首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polygenic determination of quinine aversion among mice   总被引:2,自引:2,他引:0  
There are substantial differences among inbred mouse strainsin avoidance of quinine solutions in two-bottle preference tests.x A Mendelian cross-breeding experiment was conducted to testthe hypothesis that a single locus Qui has a major influenceon quinine aversion. Inbred strains C57B1/6J (B6, avoider) andC3HeB/FeJ (C3, indifferent) were progenitors of two segregatinggenerations. Phenotypic ratios for 100 µM and 30 µMquinine sulfate (QSO4) in these generations were not consistentwith ratios expected for a single gene. Frequency distributionsfor individual preference ratios were more characteristic ofa polygenic trait. An outbred strain (CFW/Crl) which displayssegregation for the Soa locus was tested for both QSO4 and sucroseocta-acetate (SOA) avoidance. Correlated avoidance patternsfor the two bitter compounds were found in these mice. A Soaeffect might not have been seen in the C3.B6 cross because bothstrains are relatively poor SOA avoiders. A second Mendeliancross was made between strains C3 and SWR/J (SW, SOA and QSO4avoider). One segregating generation was tested with both compounds.In these mice, as in the CFW population, QSO4 aversion was correlatedwith SOA aversion. These results suggest that quinine aversionis polygenic, that there is a relationship between SOA sensitivityand quinine sensitivity, and that this association may be theresult of variation at the Soa locus.  相似文献   

2.
Mice have been characterized as either tasters or non-tastersof the bitter compound sucrose octa-acetate(SOA). However, 11of 17 supposedly non-taster inbred strains were found to avoid1 mM SOA. All 17 strains were indifferent to 0.1 mM SOA. Tasterstrains avoided both concentrations. The intermediate phenotypewas dubbed demitaster. A consistent phenotypic dominance orderwas found in crosses among both inbred and outbred strains (taster> non-taster > demitaster). Demitasters were found (withtasters) in an outbred strain showing monogenic segregationfor SOA avoidance. This, plus monogenic segregation in a back-crossof taster to demitaster inbred strains, suggested a third alleleat the Soa locus (Soac). Demitaster allelism was supported bythe strong associations found in 15 strains between the threeSOA phenotypes and HindIII restriction fragment patterns forthe closely linked Prp (proline rich protein) loci. SOA demitasterstrains were also intermediate in raffinose undeca-acetate (RUA)avoidance. Furthermore, B6.SW-Soa2 congenic mice avoided notonly SOA, but RUA and eight other acetylated sugars. A previouslyproposed separate RUA-sensitivity gene (Rua) thus appeared tobe redundant.  相似文献   

3.
Calcium hydroxide and sodium hydroxide were used to hydrolysesucrose octa-acetate (SOA) as a means of evaluating the taster(Soaa) and demitaster (Soac) allelic phenotypes of the geneticlocus Soa. The SWR/J (taster) inbred strain and the B6.SW Soaa(taster) congenic strain were demonstrated to cease avoidingupon nearly complete hydrolysis of 10–5 M SOA with calciumhydroxide Or sodium hydroxide and of 10–4 M SOA with calciumhydroxide. The BALB/cByJ, C3HeB/FeJ and DBA/2J (demitaster)inbred strains were demonstrated to cease avoiding after onlya partial hydrolysis of 10–3 M SOA using calcium hydroxide.It is suggested that specificity for the number or placementof the acetates of SOA underlies the difference between thetaster and demitaster phenotypes.  相似文献   

4.
An acetylated sugar, sucrose octaacetate (SOA), tastes bitter to humans and has an aversive taste to at least some mice and other animals. In mice, taste aversion to SOA depends on allelic variation of a single locus, Soa. Three Soa alleles determine `taster' (Soa a ), `nontaster' (Soa b ), and `demitaster' (Soa c ) phenotypes of taste sensitivity to SOA. Although Soa has been mapped to distal Chromosome (Chr) 6, the limits of the Soa region have not been defined. In this study, mice from congenic strains SW.B6-Soa b , B6.SW-Soa a , and C3.SW-Soa a/c and from an outbred CFW strain were genotyped with polymorphic markers on Chr 6. In the congenic strains, the limits of introgressed donor fragments were determined. In the outbred mice, linkage disequilibrium and haplotype analyses were conducted. Positions of the markers were further resolved by using radiation hybrid mapping. The results show that the Soa locus is contained in a ∼1-cM (3.3–4.9 Mb) region including the Prp locus. Received: 5 February, 2001 / Accepted: 1 May, 2001  相似文献   

5.
The genetics of tasting in mice. II. Strychnine   总被引:1,自引:1,他引:0  
Lush  I.E. 《Chemical senses》1982,7(1):93-98
Among twenty-seven inbred strains of mice only one, SWR/J, wasfound to show a strong aversion to the bitter taste of strychninein dilute solution. This characteristic segregated in backcrossprogeny and appears to be determined by the gene Soa, whichalso determined the ability to taste the bitter sugar derivativesucrose octaacetate.  相似文献   

6.
Interstrain differences in bitter taste responses were examinedusing inbred strains of mice. Taste responses were recordedfrom the glossopharyngeal and chorda tympani nerves of SWR/J,LP/J, BDP/J and DBA/2J mice. There were large differences inthe magnitude of responses to sucrose octaacetate (SOA) in boththe glossopharyngeal and chorda tympaninerves of SWR/J miceas compared with the other strains of mice. SOA thresholds ofSWR/J mice were 10–7–6 M, whereas they were– 10–4 M in LP/J mice. On the other hand, no appreciabledifferences were observed in the responses to quinine hydrochlorideand pnenyl-thio-carbamide. The results obtained in the presentexperiments fully explain the findings in behavioral studiesshowing that only SWR/J mice avoid SOA solutions whereas otherstrains do not. *Present address: Department of Physiology, Niigata UniversitySchool of Dentistry, Niigata 951, Japan  相似文献   

7.
Mice of the SWR/J (SW) strain avoid orally delivered sucrose octa-acetate (SOA), whereas the mice of the C3HeB/FeJ (C3) strain are insensitive to SOA. Mice of both strains and of a congenic strain (C3.SW) that shares more than 99% of the C3 genome, were tested in a taste-salient brief-access taste test for responses to SOA and quinine hydrochloride, before and after transection of the glossopharyngeal or chorda tympani nerve, or sham surgery. Prior to surgery, congenic SOA tasters (C3.SW(T)) were phenotypically identical to the SW strain in avoidance of SOA, but showed a greater reduction in sensitivity after nerve transection. For quinine avoidance, which is thought to be a polygenic trait, SW mice showed the greatest sensitivity to quinine, C3 the least and C3.SW(T) mice were different from both parental strains, showing intermediate sensitivity. Nerve transections had only a moderate effect on quinine sensitivity, suggesting that both anterior and posterior taste bud fields contribute to behavioral quinine avoidance. These findings are discussed with regard to the distribution in the oral cavity of putative taste receptors for quinine and SOA and the peripheral organization of bitter taste.  相似文献   

8.
Strain differences among mice in taste psychophysics of sucrose octaacetate   总被引:1,自引:0,他引:1  
SWR/J inbred mice consistently avoided a 10–4 M sucroseoctaacetate (SOA) solution in unconditioned two-bottle preferencetests whereas mice of all other inbred strains tested did not(confirming a previous report that used SWR mice of a differentsubline). In a conditioned taste aversion procedure SWR/J miceavoided SOA at concentrations from 10–3 M to 10–7M but not at 10–8 M. Various other inbred strains firstfailed to avoid SOA at concentrations from 10–3 M to 10–5M. The major strain difference between SWR and other inbredmice was robust across rearing regimes and when tested withother psychophysical procedures. In single-bottle, free-lickingtests SWR/J mice differed from C57L/J mice in response to SOAfollowing extremely brief exposure to the SOA.The SOA detectionthreshold differences indicated by these psychophysical proceduresare also consistent with differences reported from electrophysiologicalrecordings from glossopharyngeal and chorda tympani nerves inmice of several of the same strains.  相似文献   

9.
Susceptibility to thrombosis varies in human populations as well as many inbred mouse strains. Only a small portion of this variation has been identified, suggesting that there are unknown modifier genes. The objective of this study was to narrow the quantitative trait locus (QTL) intervals previously identified for hemostasis and thrombosis on mouse distal chromosome 11 (Hmtb6) and on chromosome 5 (Hmtb4 and Hmtb5). In a tail bleeding/rebleeding assay, a reporter assay for hemostasis and thrombosis, subcongenic strain (6A-2) had longer clot stability time than did C57BL/6J (B6) mice but a similar time to the B6-Chr11A/J consomic mice, confirming the Hmtb6 phenotype. Six congenic and subcongenic strains were constructed for chromosome 5, and the congenic strain, 2A-1, containing the shortest A/J interval (16.6 cM, 26.6 Mbp) in the Hmtb4 region, had prolonged clot stability time compared to B6 mice. In the 3A-2 and CSS-5 mice bleeding time was shorter than for B6, mice confirming the Hmtb5 QTL. An increase in bleeding time was identified in another congenic strain (3A-1) with A/J interval (24.8 cM, 32.9 Mbp) in the proximal region of chromosome 5, confirming a QTL for bleeding previously mapped to that region and designated as Hmtb10. The subcongenic strain 4A-2 with the A/J fragment in the proximal region had a long occlusion time of the carotid artery after ferric chloride injury and reduced dilation after injury to the abdominal aorta compared to B6 mice, suggesting an additional locus in the proximal region, which was designated Hmtb11 (5 cM, 21.4 Mbp). CSS-17 mice crossed with congenic strains, 3A-1 and 3A-2, modified tail bleeding. Using congenic and subcongenic analysis, candidate genes previously identified and novel genes were identified as modifiers of hemostasis and thrombosis in each of the loci Hmtb6, Hmtb4, Hmtb10, and Hmtb11.  相似文献   

10.
Inbred strains of mice differ in their susceptibility to excitotoxin‐induced cell death, but the genetic basis of individual variation is unknown. Prior studies with crosses of the FVB/NJ (seizure‐induced cell death susceptible) mouse and the seizure‐induced cell death resistant mouse, C57BL/6J, showed the presence of three quantitative trait loci (QTLs), named seizure‐induced cell death 1 (Sicd1) to Sicd3. To better localize and characterize the Sicd2 locus, two reciprocal congenic mouse strains were created. While the B6.FVB‐Sicd2 congenic mouse was without effect on modifying susceptibility to seizure‐induced excitotoxic cell death, the FVB.B6‐Sicd2 congenic mouse, in which the chromosome (Chr) 15 region of C57BL/6J was introgressed into FVB/NJ, showed reduced seizure‐induced excitotoxic cell death following kainate administration. Phenotypic comparison between FVB and the congenic FVB.B6‐Sicd2 strain confirmed that the Sicd2 interval harbors gene(s) conferring strong protection against seizure‐induced excitotoxic cell death. Interval‐specific congenic lines (ISCLs) that encompass Sicd2 on Chr 15 were generated and were used to fine‐map this QTL. Resultant progeny were treated with kainate and examined for the extent of seizure‐induced cell death in order to deduce the Sicd2 genotypes of the recombinants through linkage analysis. All of the ISCLs exhibited reduced cell death associated with the C57BL/6J phenotype; however, ISCL‐2 showed the most dramatic reduction in seizure‐induced cell death in both area CA3 and in the dentate hilus. These findings confirm the existence of polymorphic loci within the reduced critical region of Sicd2 that regulate the severity of seizure‐induced cell death.  相似文献   

11.
Inbred mouse strains vary in their response to bitter-tasting compounds as assessed by 48 h preference tests. These differences are generally assumed to result from altered gustatory function, although such long-term tests could easily reflect additional factors. We developed a brief-access taste test and tested the responses of two inbred strains, as well as C3. SW congenic mice, to the bitter stimulus sucrose octaacetate (SOA). Water-deprived trained mice were tested with five concentrations of SOA (0.00018-0.18 mM) and distilled water in a Davis MS- 160 apparatus. Trials were 5 s in duration and stimuli were presented randomly within blocks; each stimulus trial was preceded by a water rinse trial. Each concentration was presented twice in a session and mice were repeatedly tested across consecutive days. SOA-taster mice, including the SWR/J (SW) inbred and C3. SW congenic taster (T) mice, avoided licking SOA at concentrations >0.003 mM. In comparison, C3HeB/FeJ (C3) and C3. SW demitaster mice (D) licked all concentrations at the same rate as water. Concentration-response functions were similar across strains for both the brief-access test and a parallel 48 h preference test run on separate groups of mice. Furthermore, concentration-response functions were similar whether or not the brief-access test was preceded by a 4 day, single concentration pretest with SOA. The brief-access test is a suitable assay for bitter taste function in mice because it minimizes possible post-ingestive influences on taste.  相似文献   

12.
The nonobese diabetic (NOD) mouse strain serves as a genomic standard for assessing how allelic variation for insulin-dependent diabetes (Idd) loci affects the development of autoimmune diabetes. We previously demonstrated that C57BL/6 (B6) mice harbor a more diabetogenic allele than NOD mice for the Idd14 locus when introduced onto the NOD genetic background. New congenic NOD mouse strains, harboring smaller B6-derived intervals on chromosome 13, now localize Idd14 to an ~18-Mb interval and reveal a new locus, Idd31. Notably, the B6 allele for Idd31 confers protection against diabetes, but only in the absence of the diabetogenic B6 allele for Idd14, indicating genetic epistasis between these two loci. Moreover, congenic mice that are more susceptible to diabetes are more resistant to Listeria monocytogenes infection. This result co-localizes Idd14 and Listr2, a resistance locus for listeriosis, to the same genomic interval and indicates that congenic NOD mice may also be useful for localizing resistance loci for infectious disease.  相似文献   

13.
We previously used the C57BL/6J (B6) × A/J mouse chromosome substitution strain (CSS) panel to identify a major quantitative trait locus (QTL) on chromosome 11 influencing methamphetamine (MA)‐induced locomotor activity. We then made an F2 cross between CSS‐11 and B6 and narrowed the locus (Bayes credible interval: 79–109 Mb) which was inherited dominantly and accounted for 14% of the phenotypic variance in the CSS panel. In the present study, we created congenic and subcongenic lines possessing heterozygous portions of this QTL to narrow the interval. We identified one line (84–96 Mb) that recapitulated the QTL, thus narrowing the region to 12 Mb. This interval also produced a small decrease in locomotor activity following prior saline treatment. When we generated subcongenic lines spanning the entire 12‐Mb region, the phenotypic difference in MA sensitivity abruptly disappeared, suggesting an epistatic mechanism. We also evaluated the rewarding properties of MA (2 mg/kg, i.p.) in the 84‐ to 96‐Mb congenic line using the conditioned place preference (CPP) test. We replicated the locomotor difference in the MA‐paired CPP chamber yet observed no effect of genotype on MA‐CPP, supporting the specificity of this QTL for MA‐induced locomotor activity under these conditions. Lastly, to aid in prioritizing candidate genes responsible for this QTL, we used the Affymetrix GeneChip® Mouse Gene 1.0ST Array to identify genes containing expression QTLs (eQTL) in the striatum of drug‐naÏve, congenic mice. These findings highlight the difficulty of using congenic lines to fine map QTLs and illustrate how epistasis may thwart such efforts.  相似文献   

14.
Arylsulfatase B was purified 4500-fold from liver and kidney of C57BL/6J mice. Hepatic and renal arysulfatase B are apparently determined by a single structural locus; however, posttranslational modification introduces inter- and intratissue microheterogeneity. Partially purified enzyme from C57BL/6J, A/J, C3H/HeJ, and SWR/J mice has similar catalytic properties. The 4500-fold-purified arylsulfatase B from SWR/J and C3H/HeJ mice was more thermostable than that from C57BL/6J and A/J mice, strongly suggesting that the thermostability difference reflects an alteration of the primary structure of the enzyme. Thermal stability of arylsulfatase B was pH dependent and markedly influenced by buffer anion. Variation of thermostability did not appear accountable for the observed activity variation among these strains; however, this possibility cannot be rigorously excluded by presently available data. Thirty-five murine strains were found to possess the As-1 a allele (thermostable enzyme), while As-1 b was largely restricted to A and C57 strains.This research was supported by PHS Biomedical Sciences Research Support Grant RR-07030.  相似文献   

15.
A common polygenic basis for quinine and PROP avoidance in mice   总被引:3,自引:2,他引:1  
Harder  DB; Whitney  G 《Chemical senses》1998,23(3):327-332
Inbred strains of mice (Mus musculus) differ greatly in ability to taste various bitter compounds. For some compounds, the differences result from allelic variation at a single locus. However, segregation patterns incompatible with monogenic inheritance have been found for quinine avoidance. The Soa bitter sensitivity locus exerts some influence on this phenotype, but an unknown number of other loci also contribute. Relative avoidance patterns for quinine sulfate in panels of naive inbred strains resembled avoidance patterns for 6-n-propyl-2- thiouracil (PROP), suggesting a common genetic basis. In particular, C57BL/6J mice strongly avoided both 0.1 mM quinine sulfate and 1 mM PROP in two-bottle preference tests, whereas C3H/HeJ mice were indifferent to both. Therefore, 12 BXH/Ty recombinant inbred strains, derived from these strains, were tested with both solutions to begin identification of the unknown bitter loci. Naive mice were tested for four consecutive days with each compound (order counterbalanced). Some BXH/Ty strain means resembled those of the parent strains, but others were intermediate. This indicated recombination among loci affecting avoidance, and therefore polygenic inheritance. The strain means were highly correlated across compounds (r = 0.98), suggesting that the same polygenes controlled both phenotypes. The BXH/Ty means for both compounds were then compared with the strain genotypes at 212 chromosome position markers distributed throughout the genome. Eight markers on five chromosomes (3, 6, 7, 8 and 9) yielded significant correlations. Six of the markers were correlated with both phenotypes, again suggesting common polygenic inheritance. The marker with the highest correlation was Prp, tightly linked to Soa on chromosome 6. The correlated marker regions likely contain quantitative trait loci affecting bitter avoidance. The phenotypic similarity of PROP to quinine, rather than to phenylthiourea, apparently stemming from a common polygenic basis, indicates a difference between mice and humans in gustatory organization related to bitters.   相似文献   

16.
Genetic analysis of theT-H-2 region in non-t Chromosomes   总被引:1,自引:0,他引:1  
A general breeding protocol useful in the construction of congenic lines of mice disparate in the 15 cMT-H-2 region of chromosome 17 in non-t chromosomes is described. Two such congenic lines, B6.TC2/Rn and B6.TC3/Rn, were derived from the C57BL/6J and B6.C-H-2 d/By strains using this protocol. Both B6.TC2 and B6.TC3 dissociate the quantitative activity locus for glyoxalase I (Qglo-1) from theH-2 complex, and hence possess BALB/cBy DNA centromeric toH-2. However, neither new strain is able to map anyH-2-associated restriction fragment length polymorphism with anH-2 cDNA probe even though both strains are recombinant in the 2 cMQglo-1-H-2K interval.  相似文献   

17.
Inherited predisposition to lung cancer is a phenotypic trait shared by different mouse inbred strains that show either a high or an intermediate predisposition. Other strains are instead genetically resistant. The Pas1 locus is the major determinant of lung cancer predisposition in the A/J strain (Gariboldi et al. 1993). To define the determinants of susceptibility to lung tumorigenesis in the highly susceptible SWR/J and in the intermediately susceptible BALB/c mice, we analyzed (BALB/c × SWR/J)F2 and (BALB/c × C3H/He)F2 crosses by genetic linkage experiments. The present results provide unequivocal evidence that the same Pas1/+ allele that leads to lung cancer predisposition is shared by A/J, SWR/J, and BALB/c strains. The intermediate susceptibility of the BALB/c strain would result by interaction of Pas1 locus with lung cancer resistance loci. Received: 18 April 1997 / Accepted: 15 June 1997  相似文献   

18.
S Kato  A Ishii  A Nishi  S Kuriki  T Koide 《Heredity》2014,113(5):416-423
Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs.  相似文献   

19.
Single gene control of resistance to cutaneous leishmaniasis in mice   总被引:6,自引:0,他引:6  
A series of inbred, congenic resistant, and hybrid strains of mice were intradermally inoculated with 106 promastigotes of Leishmania tropica. These mice were divided into susceptible and resistant groups using the criteria of lesion size, development of metastatic foci and skin-test reactivity. At 16 weeks of infection, resistant strains A/J, DBA/1J, AKR/J, CBA/J, C3H/HeJ, NZB/BINJ, C57BL/6J, C57BL/10Sn, B10.D2, B10.129(10M), and B10.CE(30NX) had completely resolved their lesions, while susceptible SWR/J and BALB/cJ mice demonstrated large, nonhealing cutaneous lesions. In addition, BALB/cJ developed metastatic lesions on the extremities which progressively increased in size. All BALB/cJ and SWR/J mice died by 7 1/2 months of infection. The BALB/cJ x C57BL/6JF1 hybrid behaved in an intermediate fashion showing a slower expansion of cutaneous ulcers and a delayed development of metastatic foci, however, the infection ultimately proved fatal. The F2 generation could be separated into three distinct groups: resistant, intermediate, and susceptible mice with a lesion size distribution pattern in conformity with a 1:2:1 ratio. Male/female susceptibility differences were not noted. These data indicated that development of acquired resistance may be under the control of a single, autosomal gene. The gene did not appear to be H-2-, Ir-2-, or H-11-linked as is seen with Leishmania donovani infections.  相似文献   

20.
In cytotoxicity assays, the reactions of cells from two new congenic strains-B6.K1 and B6.K2-with antiserum prepared in B6.K1 against B6 (C57BL/6) spleen and lymph node cells identify a new locus,Qa-2, betweenH-2D andTla. This locus specifies differentiation antigens on lymphoid cells. Skin grafting of B6.K1, B6.K2, and other congenic strains on a B6 background also reveals two histocompatibility loci in the region ofTla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号