首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthesis decreased with decreasing leaf water potentialas a consequence of stomatal closure and possibly non-stimataleffects of severe stress. Assimilation ceased at c. 16x 105Pa. Photo-respiration, in 21% O2, was small in relation to assimilationin unstressed leaves and decreased as leaf water potential fellbut it was much larger in proportion to photosynthesis at severestress. Decreasing the O2 content to 1.5% increased photosynthesisslightly and decreased photo-respiration but did not changethe stress at which assimilation stoped. Dark respiration wasinsensitive to both O2 and stress. Less 14C accumulated in stressedleaves but in 21% O2 a greater proportion of it was in aminoacids, particularly glycine and serine. 1.5% O2 decreased the14C in glycine to 10% and in serine to 50% of their levels in21% O2. In both O2 concentrations the proportion of 14C in serineincreased only at the most severe stress. Gas exchange measurementsand changes in the 14C flux to glycine are interpreted as theresult of glycolate pathway metabolism increasing as a proportionof assimilation in stressed leaves in high O2. The small absoluterate of photorespiration in high O2 and at low leaf water potentialmay be due to slow rates of glycine decarbodylation as wellas efficient fixation of any CO2 produced. Serine is synthesizedby an O2-sensitive pathway and an O2-insensitive pathway, whichis most active at severe stress. Synthesis of alanine competeswith that of glycine and serine for a common precursor suppliedby the photo-synthetic carbon reduction cycle. The relativespecific radioactivities of aspartate and alanine suggest thatthey are derived from a common precursor pool, probably pyruvatefrom 3-PGA. The amounts of 3-PGA, aspartate, malate, alanine,and sucrose decreased with increasing water stress as a consequenceof slower assimilation and pool filling. Other amino acids,glycine, serine, glutamate, and proline, accumulated at lowwater potential possibly due to increased synthesis and slowerrates of consumption. Changes in pool sizes, carbon fludes,and specific activities of metabolites are related to the mechanismof C4 photosynthesis and current concepts of glycolate pathwaymetabolism.  相似文献   

2.
Attached leaves of sunflower (Helianthus annuus L. var. Mennonite)with water potentials of –5 to –18 ? 105 Pa, wereexposed for different times to 300 vpm CO2 containing 14CO2and 21 or 1.5% O2. 14C accumulated linearly with time in bothO2 concentrations and at all stresses. 3-Phosphoglyceric acidwas saturated with 14C after 10 min in unstressed plants atboth O2 concentrations but with increasing stress the rate ofaccumulation and the specific activity decreased. With decreasingleaf water potential there was accumulation of radioactivityin the glycolate pathway intermediates glycine and serine. Otheramino acids contained a slightly larger proportion of assimilatedcarbon as water potential decreased. The specific activitiesof all compounds were smaller with stress. In contrast to theamino acids less radioactivity accumulated in sugars, organicacids, and sugar phosphates and their specific activities decreasedwith stress. The radioactive labelling patterns and specificactivity measurements are interpreted as showing increased carbonflux in the glycolate pathway and inhibition of the metabolismof serine to sucrose. These changes are related to previousresults showing that with stress photo respiration increasesas a proportion of photosynthesis. Lowering the O2 concentrationto 1.5% decreased the accumulation of radioactivity in glycineand stopped photorespiration. It increased the amount of radioactivityin serine and sucrose but did not greatly change specific activities.Oxygen effects were independent of water stress. Glycolate pathwaymetabolism is discussed in relation to photorespiration andthe effects of water stress.  相似文献   

3.
Nitrogen dioxide (NO2) fumigation inhibited nitrate reductase(NR, EC 1.6.6.1 [EC] ) activity assayed by an in vivo system in thecotyledons, but not in the first leaves, of squash (Cucurbitamaxima Duch.) seedlings. The inhibition was recovered when theseedlings were transferred to NO2-free conditions, indicatingthat the effect of NO2 was reversible. The NADH content in thecotyledons, photosynthetic O2 evolution and respiratory O2 uptakedid not change notably under NO2 fumigation. Nitrate contentsin the cotyledons and first leaves did not change with NO2 fumigation,but nitrite, ammonium and rapidly-metabolized amino acids contentsincreased. The inhibitory effect of NO2 was also observed inthe in vitro assay, though the inhibition rate was smaller thanthat in the in vivo assay. These results indicate that the inhibitoryeffect of NO2 on NR activity in squash cotyledons was derivedin part from the decrease in the amount of active NR due toammonium and/or amino acids accumulated in the tissue underNO2 fumigation. (Received February 12, 1985; Accepted May 27, 1985)  相似文献   

4.
Amounts of some metabolites and the incorporation of 14CO2 intophotosynthetic products were measured in the third leaf of wheat,grown with two rates of nitrate supply at two temperatures,to analyse the effects of environmental conditions on the fluxesof carbon. Ribulose bisphosphate and 3-phosphoglyceric acidcontent per unit area were greater under nitrate deficiencyand decreased with leafage, but did not differ consistentlywith temperature. Sucrose content of young leaves was largerin cool than in warm conditions and with low nitrate, and decreasedwith age to similar values in all treatments. Starch accumulatedwith leaf age, slightly more in cool than warm conditions, andwith nitrate deficiency. Glutamate (plus glutamine), aspartate(plus asparagine), glycine and serine content of leaves weregreatest with added nitrate in cool temperature; changes withleaf age and conditions are discussed. The 14C content of assimilationproducts after exposure to 14CO2 (for up to 10 min at 20 ?C)under steady-state conditions was slightly greater in plantsgrown in the warm than in the cool temperature and with additionalnitrate. Additional nitrate increased the proportion of 14Cin, and flux of carbon to, amino acids, particularly serineand glycine, and decreased it in sugar phosphates and sucrose.Cool growth temperatures increased the proportion of 14C inamino acids (pre-dominantly glycine and serine) and decreasedthat in sucrose. Changes in the balance of carbon fluxes betweenamino acids and carbohydrates are discussed in relation to glycolatepathway metabolism and alternative routes of amino acid synthesis. Key words: Wheat, temperature, nitrate supply, carbon flux, sucrose, amino acids  相似文献   

5.
Methionine sulphoximine, an inhibitor of glutamine synthetase,caused ammonia accumulation in detached wheat leaves. The ratewas increased by increased oxygen in the atmosphere and by simultaneouslysupplying glycine or giving extra nitrate; it was decreasedby isonicotinyl hydrazide. Ammonia production was light-dependentand continued at a constant rate in air for at least 2 h. Photosynthesiswas progressively inhibited after the first hour; this inhibitionwas not because of increased stomatal resistance. Leaves suppliedwith 30 mol m–3 ammonium chloride, without methioninesulphoximine, accumulated more ammonia than leaves treated withthe inhibitor but showed less inhibition of photosynthesis.The inhibitor decreased synthesis of [14C] amino acids from14CO2 in the light but increased the synthesis of [14C] malateand, relatively, the incorporation of 14C into sugar phosphates.In the absence of inhibitor, nitrate increased and ammoniumion decreased synthesis of malate. Methionine sulphoximine,by causing a shortage of amino acids, probably inhibited photosynthesisin part by decreasing the recycling of carbon from the photorespiratorycycle back to the Calvin cycle. Key words: Photosynthetic 14CO2 assimilation, Methionine sulphoximine, Detached wheat leaves  相似文献   

6.
Metabolites that accumulated in soybean [Glycine max (L.) Merr.]nodules after inhibition of nitrogen fixation were analysedto determine what carbon compounds the bacteroids might obtainfrom their host. Exposure of roots of intact soybean plantsto 100% O2 for 5 min caused a decrease in acetylene reductionactivity within 10 min and then the activity recovered onlyslowly. Analysis of carbohydrates, organic acids, volatile compoundsand amino acids in extracts of nodules revealed that succinate,malate and alanine all accumulated within 10 min after treatmentwith O2. The concentrations of sucrose, acetone, tyrosine, valine,isoleucine, leucine, and ornithine in the nodules increasedslowly after such treatment. The results are discussed in termsof carbon sources for supporting nitrogen fixation of soybeanbacteroids. Key words: Glycine max, carbon metabolism, nitrogen fixation, nodules  相似文献   

7.
Methionine sulfoximine (MSO) greatly reduced the carbon dioxideexchange rate (CER) of detached wheat (Triticum aestivvm L.cv Roland) leaves in 21% O2, but only slightly reduced it in2% O2. A supply of 50 mM NH4Cl had little effect on the CERirrespective of the O2 concentration. A simultaneous additionof glutamine and MSO protected against the inhibition of photosynthesisto a considerable extent and caused the accumulation of moreNH3 than did the addition of MSO alone. Fixation of 14CO2 in wheat leaves was inhibited by MSO treatmentin 22% O2, and there was decreased incorporation of 14G intoamino acids and sugars and increased label into acid fractions.The addition of MSO and glutamine together eliminated the effectof MSO on the photosynthetic 14CO2 fixation pattern. NH4Cl stimulatedthe synthesis of amino acids from 14CO2, especially the synthesisof serine in 22% O2. Our observations show that factors other than the uncouplingof photophosphorylation by accumulated NH3 may be responsiblefor the early stage of photosynthesis inhibition by MSO underphotorespiratory conditions. 1Present address: Department of Agricultural Chemistry, KyushuUniversity, Fukuoka 812 Japan. 2Also at U.S. Department of Agriculture, Agricultural ResearchService, Urbana, Illionois 61801, U.S.A. (Received September 13, 1983; Accepted February 2, 1984)  相似文献   

8.
When 14CO2 was fed to flag leaf laminae at 20 d post-anthesis,the transport organs between the leaf and the grains containedappreciable 14C in glutamine, glutamate, serine, alanine, threonineand glycine. Smaller amounts of 14C were present in gamma-aminobutyricacid (GABA), aspartate and cysteine. Other amino acids whichwere labelled in the source leaf were not labelled in the transportorgans. The export of labelled glutamine, serine, glycine andthreonine from the source leaf was favoured in comparison tothe other amino acids mentioned. Threonine accumulated, andwas subsequently metabolised, in the rachis. [14C]GABA alsoaccumulated in the rachis. In the grains, the relative amountof soluble [14C]alanine increased with chase time. This wasprobably due to de novo synthesis and reflected the specialrole of alanine in grain nitrogen metabolism. Wheat, Triticum aestivum, 14CO2, amino acids, transport, carbon metabolism  相似文献   

9.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):883-896
Nodulated soya bean (Glycine max L.) plants at the early floweringstage were allowed to assimilate 13CO2 under steady-state conditions,with a constant 13C abundance, for 8 h in the light. The plantswere either harvested immediately or 2 d after the end of the13CO2 feeding, divided into young leaves (including flower buds),mature leaves, stems+petioles, roots and nodules; the 13C abundancein soluble carbohydrates, organic acids, amino acids, starchand poly-ß-hydroxybutyric acid was determined witha gas chromatography-mass spectrometry. The rapid turnover of 13C in the sucrose pools observed in allorgans of the plants showed that sucrose was the principal materialin the translocation stream of primary products of photosynthesis.At the end of the 13CO2 exposure, sucrose in the mature leavesas the major source organs and in the stems+petioles was labelledwith currently assimilated carbon to about 75 per cent, whereasa much higher labelling of sucrose was found in the roots andin the nodules. This suggests the existence of two or more compartmentedpools of sucrose in mature leaves and also in stems+petioles. The relative labelling patterns of individual organic acidsand amino acids were similar in various plant organs. However,the rapid turnover of succinate and glycine was characteristicof nodules. Treatment with a high concentration of nitrate inthe nutrient media increased the turnover rate of amino acidcarbon in shoot organs and roots, while it markedly decreasedthe labelling of amino acids in nodules. The cyclitols, exceptfor D-pinitol, were significantly labelled with assimilated13C in mature leaves, but in nodules, the labelling was verymuch less. In the nodules, which were actively fixing atmospheric nitrogen,a large proportion (80–90 per cent) of currently assimilatedcarbon was found as sucrose and starch at the end of the 13CO2feeding. This was also true of the roots. On the other hand,in young growing leaves, the distribution of currently assimilatedcarbon into sucrose, starch and other soluble compounds wasmuch less. This suggests that a large amount of carbon assimilatedby and translocated to young leaves was used to make up structuralmaterials, mainly protein and cell wall polymers synthesis,during the light period. Glycine max L., soya bean, 13CO2 assimilation, carbon metabolism in nodules  相似文献   

10.
Clive W. Ford 《Phytochemistry》1984,23(5):1007-1015
Fourteen species of tropical legumes, representing 10 genera, were subjected to water stress. Youngest fully expanded leaves of stressed and unstressed plants were analysed for inorganic ions, sugars, inositols, organic acids, betaines and amino acids. The major compounds which accumulated with water stress were O-methyl-inositols (14 species), 2-methyl-2,3,4-trihydroxybutanoic acid-1,4-lactone (10 species) and proline (9 species). Concentrations of inorganic ions, sugars and organic acids decreased or were unchanged in the majority of the stressed species. The betaines, glycinebetaine, trigonelline and stachydrine were detected in low concentrations in most of the legumes but did not accumulate to any degree during water stress. All the legumes which tolerated low leaf water potentials accumulated the O-methyl-inositol, pinitol. The other species, with the exception of Siratro, contained ononitol or O-methyl-scyllo-inositol but no pinitol. It is suggested that pinitol accumulation may indicate a legume able to tolerate low leaf water potentials.  相似文献   

11.
Experiments are described which examine the flux of photosyntheticassimilates from leaves to nodules of soyabean during N2 fixation.The first part, where the respiratory efflux of 14CO2 by noduleswas used as a means of assessing the import of labelled photosynthatefrom leaves, shows that most 14CO2 loss from nodulated rootsis due to the metabolic activity of nodules. Much less photosynthatewas imported by nodules if the metabolic activity associatedwith N2 fixation was inhibited by low O2 concentration. The second part describes the chemical fate of current photosynthateas it is utilized by nodules. Labelled material was detectedin nodules within c.15 min of supplying 14CO2 to the leaf. Thisrose to a maximum at c.70 min before declining by 85% withinthe following 4 h. Most (80%) 14carbon imported by nodules waseither lost as respiratory 14CO2 or re-exported as productsof N2 fixation. Ten per cent of imported carbon was found asstructural material and 10% as starch. Of the 14C soluble in ethanol, most was found in the neutralfraction (80% declining to 50% as sucrose) with smaller amountsas amino acids, organic acids (each category rising from 10%to 20%) and phosphate esters (<5%). Comparison of the distribution of 14C among amino acids, amidesand ureides in the nodules with that of xylem exudates indicatedthat selected compounds were exported from nodules. The 14Cdata indicate that c.80% of the nitrogen exported from noduleswas in the form of ureides (mainly allantoic acid) and only10–12% as amides. Key words: Nodules, 14C-photosynthate, Respiration, Carbon flux  相似文献   

12.
The effect of exposure of kidney bean primary leaves to NO2and O3, alone or in combination, on the fate of 13CO2 assimilatedby photosynthesis was examined by 13C-NMR. There were more than70 peaks appearing in the 13C-NMR spectra for substances extractedfrom leaves with 80% ethanol. The 16 relatively well resolvedpeaks corresponded to signals from three sugars, two organicacids and four amino acids. These signals were used to estimatepool sizes and l3C incorporation. Exposures to NO2 and O3 increased the amounts of sucrose andfructose, but not the incorporation of the 13C label during10 min photosynthesis from 13CO2. This suggests the presenceof photo-synthetically inactive pools of sucrose and fructose.Amounts of glycine and serine, and 13C incorporation into them,were increased by the exposure to the pollutants. The incorporationof 13C into alanine was stimulated by exposure to NO2, but notby exposure to O3 alone. The present study shows that with only simple procedures ofsample preparations 13C-NMR provides information on the productsof photosynthesis in leaves stressed by the two air pollutants. Key words: NO2, O3, Phaseolus vulgaris, CO2 assimilation, 13C-NMR  相似文献   

13.
The interactions between the assimilation and transport of nitrogenand carbon were investigated in barley and spinach leaves. Bothplants were fumigated with NH3 (1 mg m–3 and the contentof amino acids, sucrose and carbon intermediates of amino acidmetabolism were analysed in the leaves, apoplast and phloemsap. The following changes took place in the C- and N-metabolismof barley leaves during 5 h of fumigation with NH3 (a) The contentsof amino acids, especially glutamine, largely increased andthe contents of sucrose, 2-oxoglutarate, phosphoenolpyruvate,and glycerate-3-phosphate declined. (b) A decrease in the phophoenolpyruvatecontent was accompanied by an increased activity of phosphoenolpyruvatecarboxylase. (c) The altered cytosolic concentrations of aminoacids and sucrose during NH3 fumigation correlated with similarchanges in the apoplast and phloem sap. The altered percentageof each amino acid relative to the total amino acid concentrationin the cytosol, caused by NH3 fumigation, is reflected in theapoplast and the phloem sap. The results indicate that the concentrations of amino acids in the cytosol determine their concentrationsin the phloem. Key words: Amino acids, ammonia fumigation, barley leaves, C: N partitioning, phosphoenolpyruvate carboxylase, phloem sap, spinach leaves  相似文献   

14.
The metabolic transformation of glycolate to glycine occurringin photosynthesizing cells of Chromatium was investigated bythe radioisotopic technique and by amino acid analysis. By analyzingthe distribution of radiocarbon upon feeding [1-14C] glycolate,[2-14C] glyoxylate and [1-14C] glycine to bacterial cells, itwas demonstrated that glycolate is converted to glycinc viaglyoxylate, and both glycolate and glycine are excreted extracellularly.Although the formation of serine was barely detected by theabove two techniques in both N2 and O2 atmospheres, it was foundthat 14CO2 is evolved quite markedly from both [1-14C] glycolateand [1-14C] glycine fed to the Chromatium cells. Analyticalresults of transient changes in amino acid compositions underatmospheric changes of N2O2 and by the addition of exogenousglycolate in N2 confirm the notion that glycolate is convertedto glycine. Acidic amino acids (glutamic acid and aspartic acid)appear to take part in glycine formation as amino donors. Theformation of glycine from glycolate in a N2 atmosphere suggeststhat an unknown glycolate dehydrogenation reaction may operatein the overall process. 1 This is paper XXXVII in the series ‘Structure and Functionof Chloroplast Proteins’. Paper XXXVI is ref. (5). Theresearch was supported in part by grants from the Ministry ofEducation of Japan (No. 111912), the Toray Science Foundation(Tokyo) and the Naito Science Foundation (Tokyo). (Received July 14, 1976; )  相似文献   

15.
The CO2-, H2O- and 16O2/18O2 isotopic-gas exchange and the fluorescencequenching by attached leaves of the wild-type and of the phytochrome-deficienttomato aurea mutant was compared in relation to water stressand the photon fluence rate. The chlorophyll content of aurealeaves was reduced and the ultra-structure of the chloroplastswas altered. Nevertheless, the maximum rate of net CO2 uptakein air by the yellow-green leaves of the aurea mutant was similarto that by the dark-green wild-type leaves. However, less O2was produced by the leaves of the aurea mutant than by leavesof the wild-type. This result indicates a reduced rate of photosyntheticelectron flux in aurea mutant leaves. No difference in bothphotochemical and non-photochemical fluorescence quenching wasfound between wild-type and aurea mutant leaves. Water stresswas correlated with a reversible decrease in the rates of bothnet CO2 uptake and transpiration by wild-type and aurea mutantleaves. The rate of gross 16O2 evolution by both wild-type andaurea mutant leaves was fairly unaffected by water stress. Thisresult shows that in both wild-type and aurea leaves, the photochemicalprocesses are highly resistant to water stress. The rate ofgross 18O2 uptake by wild-type leaves increased during waterstress when the photon fluence rate was high. Under the sameconditions, the rate of gross 18O2 uptake by aurea mutant leavesremained unchanged. The physiological significane of this differencewith respect to the (presumed) importance of oxygen reductionin photoprotection is discussed. Key words: Water stress, gas exchange, fluorescence quenching, Lycopersicon esculentum, mutant (tomato, aurea), energy dissipation  相似文献   

16.
The effect of phosphorus (P), potassium (K), and magnesium (Mg)deficiency on the development of leaf symptoms (chlorosis andnecrosis) and activities of ascorbate-dependent H2O2 scavengingenzymes (ascorbate peroxidase, monodehydroascorbate reductase,dehydroascorbate reductase, and glutathione reductase) was studiedin bean (Phaseolus vulgans) plants over a 12 d period of growthin nutrient solution. With increasing plant age Mg- and K-deficientleaves developed severe interveinal chlorosis and, accordingly,chlorophyll concentrations were reduced. However, in P-deficientleaves neither chlorosis nor necrosis appeared; the leaves remaineddark green and even at an advanced stage of P deficiency, chlorophyllconcentrations were still higher than those of control plants.In K- and, particularly, Mg-deficient leaves with an increasein severity of leaf chlorosis, activity of ascorbate-dependentH2O2- scavenging enzymes was progressively increased. In contrast,in P-deficient leaves, as in leaves of the control plants, activityof H2O2-scavenging enzymes remained at a low level over the12 d period. Accordingly, compared with P-deficient and controlplants, Mg- and K-deficient leaves with elevated anti-oxidativepotential showed much higher resistance to chlorophyll destructionby the herbicide paraquat. Elevated levels of H2O2-scavengingenging enzymes in Mg- and K-deficient leaves indicate a higherproduction of H2O2 and related toxic O2 species. It Is suggestedthat in Mg- and K-deficient leaves, utilization of photoreductantsin CO2 fixation is restricted because of impaired export andthus accumulation of photosynthates. This disturbance mightlead to enhanced photoreduction of molecular O2 to toxic O2species causing chlorophyll destruction (chlorosis), a processwhich is not important in P-deficient leaves where export ofsucrose is not affected. Key words: Bean, hydrogen peroxide detoxification, leaf chlorosis, magnesium nutrition, oxygen activation, phosphorus nutrition, potassium nutrition  相似文献   

17.
When solutions of [14C]glycollate, glycine, serine, glycerate,or glucose were supplied to segments of wheat leaves throughtheir cut bases in the light, most of the 14C was incorporatedinto sucrose in air but in CO2-free air less sucrose was made.The synthesis of sucrose was decreased because metabolism ofserine was partly blocked. Sucrose synthesis from glucose andglycerate in CO2-free air was decreased but to a smaller extent;relatively more CO2 was evolved and serine accumulated. Theeffects of DCMU and light of different wavelengths on metabolismby leaves of L-[U-14C]serine confirmed that simultaneous photosyntheticassimilation of carbon was necessary for the conversion of serineto sucrose. Of various products of photosynthesis fed exogenouslyto the leaves -keto acids were the most effective in promotingphotosynthesis of sucrose and release of 14CO2 from 14C-labelledserine. This suggests that in CO2-free air the metabolism ofserine may be limited by a shortage of -keto acid acceptorsfor the amino group. In CO2-free air added glucose stimulatedproduction of CO2 and sucrose from D-[U-14C]- glycerate andno competitive effects were evident even though glucose is convertedrapidly to sucrose under these conditions. In addition to asupply of keto acid, photosynthesis may also provide substratesthat can be degraded and provide energy in the cytoplasm forthe conversion of glycerate to sugar and phosphates and sucrose.  相似文献   

18.
Application of glyphosate (N-[phosphonomethyl] glycine) to exporting leaves of sugar beet (Beta vulgaris, L.) during the day lowered stomatal conductance and carbon fixation. Allocation of newly fixed carbon to foliar starch accumulation was nearly completely inhibited, being decreased by the same amount as net carbon fixation. In contrast, decreasing net carbon fixation in untreated leaves by lowering CO2 concentration caused starch accumulation to decrease, but only in the same proportion as net carbon fixation. Shikimate level increased 50-fold in treated leaves but the elevated rate of carbon accumulation in shikimate was only 4% of the decrease in the rate of starch accumulation. Application of steady state labeling with 14CO2 to exporting leaves confirmed the above changes in carbon metabolism, but revealed no other major daytime differences in the 14C-content of amino acids or other compounds between treated and control leaves. Less 14C accumulated in treated leaves because of decreased fixation, not increased export. The proportion of newly fixed carbon allocated to sucrose increased, maintaining export at the level in control leaves. Returning net carbon exchange to the rate before treatment restored starch accumulation fully and prevented a decrease in export during the subsequent dark period.  相似文献   

19.
Illuminated chloroplasts isolated from SO2-fumigated spinachleaves accumulated more H2O2 than those from non-fumigated ones.This H2O2 formation was dependent on light and was inhibitedby DCMU. It also was depressed by cytochrome c and superoxidedismutase (EC 1.15.1.1 [EC] ). The addition of sulfite to rupturedchloroplasts isolated from non-fumigated leaves caused an H2O2accumulation that accompanied O2 uptake. Spinach leaves losttheir catalase (EC 1.11.1.6 [EC] ), ascorbate peroxidase and glutathionereductase (EC 1.6.4.2 [EC] ) activities at the beginning of SO2 fumigation,when H2O2 was accumulated. These results suggest that the accumulationof H2O2 in SO2-fumigated spinach leaves is caused by the increasein O2production, the precursor for H2O2, with a sulfite-mediatedchain reaction at the reducing site of photosystem I, and byinactivation of the H2O2 scavenging system. (Received October 7, 1981; Accepted June 16, 1982)  相似文献   

20.
Sunflower (Helianthus annuusL.) and oilseed rape (Brassica napusL.) were grown at constant temperatures of 30 ?C (warm) and13 ?C (cold). Maximal rates of photosynthesis between 5 ?C and35 ?C were at higher temperatures in sunflower than rape. Photosyntheticrate over 4 h at the growth temperature declined in warm-andcold-grown rape and cold-grown sunflower, but remained constantin warm-grown sunflower. The stimulation of photosynthesis by2.0 kPa O2 compared to 21 kPa O2 declined with decreasing temperature.At 10 ?C in warm-grown rape photosynthesis was insensitive to2.0 kPa O2. However, sensitivity to low O2 continued at 10 ?Cin warm-grown sunflower. Carbohydrates accumulated in the cold,particularly fructose, glucose and sucrose in warm-grown sunflowertransferred to 13 ?C. By monitoring changes of 14C in leaves after the assimilationof 14CO2, the rates of carbon export from leaves, pool sizesand carbon fluxes between them were estimated. The transferof warm- and cold-grown rape to 13 ?C and 30 ?C, respectively,had little effect on these parameters over 22 h. However, exportof carbon from sunflower leaves at 13 ?C was markedly less thanat 30 ?C, irrespective of the growth temperature, due to slowerexport from the transport pool. The rapid suppression of carbonexport at 13 ?C in warm-grown sunflower may be due to inhibitedtranslocation rather than reduced sink demand in the cold. It is concluded that assimilate utilisation is more depressedin the cold than is photosynthesis; this imposes a greater restrictionon biomass production in sunflower than in rape. Key words: Sunflower, rape, temperature, photosynthesis, carbon fluxes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号