首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuropeptide Y (NPY) and noradrenaline (NA) are co-transmitters at many sympathetic synapses, but it is not yet clear if their release is independently regulated. To address this question, we quantified the electrically evoked release of these co-transmitters from perivascular nerve terminals to the mesenteric circulation in control and drug-treated rats. 6-Hydroxydopamine reduced the tissue content and the electrically evoked release of ir-NPY and NA as well as the rise in perfusion pressure. A 0.001 mg/kg reserpine reduced the content of ir-NPY and NA, but did not modify their release nor altered the rise in perfusion pressure elicited by the electrical stimuli. However, 0.1mg/kg reserpine reduced both the content and release of NA but decreased only the content but not the release of ir-NPY; the rise in perfusion pressure was halved. Clonidine did not affect the release of ir-NPY while it lowered the outflow of NA, not altering the rise in perfusion pressure elicited by the electrical stimuli. Yohimbine, did not modify the release of ir-NPY but increased the NA outflow, it antagonized the clonidine effect. Therefore, presynaptic alpha2-adrenoceptors modulate the release of NA but not NPY, implying separate regulatory mechanisms.  相似文献   

2.
The distribution of perivascular nerve fibres displaying neuropeptide Y-like immunoreactivity was studied in the guinea-pig. Generally, neuropeptide Y fibres were numerous around arteries and moderate in number around veins. In the heart, immunoreactive fibres were numerous in the auricles and the atria (epi- and endocardium) whereas the ventricles had a more scarce supply. The coronary vessels were richly supplied with fibres. Around large elastic and muscular arteries the fibres formed well developed plexuses. Small arteries in the respiratory tract, the gastrointestinal tract and the genito-urinary tract received a particularly rich supply. In the liver, spleen and kidney only few perivascular fibres were seen. Since immunoreactive fibres around blood vessels disappeared upon surgical or chemical sympathectomy, and sequential immunostaining with antisera against dopamine-beta-hydroxylase (a marker for adrenergic neurons) and against neuropeptide Y revealed their co-existence, it is concluded that neuropeptide Y fibres around blood vessels are sympathetic and adrenergic.  相似文献   

3.
Neuropeptide Y (NPY)-immunoreactive nerve fibers were numerous around arteries and few around veins. NPY probably co-exists with noradrenaline in such fibers since chemical or surgical sympathectomy eliminated both NPY and noradrenaline from perivascular nerve fibers and since double staining demonstrated dopamine-beta-hydroxylase, the enzyme that catalyzes the conversion of dopamine to noradrenaline, and NPY in the same perivascular nerve fibers. Studies on isolated blood vessels indicated that NPY is not a particularly potent contractile agent in vitro. NPY greatly enhanced the adrenergically mediate contractile response to electrical stimulation and to application of adrenaline, noradrenaline or histamine, as studied in the isolated rabbit gastro-epiploic and femoral arteries. The potentiating effect of NPY on the response to electrical stimulation is probably not presynaptic since NPY affected neither the spontaneous nor the electrically evoked release of [3H]noradrenaline from perivascular sympathetic nerve fibers.  相似文献   

4.
5.
A simple method combining indirect immunofluorescence and histochemical techniques was developed in order to demonstrate the presence of both neuropeptide immunoreactivity and acetylcholinesterase activity in the same whole-mount preparation. It was found that the two methods can be combined without interfering with one another and may be viewed and photographed simultaneously. The guinea pig basilar artery was chosen as a model tissue. While vasoactive intestinal polypeptide immunoreactivity and acetylcholinesterase activity were found to occur in the same perivascular nerve fibres, tyrosine hydroxylase, neuropeptide tyrosine and calcitonin gene-related peptide immunoreactivity were present in distinct nerve subpopulations. It is possible using this double staining procedure, to analyse the interrelationship of putative cholinergic nerves with other components of the autonomic and sensory nervous system.  相似文献   

6.
The nociceptive response latencies increased significantly after intra-nucleus raphe magnus administration of 0.1 or 0.4 nmol of neuropeptide Y, but not 0.04 nmol, in rats. The neuropeptide Y-induced increases in hindpaw withdrawal latency were reversed by following injection of 0.42 nmol of the Y1 antagonist, NPY(28-36). The results indicate that NPY plays an antinociceptive role in nucleus raphe magnus in rats, which is mediated by the Y1 receptor. Furthermore, the neuropeptide Y-induced increases in hindpaw withdrawal latency were attenuated by following intra-nucleus raphe magnus injection of 6 nmol of the opioid antagonist naloxone, indicating that there is an interaction between NPY and opioids in nucleus raphe magnus.  相似文献   

7.
Summary Applying a double-immunofluorescence technique, the porcine ovary is demonstrated to receive two populations of NPY-immunoreactive nerve fibres originating from the inferior mesenteric ganglion: one with colocalized tyrosine hydroxylase and supplying predominantly the ovarian vasculature, and a second, solely NPY-immunoreactive and almost exclusively associated with growing follicles. A third group of tyrosine hydroxylase-and dopamine--hydroxylase-positive, but NPY-negative nerve fibres is associated with ovarian blood vessels and, to a minor extent, with ovarian follicles. As revealed by retrograde tracing, the vast majority of postganglionic neurons projecting to the ovary is located in a discrete area of the ganglion, suggesting a somatotopic organization of the porcine inferior mesenteric ganglion. Moreover, the finding indicate that three subpopulations of postganglionic sympathetic neurons with different chemical codes supply different target components of the porcine ovary. The physiological relevance of the described neurons in the nervous control of ovarian functions remains to be elucidated.A portion of these results has been presented in abstract form (Majewski et al. 1991)  相似文献   

8.
The effects of 6-hydroxydopamine (6-OHDA) and reserpine on the storage of neuropeptide Y (NPY) in noradrenergic cardiovascular nerves were examined with both immunohistochemistry and radioimmunoassay (RIA). Immunohistochemical double-labelling techniques demonstrated that NPY was located only in noradrenergic axons in the guinea-pig carotid artery, mitral valve, thoracic inferior vena cava, thoracic aorta, superior mesenteric artery and small saphenous vein. Treatment with 6-OHDA in vivo eliminated noradrenergic, NPY-containing axon terminals from all tissues, but preterminal axons were still prominent in the superior mesenteric artery. The greatest depletion of NPY detected by RIA after 6-OHDA treatment was found in tissues with a predominance of terminal noradrenergic axons, such as the small saphenous vein, whereas NPY accumulating in preterminal axons masked the loss of NPY from terminal axons in the superior mesenteric artery. After treatment with doses of reserpine that led to a rapid depletion of noradrenaline (NA) from perivascular nerves, NPY was still detected histochemically at all times although levels sometimes appeared to be reduced. RIA demonstrated that the partial depletion of NPY after reserpine consisted of a rapid phase seen in the vena cava and saphenous vein after the highest doses, and a slower phase of NPY depletion from all tissues after all doses of reserpine. The greatest depletion of NPY from terminal axons by reserpine (in small saphenous vein) was 85-90%. These results demonstrate that some NPY can be stored in noradrenergic perivascular axons in the absence of noradrenaline, but that partial depletion of NPY from axon terminals results when NA stores are depleted by reserpine. The variation in extent of NPY depletion between tissues after drug treatments can be explained by variation in the ratio of preterminal to terminal axons.  相似文献   

9.
Nerves containing noradrenaline were studied by formaldehyde-induced fluorescence and neuropeptide Y (NPY) was visualised by immunohistochemistry in the human ovary, Fallopian tube and uterus. All structures were richly supplied with noradrenergic fibres closely associated with the vascular and non-vascular smooth musculature. NPY-containing nerve terminals were consistently fewer, particularly in the ovary. The best developed nerve supply was found in the tubal isthmus and uterine cervix. Vessels were usually innervated by plexuses of nerves, containing NPY as well as noradrenaline. The discrepancy between the number of the two types of histochemically distinguishable nerves suggests that, if noradrenaline and NPY are co-localised in one and the same nerve, this is not a constant phenomenon in the human female reproductive tract.  相似文献   

10.
Kuo DY 《Regulatory peptides》2005,127(1-3):19-26
BACKGROUND AND AIM: Amphetamine (AMPH) is a well-known anorectic agent. In normal rats, AMPH-induced anorexia has been attributed to its inhibitory action on hypothalamic neuropeptide Y (NPY), an appetite stimulant in the brain. In diabetic rats, however, if this anorectic response of AMPH might still be observed was uncertain. METHODS: Rats (including normal, diabetic and insulin-treated diabetic rats) were given daily with saline or AMPH for 6 days. Changes in food intake, plasma glucose level (PGL) and NPY content of these rats were measured and compared. RESULTS: The AMPH-induced anorectic response was altered in diabetic rats. Although the anorectic effects of AMPH on the first day of dosing were similar between diabetic and control rats, diabetic rats developed tolerance to this anorexia more rapidly than control rats. This alteration was independent of PGL since PGL levels were not changed following AMPH treatment and PGL normalization induced by phlorizin could not restore the level of AMPH anorexia. On the other hand, this alteration was dependent on the action of NPY because NPY contents were decreased following AMPH treatment and the replacement of insulin in diabetic rats could restore both NPY content and AMPH anorexia. CONCLUSION: These results suggested that the elevated hypothalamic NPY content in diabetic rats was involved in modifying the anorectic response of AMPH.  相似文献   

11.
Summary An immunohistochemical investigation of the mink pineal gland was performed by use of antibodies raised in rabbits against neuropeptide Y (NPY) and Cys-NPY (32–36)-amide recognizing neuropeptide Y with an amidation at position 36 (NPYamide). NPY-immunoreactive nerve fibers were located predominantly in the rostral part of the pineal gland and in the pineal stalk. Immunoreactive nerve fibers were found throughout the pineal gland, but the number of fibers in the caudal part of the gland was low. The fibers were present both in the perivascular spaces and between the pinealocytes. Many NPY-immunoreactive fibers were also located in the posterior and habenular commissures; some of these fibers were connected with the fibers in the rostral part of the mink pineal gland, indicating that at least some of the NPY-immunoreactive nerve fibers are of central origin. The nerve fibers immunoreactive to amidated NPY were distributed in a similar manner. However, the number of fibers immunoreactive to NPYamide was lower than the number of fibers immunoreactive to NPY itself. After removal of the superior cervical ganglia bilaterally 22 days or 12 months before sacrifice, NPY-immunoreactive nerve fibers remained in the gland. This immunohistochemical study of the mink pineal gland therefore shows that the NPY/NPYamide-immunoreactive nerve fibers innervating the pineal gland in this spegcies are a component of the central innervation or originnate from extracerebral parasympathetic ganglia.  相似文献   

12.
Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y1-Y5 and y6. Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

13.
本文旨在探讨N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体与神经肽Y(neuropeptide Y,NPY)在慢性应激抑郁发生中的作用与关系。建立慢性不可预见性温和应激(chronic unpredictable mild stress,CUMS)抑郁模型,海马单侧分别微量注射非竞争性NMDA受体拮抗剂MK-801、NPY-Y1受体阻断剂GR231118和NMDA后,利用体重测量及糖水偏爱测试、强迫游泳及敞箱实验等方法观察动物行为变化,运用免疫组织化学方法检测海马CA3区和齿状回(dentate gyrus,DG)内NPY的表达。结果显示,CUMS组大鼠表现出抑郁样行为变化,海马NPY表达显著降低;海马微量注射NMDA或NPY-Y1受体阻断剂GR231118,动物行为学表现均与CUMS组相同,注射NMDA可使NPY表达显著降低;海马微量注射MK-801能明显改善应激引起的抑郁样行为表现,并使海马NPY表达增加。联合注射GR231118与MK-801后,GR231118可以显著减弱MK-801的抗抑郁样行为的效应。以上结果表明,CUMS可能使谷氨酸(glutamic acid,Glu)过量释放,NMDA受体过度激活,抑制NPY表达,导致抑郁发生。NPY抗抑郁作用主要是通过NPY-Y1受体实现。  相似文献   

14.
We examined the genetic association of neuropeptide Y receptor Y5 (NPY5R) single nucleotide polymorphisms (SNPs) with measures of the insulin resistance (metabolic) syndrome. We genotyped 10 NPY5R SNPs in 439 Mexican American individuals (age=43.3+/-17.3 years and BMI=30.0+/-6.7 kg/m2) distributed across 27 pedigrees from the San Antonio Family Diabetes Study and performed association analyses using the measured genotype approach as implemented in Sequential Oligogenic Linkage Analysis Routines (SOLAR). Minor alleles for five (rs11100493, rs12501691, P1, rs11100494, rs12512687) of the NPY5R SNPs were found to be significantly (p<0.05) associated with fasting plasma triglyceride concentrations and decreased high-density lipoprotein concentrations. In addition, the minor allele for SNP P2 was significantly associated (p=0.031) with a decreased homeostasis model assessment of beta-cell function (HOMA-%beta). Linkage disequilibrium between SNP pairs indicated one haplotype block of five SNPs (rs11100493, rs12501691, P1, rs11100494, rs12512687) that were highly correlated (r2>0.98). These preliminary results provide evidence for association of SNPs in the NPY5R gene with dyslipidemia (elevated triglyceride concentrations and reduced high-density lipoprotein levels) in our Mexican American population.  相似文献   

15.
Neuropeptide Y (NPY) and NPY receptors are widely expressed in various organs and cell types and have been shown to have pleiotropic functions. However, their presence or role in human embryonic stem cells (hESCs) remains unknown. We now show that undifferentiated hESCs primarily express NPY and its Y1 and Y5 receptors. Inhibition of NPY signalling using either the selective NPY Y1 or Y5 receptor antagonist reduces the maintenance of self‐renewal and proliferation of undifferentiated hESCs. We also provide compelling evidence that exogenous NPY supports the long‐term growth of undifferentiated hESCs in the absence of feeder cell factors using only knockout serum replacement media. Further, NPY facilitates the use of chemically defined medium made up of N2/B27 supplement and basic fibroblast growth factor (bFGF) for hESC feeder‐free culture. Our results indicate that both Y1 and Y5 receptors appear to be involved in the NPY‐mediated activation of AKT/protein kinase B and extracellular signal‐regulated kinase 1/2 (ERK1/2) in hESCs. Notably, only Y1 receptor, but not Y5 receptor, is responsible for the NPY‐induced activation of cAMP‐response element binding (CREB) in hESCs. These results provide the first evidence that NPY and its Y1 and Y5 receptors have potential role in maintaining hESC self‐renewal and pluripotency. We demonstrate the underlying importance of NPY signalling and its usefulness in the development of a defined and xeno‐free culture condition for the large‐scale propagation of undifferentiated hESCs.  相似文献   

16.
Systematic arterial blood pressure and renal vascular resistance were found to be significantly greater in morphine, chloraloseurethane anesthetized renal hypertensive dogs than in similarly treated normotensive dogs. A lower dose infusion of the angiotensin antagonist 1-sar-8-ala-angiotensin II in the concentration of 20 mμg/ml into the renal artery decreased renal vascular resistance in the hypertensive, but not in the normotensive animals. The subsequent administration of a higher dose (approximately 50 mμg/ml) of 1-sar-8-ala-angiotensin II produced a decrease in renal vascular resistance in the normotensives, but a still greater effect in the hypertensives. Systemic blood pressure was significantly decreased with the higher dose in the hypertensive, but not in the normotensive group. The results indicate the participation of angiotensin-mediated renal vasoconstriction in the increased renal resistance in the hypertensive animals.  相似文献   

17.
The release of neuropeptide Y like immunoreactivity (NPY-li) from the adrenal gland was studied in relation to the secretion of catecholamines (CA: NE, norepinephrine; E, epinephrine) during the left splanchnic nerve stimulation in thiopental-chloralose anesthetized dogs (n = 16). Plasma concentrations of NE, E, and NPY-li were determined in the left adrenal venous and aortic blood. Adrenal outputs of NPY-li, NE, and E were 2.4 +/- 0.4, 1.4 +/- 0.2, and 7.3 +/- 1.7 ng/min, under basal conditions, respectively. These values increased significantly (p less than 0.05; n = 8) in response to a continuous stepwise stimulation at frequencies of 1, 3, and 10 Hz given at 3-min intervals during 9 min, reaching a maximum output of 4.6 +/- 0.9 (NPY-li), 240.2 +/- 50.2 (NE), and 1412.5 +/- 309.7 ng/min (E) at a frequency of 10 Hz. Burst electrical stimulation at 40 Hz for 1 s at 10-s intervals for a period of 10 min produced similar increases (p less than 0.05) in the release of NPY-li (4.8 +/- 1.0 ng/min, n = 8), NE (283.5 +/- 144.3 ng/min, n = 8), and E (1133.5 +/- 430.6 ng/min, n = 8). Adrenal NPY-li output was significantly correlated with adrenal NE output (r = 0.606; n = 24; p less than 0.05) and adrenal E output (r = 0.640; n = 24; p less than 0.05) in dogs receiving the burst stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Summary The distribution and origin of neuropeptide Y in the major salivary glands of the rat was studied by indirect immunofluorescence technique. Numerous nerve fibres immunoreactive for the peptide were seen in the parotid and sublingual glands. Most of the fibres were located around blood vessels and salivary acini. In the submandibular gland the number of immunoreactive nerve fibres around the acini was lower in comparison with that in the parotid and sublingual glands. Some immunoreactive nerve fibres were also found around or along intra- and interlobular ducts in all major salivary glands.A large number of the neuropeptide-containing neuronal cell bodies and nerve fibres were detected in the sympathetic superior cervical ganglion. Sympathetic postganglionic nerve trunks of this ganglion contained numerous immunoreactive nerve fibres as well. A subpopulation of the neuronal cell bodies in the submandibular ganglion were immunoreactive to neuropeptide Y.Both uni- and bilateral superior cervical ganglionectomies caused a significant decrease in the number of immunoreactive nerve fibres around the blood vessels in all the major salivary glands. However, these denervations did not affect the density of nerve fibres around the acini and ducts. On the contrary, unilateral parasympathetic denervation by sectioning the auriculotemporal nerve reduced the fibres around the secretory acini in the parotid gland remarkably, while only a minor reduction in the density of immunoreactive fibres associated with the blood vessels of the gland was detected. Unilateral electrocoagulation of the trigeminal nerve branches caused no detectable change in the density of immunoreactive nerve fibres in any of the major salivary glands.On the basis of the present findings it is concluded that neuropeptide Y-reactive nerve fibres present in all major salivary glands around the blood vessels seem to be mainly sympathetic, whereas those around the acini and ducts seems to be of parasympathetic origin.  相似文献   

19.
Summary The cavernous body of green monkeys contains many unmyelinated and few myelinated axons. The unmyelinated axons form terminals in the adventitia of the arteries, between trabecular muscle cells, in the interstitium, and close to endothelium cells of the sinuses. All terminals displayed predominantly small clear vesicles and very few large granular vesicles; small granular vesicles were not seen. However, in rabbit penises, terminals with many large granular vesicles are prominent. Immunohistochemistry (PAP technique) showed a dense network of VIP- and NPY-reactive fibres around the arteries and around trabecular muscles. The density of nerve fibres was particularly high around the subendothelial cushions of the helicine arteries. Double staining for NPY and VIP revealed that both peptides were colocalized. Immunocytochemistry (preembedding PAP technique) showed VIP- and NPY-reactivity in terminals with small clear vesicles; the reaction product was bound to the cytoplasmic face of different membrane types. Although the intracellular localization of the reaction product is probably due to artefactual displacement during preparation, the uniformity of the terminals questions the view that large and small granular vesicles in all species characterize peptidergic and noradrenergic terminals, respectively. The essential findings can be summarized as (1) a high degree of uniformity of nerve terminals, (2) colocalization of VIP and NPY, (3) heavy innervation of the subendothelial cushions of the helicine arteries, and (4) possible innervation of endothelial cells.  相似文献   

20.
The mechanisms of hypertension during primary hyperaldosteronism and Cushing's syndrome are not completely understood. An enhanced vascular sensitivity to noradrenaline has been described in both situations. Neuropeptide Y (NPY) induces direct vasoconstriction and potentiates the action of noradrenaline. Sodium retention and dexamethasone have been shown to increase circulating NPY levels in animals and the expression of NPY in neuroendocrine cells. In order to determine if NPY could be involved in the enhanced vascular sensitivity to noradrenaline associated with adrenocortical hyperactivity, we measured plasma NPY in patients with Cushing's syndrome (n = 26) and primary hyperaldosteronism (n = 15) and compared it with that of hypertensive patients with pheochromocytomas (n = 13) or essential hypertension (n = 51) and with normotensive controls (n = 47). The concentration of NPY-Like immunoreactivity (NPY-Li) (mean +/- S.E.) in controls was 39.6 +/- 3.0 pg/ml. Elevated concentrations were found in 77% of the samples collected from pheochromocytoma patients (1180.4 +/- 394.0 pg/ml). NPY-Li levels in patients with essential hypertension (35.0 +/- 2.6 pg/ml), primary hyperaldosteronism (31.3 +/- 3.9 pg/ml) and Cushing's syndrome (33.1 +/- 4.8 pg/ml) were not different from that of controls. NPY-Li levels in hypertensive and normotensive patients with Cushing's syndrome were similar (38.5 +/- 7.5 vs 24.2 +/- 3.7 pg/ml). No correlation was found between the NPY-Li level and the mean blood pressure at the time of sampling. Our results suggest that NPY is unlikely to be involved in the pathogenesis of hypertension associated with primary hyperaldosteronism and Cushing's syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号