首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ovine placental lactogen, (oPL), ovine growth hormone, (oGH), and ovine prolactin, (oPRL) are present in high concentrations in the fetal circulation late in gestation. To determine if these hormones stimulate the activity of ornithine decarboxylase (ODC), an enzyme widely implicated in the control of cellular growth, rat fetuses were injected in utero with 100 μg of oPL, oGH, oPRL, rat growth hormone (rGH) or rat prolactin (rPRL) and ODC activity in the livers, hearts, and brains of the fetuses was measured 2, 4, and 6 hours after injection. OPL stimulated fetal liver ODC activity by 282 ± 45% (mean ± SEM) as compared to litter mates injected with buffer alone but oGH, oPRL, rGH and rPRL had no effect on fetal liver ODC activity. However, in neonatal rats 24–48 hours old all five hormones significantly increased liver ODC activity. ODC activities in the hearts and brains of the fetuses and neonates were unaffected by any of the five hormones. In other experiments 50 μg of oPL significantly stimulated fetal liver ODC activity while 250 μg of oGH were without effect. However 25 μg of oGH significantly stimulated liver ODC activity in rat pups 1–2 days after birth. These results suggest that oPL, by its stimulation of ODC activity, has somatotropic effects in the fetus and that rat liver ODC activity becomes responsive to growth hormone and prolactin in the perinatal period.  相似文献   

2.
The ontogeny of the suppressive effect of the beta-adrenergic agonist, isoprenaline, on fetal growth hormone (GH) release was examined in 14 chronically-catheterized ovine fetuses. Isoprenaline was administered as an intravenous infusion over 1 h (200 micrograms/kg). In seven fetuses between 72 and 99 days of gestation, isoprenaline had no effect on fetal plasma GH concentrations. In seven older fetuses between 114 and 140 days of gestation, isoprenaline infusion suppressed (P less than 0.02) fetal GH release. No effect was observed in five saline-treated control fetuses (119-131 days). Propranolol (250 micrograms/kg i.v.) administered 5 min prior to the isoprenaline infusion to four fetuses (117-136 days) delayed (P less than 0.05) the onset of the suppressive effect of isoprenaline demonstrating that the action of isoprenaline was mediated by the beta-adrenergic receptor. Propranolol alone (n = 6) had no effect. These observations demonstrate that the potential for beta-adrenergic inhibition of fetal GH release differentiates after 100 days of gestation. Comparison with previous studies of the ontogenesis of the control of GH secretion suggests that the hypothalamic beta-adrenergic control of GH release differentiates with an intermediate time course compared to other potential neuroendocrine controls.  相似文献   

3.
Primary cell cultures were prepared from fetal, neonatal and adult rat pituitaries and evaluated for their ability to secrete growth hormone (GH) in response to growth hormone-releasing factor (GRF). Pituitary cells prepared from fetuses at days 19 and 21 of gestation, neonatal animals at the day of birth (day 0) or the following day (day 1) and peripubertal male rats showed full dose response curves to GRF with maximal GH release when stimulated with 1 X 10(-10) M rat GRF. At this concentration of GRF, the amount of GH released was not different from that elicited by activation of adenylate cyclase with 1 X 10(-5) M forskolin. In contradistinction, a preparation of cells from fetuses at day 18 of gestation did not show the same release of GH when challenged with 1 X 10(-10) M GRF and forskolin (0.057 +/- 0.001, compared to 0.076 +/- 0.003 micrograms/10(5) cells per 4.5 h), although the cells clearly responded to both secretagogues (basal levels of GH, 0.029 +/- 0.002 micrograms/10(5) cells per 4.5 h). While cells prepared from fetuses at day 21 of gestation or from animals after birth released 5-10% of their total cellular GH content, those prepared from 18- and 19-day fetuses released as much as 40% of their total GH suggesting there is a maturation of intracellular GH processing that occurs late in gestation. The results show that, in late pregnancy, the rat fetal pituitary is highly responsive to growth hormone-releasing factor and suggest that this peptide participates in regulating GH levels during the perinatal period.  相似文献   

4.
To investigate the role of the retino-hypothalamic tract on fetal prolactin regulation, we examined the effect of ocular enucleation on fetal plasma prolactin. Eleven fetuses of Suffolk ewes were chronically catheterized during fall, and six of them were subjected to bilateral ocular enucleation. All ewes were kept at 12h:12h light:dark cycle (lights on at 0800 and off at 2000). The experiments were performed 5-9 days after surgery (GA control fetuses 125 +/- 1.5, optical enucleation 121.3 +/- 1.5 days). Blood samples were taken from fetuses hourly around the clock, and plasma prolactin and cortisol were measured by radioimmunoassay (RIA). Luteinizing hormone (LH) and Growth hormone (GH) were measured in pooled plasma samples from control and enucleated fetuses by RIA. Average plasma prolactin was 5-fold lower in enucleated than in control fetuses (9.6 +/- 0.5 and 54.2 +/- 3.3 ng/ml, SEM; P < 0.005). Both control and enucleated fetuses presented circadian rhythm of prolactin with acrophase between 1400 and 1830 h. An enucleated fetus was tested for response of prolactin to TRH. Prolactin increased as described in the literature. There was no change in plasma concentration of cortisol, LH or GH after ocular enucleation. Our data indicate that the optical pathway participates in prolactin regulation in the fetal sheep.  相似文献   

5.
In the overnourished adolescent sheep, maternal tissue synthesis is promoted at the expense of placental growth and leads to a major decrease in lamb birth weight at term. Maternal growth hormone (GH) concentrations are attenuated in these pregnancies, and it was recently demonstrated that exogenous GH administration throughout the period of placental proliferation stimulates uteroplacental and fetal development by Day 81 of gestation. The present study aimed to determine whether these effects persist to term and to establish whether GH affects fetal growth and body composition by increasing placental size or by altering maternal metabolism. Adolescent recipient ewes were implanted with singleton embryos on Day 4 postestrus. Three groups of ewes offered a high dietary intake were injected twice daily with recombinant bovine GH from Days 35 to 65 of gestation (high intake plus early GH) or from Days 95 to 125 of gestation (high intake plus late GH) or remained untreated (high intake only). A fourth moderate-intake group acted as optimally nourished controls. Pregnancies were terminated at Day 130 of gestation (6 per group) or were allowed to progress to term (8-10 per group). GH administration elevated maternal plasma concentrations of GH, insulin, glucose, and nonesterified fatty acids during the defined treatment windows, while urea concentrations were decreased. At Day 130, GH treatment had reduced the maternal adiposity score, percentage of fat in the carcass, and internal fat depots and leptin concentrations, predominantly in the high-intake plus late GH group. Placental weight was lower in high-intake vs. control dams but independent of GH treatment. In contrast, fetal weight was elevated by late GH treatment, and these fetuses had higher relative carcass fat content, perirenal fat mass, and liver glycogen concentrations than all other groups. Expression of leptin mRNA in fetal perirenal fat and fetal plasma leptin concentrations were not significantly altered by maternal nutritional intake or GH. In pregnancies proceeding to term, the duration of gestation, fetal placental mass, and lamb birth weight were reduced in high-intake compared with control dams but were not significantly affected by GH treatment. In conclusion, exogenous GH has profound effects on maternal endocrinology, metabolism, and body composition when administered during early and late pregnancy. Treatment during late pregnancy has a modest effect on fetal growth independent of placental size and a profound effect on fetal adiposity, which may have implications beyond the fetal period.  相似文献   

6.
The study was designed to compare the direct effect of three prolactin-like hormones on steroidogenesis of ovine luteal cells collected at day 40-45 of pregnancy. 100 ng/ml of ovine placental lactogen or 100 ng/ml of ovine growth hormone or 100 ng/ml of ovine prolactin were added to the media of luteal cell cultures. After 48 h incubation, all cultures were terminated and the media were frozen until further steroid analysis. To determine to what extent growth hormone (GH), prolactin (PRL) and lactogen (PL) regulate the activity of 3 beta-HSD, an enzyme involved in progesterone synthesis, the classical steroidal competitive inhibitor of 3 beta-HSD trilostane, was investigated for its effects on basal and GH-, PRL-, and PL-stimulated progesterone biosynthesis since there is a possibility that the luteotropic effect of these hormones are mediated via 3 beta-HSD. oPL resulted in an increase of progesterone secretion in a statistically significant manner, while GH or PRL had no effect on progesterone secretion. A decrease in progesterone secretion as an effect of 100 mM trilostane was observed in all culture types. An explanation for the luteotropic effect of PL and the lack of this effect for GH is that the GH receptor associates with a different molecule within the ovarian tissue and forms a heterodimeric receptor for PL, and the possibility that physiological effects of native oPL may be mediated through its binding to specific PL receptors, which have low affinities for oGH and oPRL.  相似文献   

7.
We have previously reported (Bauer MK, Breier BH, Bloomfield FH, Jensen EC, Gluckman PD, and Harding JE. J Endocrinol 177: 83-92, 2003) that a chronic pulsatile infusion of growth hormone (GH) to intrauterine growth-restricted (IUGR) ovine fetuses increased fetal circulating IGF-I levels without increasing fetal growth. We hypothesized a cortisol-induced upregulation of fetal hepatic GH receptor (GH-R) mRNA levels, secondary increases in IGF-I mRNA levels, and circulating IGF-I levels, but a downregulation of the type I IGF receptor (IGF-IR) as an explanation. We, therefore, measured mRNA levels of genes of the somatotrophic axis by real-time RT-PCR in fetal and placental tissues of fetuses with IUGR (induced by uteroplacental embolization from 110- to 116-days gestation) that received either a pulsatile infusion of GH (total dose 3.5 mg/day) or vehicle from 117-126 days and in control fetuses (n = 5 per group). Tissues were collected at 127 days (term, 145 days). Fetal cortisol concentrations were significantly increased in IUGR fetuses. However, in liver, GH-R, but not IGF-I or IGF-IR, mRNA levels were decreased in both IUGR groups. In contrast, in placenta, GH-R, IGF-I, and IGF-IR expression were increased in IUGR vehicle-infused fetuses. GH infusion further increased placental GH-R and IGF-IR, but abolished the increase in IGF-I mRNA levels. GH infusion reduced IGF-I expression in muscle and increased GH-R but decreased IGF-IR expression in kidney. IUGR increased hepatic IGF-binding protein (IGFBP)-1 and placental IGFBP-2 and -3 mRNA levels with no further effect of GH infusion. In conclusion, the modest increases in circulating cortisol concentrations in IUGR fetuses did not increase hepatic GH-R mRNA expression and, therefore, do not explain the increased circulating IGF-I levels that we found with GH infusion, which are likely due to reduced clearance rather than increased production. We demonstrate tissue-specific regulation of the somatotrophic axis in IUGR fetuses and a discontinuity between GH-R and IGF-I gene expression in GH-infused fetuses that is not explained by alterations in phosphorylated STAT5b.  相似文献   

8.
Ovine placental lactogen (oPL), growth hormone (oGH), prolactin (oPRL) and human placental lactogen (hPL) were administered intracisternally (ic) or intraperitoneally (ip) to 17 day old rats and brain and liver ODC activities determined four hours later. When given ic, oPL, oGH and oPRL caused significant increases in brain ODC activity, while hPL had no significant effect. After ip administration, oPL and oGH also caused a significant increase in brain as well as liver ODC activity but oPRL and hPL were without significant effect. The stimulation of polyamine metabolism by oPL together with earlier reports of its potent somatotropic effects and its high concentration in the fetus supports the hypothesis that oPL may be important in the regulation of fetal growth.  相似文献   

9.
Normal fed and 2 days fasted Warren chickens were injected intravenously with 100 micrograms of ovine growth hormone (GH) and ovine prolactin and plasma concentrations of thyroid hormones were assayed prior and up to 2 h after injection. Fasting alone decreases T3, but increases T4. An injection of GH resulted in increases of plasma T3 concentrations in two fasting experiments by 40% (after 3/4 h) and 104% (after 1 h). In normal fed animals no increase is observed in the first experiment, whereas a 35% increase occurs in the second one. An injection of 100 micrograms prolactin does not influence T3 in normal fed or fasting animals. Both GH and prolactin, however, may decrease plasma concentrations of T4. In a separate experiment 50 micrograms and 200 micrograms of GH raised the decreased T3 levels after fasting by 39% and 60% respectively 1 h after injection and by 24 and 61% respectively in normal fed chicken, whereas prolactin was ineffective in this regard. Using Hisex chickens, the influence of an injection of 100 micrograms GH on plasma concentrations of thyroid hormones could be confirmed. At the same time GH increases the liver 5'-monodeiodinase activity by 330% after 1 h and by 147% after 2 h. The peroxidase activity is not influenced in normal fed chickens, but GH decreases this activity in food deprived animals after 1 h and 2 h. It is concluded that ovine GH, but not prolactin, stimulates the peripheral conversion of T4 into T3 in both normal fed and food deprived chicken and that this effect is dose dependent.  相似文献   

10.
Obstructing the fetal trachea is a potent stimulus for fetal lung growth, but little is known about the factors that regulate this process. Our aim was to determine the role of growth hormone (GH) in regulating the increase in lung growth induced by obstruction of the trachea in fetal sheep. Twenty chronically catheterized fetal sheep, nine of which were hypophysectomized, were divided into four experimental groups: 1) control group (n = 4), 2) a group in which the fetal trachea was obstructed for 3 days (3-day obstructed; n = 6), 3) a 3-day obstructed group in which the pituitary was removed [hypophysectomized (HX)] and the fetus was given maintenance infusions of ACTH, thyroxine, and human GH (hGH; HX hGH 3-day obstructed; n = 5), and 4) a HX 3-day obstructed group in which the fetus was given maintenance infusions of ACTH and thyroxine (n = 5). Tracheal obstruction significantly increased fetal lung liquid volumes from 37.2 +/- 3.2 ml/kg in control fetuses to 75.6 +/- 9.0 ml/kg in 3-day obstructed fetuses, and the presence or absence of GH did not affect this increase. Similarly, the presence or absence of GH did not affect the increase in lung weight or protein content induced by 3 days of tracheal obstruction. However, in the absence of GH, 3 days of tracheal obstruction failed to increase total lung DNA content above unobstructed control values (107.9 +/- 5.3 and 94. 1 +/- 7.0 mg/kg for control and HX 3-day obstructed groups, respectively). In contrast, 3 days of tracheal obstruction increased total lung DNA content to a similar extent in fetuses with an intact pituitary and HX fetuses that received GH replacement (126.0 +/- 4.4 and 126.7 +/- 4.0 mg/kg for 3-day obstructed and HX hGH 3-day obstructed groups, respectively). These data indicate that the absence of GH either abolishes or delays the acceleration in cell division caused by an increase in fetal lung expansion.  相似文献   

11.
Pressure-volume relationships and collagen and elastin contents were measured in the lungs of fetal sheep infused either with saline (n = 4), thyrotrophin-releasing hormone (TRH; n = 6), cortisol (n = 9) or TRH plus cortisol (n = 10) at 128 days of gestation (term = 149 days) for 7 days. Lung distensibility (V40 = 1.8 +/- 0.1 ml/g wet wt; mean +/- SD) and stability (V5 = 0.6 +/- 0.1) increased along with collagen (C) (10.1 +/- 2.7 micrograms/mg) and elastin (E) contents (128 +/- 35 ng/mg) in the animals infused with TRH plus cortisol and were significantly higher (p < 0.05) than those observed in TRH (V40 0.62 +/- 0.07; V5 0.32 +/- 0.04; C 3.53 +/- 1.3; E 38.2 +/- 8.3), cortisol (V4 0.66 +/- 0.6; V5 0.27 +/- 0.03; C 4.27 +/- 0.8; E 41.02 +/- 12.7) or saline infused fetuses (V40 0.40 +/- 0.1; V5 0.20 +/- 0.06; C 3.28 +/- 0.9; E 31.5 +/- 9.2). Plasma concentrations of prolactin (PRL), triiodothyronine (T3) and cortisol (F) were also higher in the group of fetuses infused with both hormones in comparison with the other groups. In fetuses treated with TRH plus cortisol, PRL (32 +/- 8.3 ng/ml) and T3 (308.3 +/- 36 micrograms/dl) were significantly higher than in those infused with cortisol alone (PRL 3.7 +/- 2.3; T3 128 +/- 30) or with saline (PRL 4.2 +/- 1.6; T3 < 5 micrograms/dl). In the group treated with TRH alone, PRL also increased significantly (37 +/- 6.4), but T3 increased only slightly (18 +/- 3.4).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effects of fetal infusions of cortisol and thyrotropin-releasing hormone (TRH) singly and together on pressure-volume relationships and saturated phosphatidylcholine (SPC) concentrations in the lungs were studied in 28 fetal sheep delivered at 128 days of gestation. Four groups each of 7 fetuses were infused with either saline (for 156 h), TRH (25 micrograms/h in 60-s pulses for 156 h), TRH (for 156 h) combined with cortisol (1 mg/h for 84 h), or cortisol (for 84 h). Cortisol had no effect on SPC concentrations, whereas both TRH and cortisol plus TRH increased the concentration of SPC in lavage fluid but not lung tissue. Neither cortisol nor TRH significantly affected lung distensibility [V40; 0.64 +/- 0.04 and 0.57 +/- 0.10 (SE) ml/g, respectively, vs. 0.41 +/- 0.03 ml/g in controls] or stability (V5; 0.24 +/- 0.01 and 0.35 +/- 0.07 ml/g vs. 0.24 +/- 0.03 ml/g), whereas treatment with a combination of the two hormones was associated with a fourfold increase in V40 (1.70 +/- 0.16 ml/g) and V5 (1.03 +/- 0.15 ml/g). Since raised concentrations of cortisol, triiodothyronine, and estradiol-17 beta (treatment with cortisol) had no effect on V40 and V5, whereas similar hormonal changes associated with elevated prolactin levels (treatment with cortisol plus TRH) had marked effects, we conclude that prolactin plays an essential part in the synergism of cortisol and TRH.  相似文献   

13.
Experiments were conducted to test the hypothesis that acute TCDD toxicity is associated with pituitary hypofunction. Sexually mature male Sprague-Dawley rats were given graded doses of TCDD (0-100 micrograms/kg) and evaluated 7 days later. Despite pronounced hypophagia and body weight loss, plasma concentrations of growth hormone (GH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were not significantly affected by any dose of TCDD. Only prolactin (PRL) concentrations were reduced, while, as previously reported, thyroid-stimulating hormone concentrations were elevated. Also, plasma LH, PRL, and adrenocorticotropic hormone (ACTH) concentrations were not significantly affected 1, 2, 3, 4, 5, or 7 days after a single dose of TCDD (50 micrograms/kg). We conclude that (1) pituitary hypofunction is not a major cause of the initial stages of acute TCDD toxicity, (2) growth retardation in TCDD-treated rats is not the result of a deficiency of GH, (3) alterations in plasma corticosterone concentrations are due to altered responsiveness of the adrenal to ACTH stimulation rather than to changes in plasma ACTH concentrations, and (4) that impaired spermatogenesis is not associated with a decrease in plasma FSH concentrations. In addition, the lack of a consistent effect on plasma PRL concentrations suggests that alterations in plasma PRL concentrations do not play a critical role in the toxicity of TCDD. Finally, because TCDD treatment causes a serious androgenic deficiency without increasing the rates at which androgens are catabolized or excreted, the fact that plasma LH concentrations were unaffected indicates that TCDD treatment must reduce the responsiveness of the testis to LH stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
To assess whether fetal luteinizing hormone releasing hormone (LH-RH) neurosecretory neurons have the capacity to respond to an exogenous stimulus, a synthetic excitatory amino acid analogue, N-methyl-D-L-aspartate (NMDA; 15 mg/kg), was given rapidly intravenously to 8 chronically catheterized fetuses (130-142 days of gestation; term 147 +/- 3 days). All 8 fetuses exhibited a rise in plasma ovine luteinizing hormone (oLH) and ovine follicle-stimulating hormone (oFSH) within 5 min. The mean maximal increments of oLH (2.25 +/- 0.36 ng/ml) and oFSH (1.21 +/- 0.32 ng/ml) were significantly greater than in 6 normal saline-injected controls (oLH p < 0.0002; oFSH p < 0.03). The secretion of ovine prolactin (oPRL) and ovine growth hormone (oGH) was unaffected. LH-RH (5 microg) evoked a greater oLH response (p < 0.0009) and a greater oFSH response (p < 0.03) than NMDA (n = 6). Desensitization of the fetal gonadotrope by a potent LH-RH agonist, D-Trp6Pro9NEt-LH-RH (10 microg/day i.v. x 4 days), abolished the fetal oLH and the oFSH response to NMDA (n = 5). Moreover, D, L-2-amino-5-phosphonovalerate, a specific competitive antagonist for the NMDA receptor, completely inhibited the fetal oLH and oFSH response to NMDA, whereas D-L-2-amino-5-phosphonovalerate alone did not affect the plasma oLH or oFSH levels, the gonadotropin response to LH-RH, or the release of oGH or oPRL (n = 3). In primary ovine fetal pituitary cell cultures, NMDA (10(-10) to 10(-6) M) had no effect on oLH, oFSH, oGH, or oPRL secretion, whereas LH-RH stimulated oLH (10(-8) M; p < 0.0004) and oFSH (10(-8) M; p < 0. 0001) release, evidence that NMDA did not have a direct pituitary effect. The results suggest that NMDA induces oLH and oFSH secretion by stimulation of the fetal LH-RH pulse generator and is mediated by central NMDA receptors. Fetal LH and FSH secretion and the response to LH-RH decrease in late gestation in the ovine and human fetus. The relative importance of sex steroid dependent and sex steroid independent central nervous system inhibition in this developmental change is unclear. It appears that central neural inhibition in addition to sex steroid negative feedback contributes to the decrease in fetal gonadotropin concentrations in late gestation. NMDA did not affect fetal oGH or oPRL secretion.  相似文献   

16.
The effects of third ventricular (3V) injection of the beta-adrenergic antagonist, propranolol (PROPR), a selective beta 1-antagonist, metoprolol (MET), a selective beta 2-antagonist, IPS 339, and a beta-adrenergic agonist (-) isoproterenol (ISOPR), on plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), and growth hormone (GH) were studied in conscious, ovariectomized (OVX) rats. Samples were removed from unrestrained rats which had been previously implanted with atrial and 3V cannulae, and plasma hormone levels were determined by radioimmunoassay (RIA). Intraventricular injection of PROPR (30 micrograms), MET (40 micrograms), or IPS 339 (20 micrograms) induced a gradual elevation in plasma GH concentrations, whereas ISOPR (30 micrograms) reduced plasma GH. ISOPR (30 micrograms) brought about a decrease in plasma LH concentrations, but PROPR, MET and IPS 339 had no effect on LH levels. PROPR (30 micrograms) increased plasma FSH concentrations, but there was no significant effect of MET, IPS 339 or ISOPR on FSH secretion. The results indicate that the beta-adrenergic system can inhibit the release of GH, LH, and FSH. This system appears to have a tonic inhibitory effect on GH and FSH but not LH release in the OVX rat.  相似文献   

17.
Corticotrophin releasing hormone (CRH), dehydroepiandrosterone sulfate (DHEAS) and cortisol were measured in umbilical cord plasma obtained from 90 preterm and 98 term fetuses. Maternal plasma was obtained from 23 women who delivered preterm and from 23 women matched for gestational age who ultimately delivered term infants. Mean umbilical cord plasma CRH concentration was significantly higher in the preterm fetuses (n = 69, 538 +/- 63 pg/ml) compared to the term fetuses (n = 98, 280 +/- 22 pg/ml, P < 0.01). Mean DHEAS level in the preterm fetuses was 208 +/- 22 mg/dl (n = 56), cortisol level was 7 +/- 1 mg/dl (n = 58). Umbilical plasma CRH concentrations (808 +/- 170 pg/ml) were significantly higher at 24-27 weeks than at 28-31 or 31-34 weeks gestation. Cortisol levels (12 +/- 3 micrograms/dl) were highest at 24-27 weeks. Mode of delivery and the presence of labor did not affect fetal CRH levels. The highest fetal CRH levels were measured in the pregnancies complicated by hypertension as well as prematurity; however, fetal CRH levels remained higher in the preterm group compared to the term group when hypertensive pregnancies were excluded. Maternal plasma CRH levels were significantly higher in the group that delivered preterm compared to women who delivered at term matched for gestational age (1058 +/- 184 pg/ml compared to 456 +/- 71 pg/ml, P < 0.00).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The structure of the ternary complex between ovine placental lactogen (oPL) and the extracellular domain (ECD) of the rat prolactin receptor (rPRLR) reveals that two rPRLR ECDs bind to opposite sides of oPL with pseudo two-fold symmetry. The two oPL receptor binding sites differ significantly in their topography and electrostatic character. These binding interfaces also involve different hydrogen bonding and hydrophobic packing patterns compared to the structurally related human growth hormone (hGH)-receptor complexes. Additionally, the receptor-receptor interactions are different from those of the hGH-receptor complex. The conformational adaptability of prolactin and growth hormone receptors is evidenced by the changes in local conformations of the receptor binding loops and more global changes induced by shifts in the angular relationships between the N- and C-terminal domains, which allow the receptor to bind to the two topographically distinct sites of oPL.  相似文献   

19.
The effects of administration of methyldopa on serum prolactin and growth hormone (GH) concentrations in hypertensive patients were studied. Single doses of methyldopa (750 or 1000 mg) significantly increased serum prolactin levels, peak concentrations occurring four to six hours after drug administrations. Long-term methyldopa treatment was associated with threefold to fourfold increases in basal prolactin levels compared with those in normal subjects. In patients treated with methyldopa for two to three weeks the GH response to insulin hypoglycaemia was significantly greater than in normal subjects and untreated hypertensive patients. In contrast, patients treated for prolonged periods (mean 13-4 months) had a GH reponse indistinguishable from normal.  相似文献   

20.
We studied secretion of growth hormone (GH), insulin, and prolactin in eight women with anorexia nervosa and nine women with refractory obesity before and during treatment with bromocriptine, 10 mg/day. In the anorexic patients the raised plasma GH concentrations occurring during an oral glucose tolerance test fell significantly while on bromocriptine treatment, but there was no change in plasma insulin or blood glucose concentrations. In the obese patients, however, plasma GH concentrations remained low during the oral glucose tolerance test, and were not modified by bromocriptine. Blood glucose and plasma insulin concentrations were also unchanged. Plasma GH and plasma 11-hydroxycorticosteroid responses to insulin-induced hypoglycaemia were unaffected. Serum prolactin concentrations which were raised in five anorexic patients and marginally raised in two obese subjects, fell significantly in both groups during treatment. We observed no consistent weight changes in either groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号