首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The beat-by-beat changes in atrioventricular (AV) conduction evoked by constant frequency and phase-coupled vagal stimulation were examined both qualitatively and quantitatively in 13 anesthetized dogs. The effects of pacing cycle length and sympathetic activity on the vagally induced phasic changes in AV conduction were also characterized. When the vagal stimulus interval was nearly equal to the pacing cycle length and the vagal stimulus moved progressively through the cardiac cycle, AV interval oscillated in a rhythmic fashion. The rhythmicity of the vagally induced AV interval oscillations was altered substantially by changes in either the vagal stimulus interval or the pacing cycle length. The vagally induced AV interval oscillations were abolished during phase-coupled vagal stimulation; however, the magnitude of the resultant steady-state AV interval depended on the time relative to the phase of the cardiac cycle that the vagal stimulus was delivered. In the presence or absence of sympathetic stimulation, a vagal stimulus falling approximately 200 ms prior to atrial depolarization evoked the greatest prolongation in AV interval, regardless of the pacing cycle length. Additionally, the effects of combined sympathetic and phase-dependent vagal stimulation on the AV interval were additive. These data confirm that the influence of a vagal stimulus on AV interval can be predicted from the phase in the cardiac cycle that the vagal stimulus is delivered. Moreover, this phase dependency of vagal effects evokes marked qualitative variations in AV interval response patterns when either the vagal stimulus interval or the pacing cycle length is altered.  相似文献   

2.
A brief burst of electrical stimuli delivered to the vagus nerve during the cardiac cycle elicits a triphasic cardiac chronotropic response. The cardiac cycle length initially increases, then briefly decreases, and subsequently increases again. We studied the effects of a calcium channel blocking agent, verapamil, on these responses to vagal stimulation during sinoatrial nodal rhythm in anesthetized, open-chest dogs. Verapamil increased the basal cardiac cycle length only slightly; however, the primary cardioinhibition was accentuated approximately 40% (from 396 to 555 ms) by verapamil. Neither the acceleratory phase of this triphasic response nor the secondary cardioinhibition was significantly affected by verapamil. These results indicate that verapamil potentiates the initial action of acetylcholine at the sinoatrial node when the vagus is activated with brief stimuli.  相似文献   

3.
The use- or rate-dependent effects of a continuous infusion of lidocaine (n = 6, serum level 3.1 +/- 0.34 micrograms/mL), mexiletine (n = 8, serum level 7.08 +/- 0.90 micrograms/mL), and quinidine (n = 6, serum level 6.8 +/- 1.22 micrograms/mL) were studied in an open chest canine preparation. A use-dependent effect on conduction was assessed by measuring the change in the His to surface ventricular activation (HV) time at differing atrial paced rates during drug infusion. Global sympathetic activation was achieved by nondecentralized left stellate ganglion stimulation (4-10 Hz, 6-12 V, 2 ms) and use dependence at the same cycle lengths was compared. Repolarization times were measured from epicardial monophasic action potentials recorded from the anterior left ventricle throughout the study. There was no significant change in the HV time during control studies with or without left stellate stimulation. Use-dependent slowing of conduction was seen in all studies during drug infusion. This was evident at cycle lengths of 300-190 ms for quinidine and at cycle lengths less than 250 ms for lidocaine and mexiletine. Stellate stimulation attenuated use dependence in all studies. This effect was significant from cycle lengths of 300-190 ms for lidocaine and quinidine and at cycle lengths shorter than 230 ms for mexiletine (p less than 0.05). Stellate stimulation significantly reduced use-dependent prolongation of the HV interval by an average of 60%. During stellate stimulation there was a nonsignificant trend towards cycle length independent shortening of action potential duration both at baseline and in the presence of drugs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We hypothesized that pituitary adenylate cyclase-activating polypeptide (PACAP) activates intracardiac postganglionic parasympathetic nerves and has a different effect than cervical vagal stimulation. We measured effective refractory period (ERP) and conduction velocity at four atrial sites [high right atrium (HRA), low right atrium (LRA), high left atrium (HLA), and low left atrium (LLA)] and minimum atrial fibrillation (AF) cycle length at 12 atrial sites during cervical vagal stimulation and after PACAP in 26 autonomically decentralized, open-chest, anesthetized dogs. PACAP shortened ERP to a similar extent at all four sites (HRA, 58 +/- 2.0 ms; LRA, 60 +/- 6.3 ms; HLA, 68 +/- 11.5 ms; and LLA, 60 +/- 8.3 ms). Low- and high-intensity vagal stimulation shortened ERP at the HRA, but not in the other atrial sites (low-intensity stimulation: HRA, 64 +/- 4.0 ms; LRA, 126 +/- 5.1 ms; HLA, 110 +/- 9.5 ms; and LLA, 102 +/- 11.5 ms; high-intensity stimulation: HRA, 58 +/- 4.2 ms; and HLA, 101 +/- 4.0 ms). Conduction velocity was not altered by any intervention. Minimum AF cycle length after PACAP was similar in both atria but was shorter in the right atrium than in the left atrium during vagal stimulation. After atropine administration, no interventions changed ERP. These results suggest that PACAP shortens atrial refractoriness uniformly in both atria through activation of intrinsic cardiac nerves, not all of which are activated by cervical vagal stimulation.  相似文献   

5.
To examine whether changes in autonomic activity have an effect on the latency of the vagally mediated cardiac baroreflex response in humans, we investigated the effects of neck suction fluctuating sinusoidally at 0.2 Hz on R-R intervals (known to be mediated mainly by vagal activity) in the supine position, during 15 degrees head-down tilt and 60 degrees head-up tilt, and during vagotonic (2 microg/kg) and vagolytic (10 microg/kg) doses of atropine while the subjects breathed at 0.25 Hz. The phase shift between fluctuations in neck chamber pressure and in R-R interval was calculated by complex transfer function analysis and was used as a measure of the time delay between carotid baroreceptor stimulation and cardiac effector response. Cardiac baroreflex responsiveness increased significantly during low-dose atropine and decreased during head-up tilt or 10 microg/kg atropine. With increasing tilt angle, the time delay between cyclic baroreceptor stimulation and oscillations in R-R interval increased from 0.32 +/- 0.27 s (head down), to 0.59 +/- 0.25 s (supine position, P < 0.05 vs. head down), and to 0.86 +/- 0.27 s (head up, P < 0.01 vs. supine). Low-dose atropine had a similar effect to head-down tilt on baroreflex latency, whereas 10 microg/kg atropine increased the time delay markedly to 1.24 +/- 0.30 s. Our results demonstrate that changes in autonomic activity, generated either by gravitational stimulus or by atropine, not only affect baroreflex responsiveness but also have a major influence on the latency of the vagally mediated carotid baroreceptor-heart rate reflex. The prolonged baroreflex latency during decreased parasympathetic function may contribute to an unstable regulation of heart rate in patients with cardiac disease.  相似文献   

6.
K Hogan  F Markos 《Nitric oxide》2007,16(1):110-117
We investigated whether vagal cardiac cholinergic facilitation by nitric oxide (NO) is mediated by cardiac muscarinic receptor subtypes in the vagally innervated rat right atrium in vitro. Experiments were carried out in the presence of atenolol (4 microM). The right vagus was stimulated at 4, 8, 16, 32 Hz; pulse duration 1 ms at 20 V for 20s; vagal postganglionic activation was achieved using nicotine (0.1, 0.3, 0.5, 1mM) and the effect on cardiac interval (ms) assessed. Pirenzepine (1 microM), a M1 antagonist, attenuated vagally induced increase in cardiac interval. L-Arginine (0.34 mM) superfused with pirenzepine failed to reverse this attenuation, however, L-arginine applied alone reversed the reduction vagal cardiac slowing. Similarly, sodium nitroprusside (10 microM) applied alone, and not together with pirenzepine, was able to reverse the attenuation of vagal effects caused by pirenzepine. Synthetic MT7 (1 nM) toxin, a selective M1 antagonist confirmed these results. M3 antagonism using para-fluorohexahydrosiladifenidol (p-F-HHSiD) (300 nM) and M4 antagonism with PD 102807 (200 nM) did not affect the vagally induced increase in cardiac interval. Nicotine induced increase in cardiac interval was not altered by pirenzepine. These results show that antagonism of M1 receptors on cardiac vagal preganglionic fibres reduces vagal efficacy which can be recovered by either a nitric oxide synthase substrate or a NO donor.  相似文献   

7.
The effects of beta-alanine on the electrically evoked vagal efferent (hexamethonium-sensitive initial excitatory response) and afferent (hexamethonium-resistant delayed excitatory response) responses of the cat stomach were studied. beta-alanine (30 to 300 micrograms/kg, i.v.) dose-dependently inhibited both the efferent and afferent response. The IC50 values of beta-alanine on the efferent and afferent response were 296 +/- 65 micrograms/kg and 128 +/- 35 microgram/kg, respectively. Maximal inhibitory effects of beta-alanine (300 micrograms/kg, i.v.) appeared about 1 hr after the injection. Glycine and taurine (100 to 10,000 micrograms/kg) did not affect these responses. Treatment with hexamethonium (10 mg/kg, i.v.) prevented the efferent response, but augmented the afferent response. The treatment with hexamethonium abolished the inhibitory effect of beta-alanine on the afferent response. Both picrotoxin (100 and 500 micrograms/kg, i.v.) and bicuculline (2000 micrograms/kg, i.v.) antagonized the inhibitory effects of beta-alanine on the vagal efferent and afferent responses of the stomach. The present experiments clearly demonstrated that beta-alanine inhibited both the vagal efferent and afferent excitatory responses of stomach to electrical stimulation of vagal trunk in cats.  相似文献   

8.
The influence of fitness on cardiac vagal activity and baroreflex-mediated control of heart rate has not been clearly established in humans. Therefore, we studied resting cardiac vagal activity by evaluating respiratory sinus arrhythmia (RSA) and examined carotid-cardiac baroreflex responsiveness with a neck collar in 11 high-fit and 9 sedentary [based on maximal O2 consumption (VO2max) and history of physical activity] healthy young men (19-31 yr of age). Resting cardiac vagal activity was determined from the standard deviation of 100 consecutive resting R-R intervals. Baroreflex responsiveness was determined from the R-R interval responses to neck suction and pressure (repeated trials of 5-s stimuli of -20, -40, and 35 mmHg). Both RSA and the bradycardic (R-R interval) responses to neck suction of -40 mmHg were significantly greater (P less than 0.05) in the high-fit individuals (RSA, 116.5 +/- 11.5 ms; neck-suction response, 145.3 +/- 17.0 ms; mean +/- SE) compared with sedentary subjects (RSA, 65.2 +/- 6.6 ms; neck-suction response, 86.9 +/- 12.5 ms). Responses of the high-fit volunteers to the other intensities of neck stimuli (-20 and 35 mmHg) showed a similar trend but were not significantly different from those of the sedentary volunteers. The baroreflex slope derived from these data was significantly greater in the high-fit subjects (4.00 +/- 0.39 ms/mmHg) compared with the sedentary controls (2.53 +/- 0.28 ms/mmHg). These data suggest that resting cardiac vagal activity is greater, carotid-to-cardiac activity is well maintained, and baroreflex sensitivity, i.e., slope, is augmented in high-fit subjects.  相似文献   

9.
Depressed parasympathetic tone is associated with an increased risk of sudden cardiac death. Exercise and the postexercise recovery period, which are associated with parasympathetic withdrawal, are high risk periods for sudden death. However, parasympathetic effects on cardiac electrophysiology during exercise and recovery have not been described. Electrophysiology studies were performed using noninvasive programmed stimulation (NIPS) in nine subjects (age 59 +/- 18 yr) with implanted dual-chamber devices and normal left ventricular function during multiple bicycle exercise sessions. NIPS was performed at rest, during exercise, and in the early recovery period both before and after parasympathetic blockade with atropine. Parasympathetic effect was defined as the value of the parameter of interest in the absence of atropine minus the value of the parameter in the presence of atropine. During exercise, sinus cycle length, atrioventricular (AV) block cycle length, AV interval, and ventricular effective refractory period shortened; in recovery, the values were intermediate between the rest and exercise values (P < 0.0001 by ANOVA). Parasympathetic effects on sinus cycle length, AV block cycle length, AV interval, and ventricular effective refractory period were 247 +/- 140, 58 +/- 20, 76 +/- 20, and 8.6 +/- 7.5 ms at rest, 106 +/- 20, 37 +/- 14, 24 +/- 13, and 2.6 +/- 7.8 ms during exercise, and 209 +/- 114, 50 +/- 23, 35 +/- 21, and 9.5 +/- 11.8 ms during recovery, respectively. There was poor correlation among the parasympathetic effects noted at the sinus node, AV node, and ventricle. Further work evaluating parasympathetic effects on cardiac electrophysiology during exercise and recovery in patients with heart disease is required to elucidate its role in modulating the risk of sudden cardiac death noted at these times.  相似文献   

10.
To better understand the central mechanisms that mediate increases in heart rate (HR) during psychological stress, we examined the effects of systemic and intramedullary (raphe region) administration of the serotonin-1A (5-HT(1A)) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT) on cardiac changes elicited by restraint in hooded Wistar rats with preimplanted ECG telemetric transmitters. 8-OH-DPAT reduced basal HR from 356 +/- 12 to 284 +/- 12 beats/min, predominantly via a nonadrenergic, noncholinergic mechanism. Restraint stress caused tachycardia (an initial transient increase from 318 +/- 3 to 492 +/- 21 beats/min with a sustained component of 379 +/- 12 beats/min). beta-Adrenoreceptor blockade with atenolol suppressed the sustained component, whereas muscarinic blockade with methylscopolamine (50 microg/kg) abolished the initial transient increase, indicating that sympathetic activation and vagal withdrawal were responsible for the tachycardia. Systemic administration of 8-OH-DPAT (10, 30, and 100 microg/kg) attenuated stress-induced tachycardia in a dose-dependent manner, and this effect was suppressed by the 5-HT(1A) antagonist WAY-100635 (100 microg/kg). Given alone, the antagonist had no effect. Systemically injected 8-OH-DPAT (100 microg/kg) attenuated the sympathetically mediated sustained component (from +85 +/- 19 to +32 +/- 9 beats/min) and the vagally mediated transient (from +62 +/- 5 to +25 +/- 3 beats/min). Activation of 5-HT(1A) receptors in the medullary raphe by microinjection of 8-OH-DPAT mimicked the antitachycardic effect of the systemically administered drug but did not affect basal HR. We conclude that tachycardia induced by restraint stress is due to a sustained increase in cardiac sympathetic activity associated with a transient vagal withdrawal. Activation of central 5-HT(1A) receptors attenuates this tachycardia by suppressing autonomic effects. At least some of the relevant receptors are located in the medullary raphe-parapyramidal area.  相似文献   

11.
Electrical stimulation of the vagal trunk with 10 Hz in frequency, 3 ms in duration and 15 volt in intensity for 10 s in cats produced an excitatory response of the stomach and the response was composed of two phases, an initial rapid excitation during stimulation period and the late multi-peak response after stimulation period. The initial response was inhibited by the administrations of hexamethonium (10 mg/kg, i.v.) and atropine (100 micrograms/kg, i.v.). The late response was not inhibited by hexamethonium but was inhibited by atropine (100 micrograms/kg, i.v.). The hexamethonium-sensitive initial excitation was not affected by the administration of morphine and gamma-aminobutyric acid (GABA). On the other hand, the hexamethonium-resistant late response was attenuated by the treatment with morphine (1 to 10 mg/kg, i.v.) and GABA (100 to 500 micrograms/kg, i.v.). Such inhibitory actions of morphine and GABA on the late response were antagonized by picrotoxin. From these results, it was concluded that morphine might inhibit specifically the hexamethonium-resistant late excitatory response of the stomach without affecting the hexamethonium-sensitive initial excitatory response and the inhibitory effect of morphine on the late response of stomach might be due to action of GABA released from the intramural neurons of gastric walls in cats.  相似文献   

12.
The blood pressure-lowering potency and activity of BRL 34915, a new vasodilator and putative stimulator of potassium efflux from vascular smooth muscle, was investigated in conscious spontaneously hypertensive rats (SHR) and normotensive rats (NTR) after intravenous administration and compared with that of the calcium channel blocker, nifedipine. In SHR, BRL 34915 (3-100 micrograms/kg) or nifedipine (10-3000 micrograms/kg) produced similar reductions in mean arterial pressure of 58 +/- 3% and 55 +/- 3%, respectively. BRL 34915 (ED30% = 13.8 micrograms/kg) was 15.3 times more potent than nifedipine (ED30% = 207 micrograms/kg) in SHR. In contrast, only a 1.7-fold difference in potency was observed in NTR between BRL 34915 (ED30% = 123 micrograms/kg) and nifedipine (ED30% = 182 micrograms/kg). The potency ratio (ED30% NTR/ED30% SHR) for BRL 34915 was 8.83 whereas nifedipine had a ratio of 0.88, reflecting the greater responsiveness of the SHR to BRL 34915. Systemic hemodynamics were monitored in anesthetized SHR and NTR to determine the basis for the reductions in blood pressure. BRL 34915 (3-100 micrograms/kg iv) lowered mean arterial pressure in both groups solely by decreasing total peripheral vascular resistance, since no changes in cardiac output were observed. Relaxation responses were also obtained in phenylephrine-contracted isolated aortic strips from both strains of rat to ascertain whether differences in responsiveness existed at this level of the vasculature. No significant difference in the potency of BRL 34915 (3-10 microM) as a vasodilator was found in aortas from SHR or NTR. These results indicate that, unlike nifedipine, BRL 34915 is a more potent vasodepressor agent in SHR than in NTR and suggests that the potassium efflux stimulator may preferentially relax resistance vessels in the hypertensive rat.  相似文献   

13.
The present study investigated the effects of long-duration exercise on heart rate variability [as a marker of cardiac vagal tone (VT)]. Heart rate variability (time series analysis) was measured in mongrel dogs (n = 24) with healed myocardial infarctions during 1 h of submaximal exercise (treadmill running at 6.4 km/h at 10% grade). Long-duration exercise provoked a significant (ANOVA, all P < 0.01, means +/- SD) increase in heart rate (1st min, 165.3 +/- 15.6 vs. last min, 197.5 +/- 21.5 beats/min) and significant reductions in high frequency (0.24 to 1.04 Hz) power (VT: 1st min, 3.7 +/- 1.5 vs. last min, 1.0 +/- 0.9 ln ms(2)), R-R interval range (1st min, 107.9 +/- 38.3 vs. last min, 28.8 +/- 13.2 ms), and R-R interval SD (1st min, 24.3 +/- 7.7 vs. last min 6.3 +/- 1.7 ms). Because endurance exercise training can increase cardiac vagal regulation, the studies were repeated after either a 10-wk exercise training (n = 9) or a 10-wk sedentary period (n = 7). After training was completed, long-duration exercise elicited smaller increases in heart rate (pretraining: 1st min, 156.0 +/- 13.8 vs. last min, 189.6 +/- 21.9 beats/min; and posttraining: 1st min, 149.8 +/- 14.6 vs. last min, 172.7 +/- 8.8 beats/min) and smaller reductions in heart rate variability (e.g., VT, pretraining: 1st min, 4.2 +/- 1.7 vs. last min, 0.9 +/- 1.1 ln ms(2); and posttraining: 1st min, 4.8 +/- 1.1 vs. last min, 2.0 +/- 0.6 ln ms(2)). The response to long-duration exercise did not change in the sedentary animals. Thus the heart rate increase that accompanies long-duration exercise results, at least in part, from reductions in cardiac vagal regulation. Furthermore, exercise training attenuated these exercise-induced reductions in heart rate variability, suggesting maintenance of a higher cardiac vagal activity during exercise in the trained state.  相似文献   

14.
We evaluated cardiac cycle length variability in ponies at rest and during strenuous exercise with and without premedication with atropine. In the absence of premedication, cardiac cycle length at rest was 1,112 +/- 53 ms, the individual cardiac cycle length standard deviation (SDCL) was 75 +/- 23 ms, and the individual cycle length coefficient of variation (CVCL) was 6.32 +/- 1.62. Exercise significantly decreased (P < 0.05) all three indexes (290 +/- 9 ms, 5 +/- 1 ms, and 1.65 +/- 0.20, respectively). Atropine premedication significantly reduced resting cardiac cycle length (685 +/- 46 ms), SDCL (10 +/- 2 ms), and CVCL (1.45 +/- 0.19) compared with nonpremedicated values. Cardiac cycle length was significantly decreased by exercise after atropine premedication, but no statistically significant changes occurred in SDCL or CVCL. Thus, although considerable cardiac cycle length variability exists in nonpremedicated ponies at rest, it is nearly completely abolished by strenuous exercise. The absence of significant differences between the indexes of variability during exercise without premedication, at rest after atropine, and during exercise after atropine indicates that cardiac cycle length variability in the pony is mediated primarily through activity of the parasympathetic system.  相似文献   

15.
The role of transport proteins in the distribution of drugs in various tissues has obvious implications for drug effects. Recent reports indicate that such transporters are present not only in the liver, intestine, or blood-brain barrier but also in the heart. The objective of our study was to determine whether treatment of animals with verapamil, a well-known L-type calcium channel blocker with modulatory properties of membrane transporters, would alter distribution and cardiac electrophysiological effects of an I(Kr) blocker. Male guinea pigs (n = 72) were treated with either saline or verapamil at various doses (1.5 to 15 mg/kg) and for various durations (1 to 7 d). Animals were sacrificed 24 h after the last dose of verapamil (or saline), and their hearts were isolated and retroperfused with cisapride, a gastrokinetic drug with I(Kr) blockade properties. In hearts obtained from animals treated with vehicle, 50 nmol/L cisapride prolonged MAPD90 by 15 +/- 5 ms vs. 36 +/- 8 ms in hearts from animals treated with verapamil 15 mg.kg(-1).d(-1) for 5 d (p < 0.01). Treatment effects were dose- and time-dependent. Cardiac myocytes isolated from animals treated with vehicle or verapamil were incubated for 3 h with 100 ng/mL cisapride. Intracellular concentrations of cisapride in cardiac myocytes from animals treated with verapamil were 1.6-fold higher than those measured in myocytes from animals treated with vehicle (p < 0.01). The increase in intracellular concentrations of cisapride and potentiation of cisapride electrophysiological effects suggest that chronic treatment with drugs such as verapamil may modulate drug effects on the QT interval because of an increased access to intracellular binding sites on I(Kr) channels.  相似文献   

16.
To better understand the pathophysiological significance of high plasma norepinephrine (NE) concentration in regulating heart rate (HR), we examined the interactions between high plasma NE and dynamic vagal control of HR. In anesthetized rabbits with sinoaortic denervation and vagotomy, using a binary white noise sequence (0-10 Hz) for 10 min, we stimulated the right vagus and estimated the transfer function from vagal stimulation to HR response. The transfer function approximated a first-order low-pass filter with pure delay. Infusion of NE (100 microg. kg(-1) x h(-1) iv) attenuated the dynamic gain from 6.2 +/- 0.8 to 3.9 +/- 1.2 beats x min(-1) x Hz(-1) (n = 7, P < 0.05) without affecting the corner frequency or pure delay. Simultaneous intravenous administration of phentolamine (1 mg x kg(-1) x h(-1)) and NE (100 microg x kg(-1) x h(-1)) abolished the inhibitory effect of NE on the dynamic gain (6.3 +/- 0.8 vs. 6.4 +/- 1.3 beats x min(-1) x Hz(-1), not significant, n = 7). The inhibitory effect of NE at infusion rates of 10, 50, and 100 microg x kg(-1) x h(-1) on dynamic vagal control of HR was dose-dependent (n = 5). In conclusion, high plasma NE attenuated the dynamic HR response to vagal stimulation, probably via activation of alpha-adrenergic receptors on the preganglionic and/or postganglionic cardiac vagal nerve terminals.  相似文献   

17.
Although electrical vagal stimulation exerts beneficial effects on the ischemic heart such as an antiarrhythmic effect, whether it modulates norepinephrine (NE) and acetylcholine (ACh) releases in the ischemic myocardium remains unknown. To clarify the neural modulation in the ischemic region during vagal stimulation, we examined ischemia-induced NE and ACh releases in anesthetized and vagotomized cats. In a control group (VX, n = 8), occlusion of the left anterior descending coronary artery increased myocardial interstitial NE level from 0.46+/-0.09 to 83.2+/-17.6 nM at 30-45 min of ischemia (mean+/-SE). Vagal stimulation at 5 Hz (VS, n = 8) decreased heart rate by approximately 80 beats/min during the ischemic period and suppressed the NE release to 24.4+/-10.6 nM (P < 0.05 from the VX group). Fixed-rate ventricular pacing (VSP, n=8) abolished this vagally mediated suppression of ischemia-induced NE release. The vagal stimulation augmented ischemia-induced ACh release at 0-15 min of ischemia (VX: 11.1+/-2.1 vs. VS: 20.7+/-3.9 nM, P < 0.05). In the VSP group, the ACh release was not augmented. In conclusion, vagal stimulation suppressed the ischemia-induced NE release and augmented the initial increase in the ACh level. These modulations of NE and ACh levels in the ischemic myocardium may contribute to the beneficial effects of vagal stimulation on the heart during acute myocardial ischemia.  相似文献   

18.
Complex sympathovagal interactions govern heart rate (HR). Activation of the postjunctional beta-adrenergic receptors on the sinus nodal cells augments the HR response to vagal stimulation, whereas exogenous activation of the presynaptic alpha-adrenergic receptors on the vagal nerve terminals attenuates vagal control of HR. Whether the alpha-adrenergic mechanism associated with cardiac postganglionic sympathetic nerve activation plays a significant role in modulation of the dynamic vagal control of HR remains unknown. The right vagal nerve was stimulated in seven anesthetized rabbits that had undergone sinoaortic denervation and vagotomy according to a binary white-noise signal (0-10 Hz) for 10 min; subsequently, the transfer function from vagal stimulation to HR was estimated. The effects of beta-adrenergic blockade with propranolol (1 mg/kg i.v.) and the combined effects of beta-adrenergic blockade and tonic cardiac sympathetic nerve stimulation at 5 Hz were examined. The transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with pure delay. beta-Adrenergic blockade decreased the dynamic gain from 6.0 +/- 0.4 to 3.7 +/- 0.6 beats x min(-1) x Hz(-1) (P < 0.01) with no alteration of the corner frequency or pure delay. Under beta-adrenergic blockade conditions, tonic sympathetic stimulation did not further change the dynamic gain (3.8 +/- 0.5 beats x min(-1) x Hz(-1)). In conclusion, cardiac postganglionic sympathetic nerve stimulation did not affect the dynamic HR response to vagal stimulation via the alpha-adrenergic mechanism.  相似文献   

19.
The influence of pacemaker shifts on sinoatrial conduction time (SACT) was studied by investigating the effects of vagal stimulation on SACT and atrial conduction in anesthetized open-chest dogs. Isochronal maps were drawn from unipolar electrograms simultaneously recorded at 60 epicardial sites on the right atrial free wall and the inferior and superior vena cava. Vagal stimulation caused atrial conduction velocity to increase from 0.99 +/- 0.10 m/s (mean +/- SD) to 1.23 +/- 0.23 m/s (p less than 0.01), and the pacemaker to shift to lower positions along the superior vena cava - right atrial junction. As a result of the changes, the distances and the atrial conduction times from the stimulating and recording electrodes to the pacemaker site varied, and hence, the SACT values obtained indirectly by premature atrial stimulation varied. The isochronal maps were used to measure the atrial conduction times from stimulating to recording electrodes (a), from stimulating electrode to pacemaker site (b), and from pacemaker site to recording electrode (c). Indirect SACT was lengthened by vagal stimulation from 43 +/- 16 to 64 +/- 22 ms (p less than 0.02). After correcting by subtracting the atrial conduction time (b + c - a), these values became 26 +/- 6 ms (control) and 40 +/- 11 ms (vagal stimulation) (p less than 0.01). SACT values measured directly from the electrograms were 27 +/- 7 ms (control) and 42 +/- 10 ms (vagal stimulation) (p less than 0.01). Corrected indirect SACTs were closer to direct SACTs than were the uncorrected indirect SACTs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Parasympathetic neural activity modulates some ventricular arrhythmias in man. Therefore, a canine model of arrhythmias produced by the interaction of halothane and catecholamines was used to study the effects of vagal stimulation on the induction of ventricular fibrillation. The dose of catecholamine required to induce ventricular fibrillation was determined during a constant heart rate. Vagal stimulation reversibly raised the norepinephrine dose that produced ventricular fibrillation from 16.4 +/- 2.4 to 30.0 +/- 3.8 micrograms (p less than 0.001, n = 10), and the epinephrine dose from 15.5 +/- 2.0 to 22.5 +/- 2.6 micrograms (p less than 0.001, n = 5). Following atropine, vagal stimulation failed to raise the threshold dose of norepinephrine (16.8 +/- 2.4 vs. 18.3 +/- 3.3 micrograms, nonsignificant, n = 6) or epinephrine (15.5 +/- 2.0 vs. 16.0 +/- 2.3 micrograms, nonsignificant, n = 5). Ligation of the cervical vagus nerves did not affect the epinephrine threshold dose (16.3 +/- 3.3 vs. 17.5 +/- 2.7 micrograms, nonsignificant, n = 5). Following elevation of basal vagal tone by morphine premedication, the norepinephrine threshold of 53.0 +/- 9.2 micrograms declined by a nonsignificant amount to 46.5 +/- 11.5 micrograms after vagotomy (nonsignificant, n = 5). Thus resting vagal tone does not prevent catecholamine-halothane-induced ventricular fibrillation, whereas increasing vagal tone by electrical stimulation substantially protects against this arrhythmia. The protection is mediated through a muscarinic cholinergic receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号