition of ascorbic acid to the diet did not affect Mn concentration in the liver or blood. Absorption of 54Mn was depressed in rats fed Fe140 compared with those fed Fe10. Interactions among Fe, Cu, and Mn resulted in a tendency for Mn superoxide dismutase activity to be lower in rats fed Fe140 than in rats fed Fe10. Within the physiologic range of dietary concentrations, Mn and Cu have opposite effects on many factors that tend to balance one another. The effects of ascorbic acid on Mn metabolism are much less pronounced than effects of dietary Cu, which in turn affects Mn metabolism less than does Fe.  相似文献   

19.
Normal physiology relies on the precise coordination of intracellular signaling pathways that respond to nutrient availability to balance cell growth and cell death. The canonical mitogen-activated protein kinase pathway consists of the RAF-MEK-ERK signaling cascade and represents one of the most well-defined axes within eukaryotic cells to promote cell proliferation, which underscores its frequent mutational activation in human cancers. Our recent studies illuminated a function for the redox-active micronutrient copper (Cu) as an intracellular mediator of signaling by connecting Cu to the amplitude of mitogen-activated protein kinase signaling via a direct interaction between Cu and the kinases MEK1 and MEK2. Given the large quantities of molecules such as glutathione and metallothionein that limit cellular toxicity from free Cu ions, evolutionarily conserved Cu chaperones facilitate efficient delivery of Cu to cuproenzymes. Thus, a dedicated cellular delivery mechanism of Cu to MEK1/2 likely exists. Using surface plasmon resonance and proximity-dependent biotin ligase studies, we report here that the Cu chaperone for superoxide dismutase (CCS) selectively bound to and facilitated Cu transfer to MEK1. Mutants of CCS that disrupt Cu(I) acquisition and exchange or a CCS small-molecule inhibitor were used and resulted in reduced Cu-stimulated MEK1 kinase activity. Our findings indicate that the Cu chaperone CCS provides fidelity within a complex biological system to achieve appropriate installation of Cu within the MEK1 kinase active site that in turn modulates kinase activity and supports the development of novel MEK1/2 inhibitors that target the Cu structural interface or blunt dedicated Cu delivery mechanisms via CCS.  相似文献   

20.
The activity of cytidine 5′-diphosphate (CDP) choline: 1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) in developing soybean (Glycine max L. var Williams 82) seeds was 3 to 5 times higher in cotyledons grown at 20°C than in those grown at 35°C. Some characteristics of the enzyme from cotyledons cultured at 20 and 35°C were compared. In preparations from both growth temperatures, the enzyme showed a pH optimum of 7, Km of 7.0 micromolar for CDP-choline, and an optimum assay temperature of 45°C. Both enzyme preparations were stimulated by increasing concentrations of Mg2+ or Mn2+, up to 10 millimolar and 50 micromolar, respectively, though Mn2+ produced lower activities than Mg2+. Enzymes from both 20 and 35°C show the same specificity for exogenous diacylglycerol. No metabolic effectors were detected by addition of heat treated extracts to the assay mixture. The above findings suggest that the higher enzyme activity at 20°C can be attributed to a higher level of the enzyme rather than to the involvement of isozymes or metabolic effectors. Enzyme activity decreased rapidly during culture at 35°C, indicating a rapid turnover of the enzyme. The level of temperature modulation was found to be a function of seed developmental stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号