首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed analysis of the subcellular distribution of acyl-CoA esters in rat liver revealed that significant amounts of long-chain acyl-CoA esters are present in highly purified nuclei. No contamination of microsomal or mitochondrial marker enzymes was detectable in the nuclear fraction. C16:1 and C18:3-CoA esters were the most abundant species, and thus, the composition of acyl-CoA esters in the nuclear fraction deviates notably from the overall composition of acyl-CoA esters in the cell. After intravenous administration of the non-beta-oxidizable [(14)C]tetradecylthioacetic acid (TTA), the TTA-CoA ester could be recovered from the nuclear fraction. Acyl-CoA esters bind with high affinity to the ubiquitously expressed acyl-CoA binding protein (ACBP), and several lines of evidence suggest that ACBP functions as a pool former and transporter of acyl-CoA esters in the cytoplasm. By using immunohistochemistry, immunofluorescence microscopy, and immunoelectron microscopy we demonstrate that ACBP localizes to the nucleus as well as the cytoplasm of rat liver cell and rat hepatoma cells, suggesting that ACBP may also be involved in regulation of acyl-CoA-dependent processes in the nucleus.  相似文献   

2.
3.
The first reaction of mitochondrial beta-oxidation, which is catalyzed by acyl-CoA dehydrogenases, was studied with unsaturated fatty acids that have a double bond either at the 4,5 or 5,6 position. The CoA thioesters of docosahexaenoic acid, arachidonic acid, 4,7,10-cis-hexadecatrienoic acid, 5-cis-tetradecenoic acid, and 4-cis-decenoic acid were effectively dehydrogenated by both rat and human long-chain acyl-CoA dehydrogenases (LCAD), whereas they were poor substrates of very long-chain acyl-CoA dehydrogenases (VLCAD). VLCAD, however, was active with CoA derivatives of long-chain saturated fatty acids or unsaturated fatty acids that have double bonds further removed from the thioester function. Although bovine LCAD effectively dehydrogenated 5-cis-tetradecenoyl-CoA (14:1) and 4,7,10-cis-hexadecatrienoyl-CoA, it was nearly inactive toward the other unsaturated substrates. The catalytic efficiency of rat VLCAD with 14:1 as substrate was only 4% of the efficiency determined with tetradecanoyl-CoA, whereas LCAD acted equally well on both substrates. The conclusion of this study is that LCAD serves an important, if not essential function in the beta-oxidation of unsaturated fatty acids.  相似文献   

4.
Long-chain acyl-CoA hydrolase in the brain   总被引:1,自引:0,他引:1  
Yamada J 《Amino acids》2005,28(3):273-278
Summary. Long-chain acyl-CoA hydrolases are a group of enzymes that cleave acyl-CoAs into fatty acids and coenzyme A (CoA-SH). Because acyl-CoAs participate in numerous reactions encompassing lipid synthesis, energy metabolism and regulation, modulating intracellular levels of acyl-CoAs would affect cellular functions. Therefore, acyl-CoA synthetases have been intensively studied. In contrast, acyl-CoA hydrolases have been less investigated, especially in the brain despite the fact that its long-chain acyl-CoA hydrolyzing activity is much higher than that in any other organ in the body. However, recent studies have dissected the multiplicity of this class of enzymes on a genomic basis, and have allowed us to discuss their function. Here, we describe a cytosolic long-chain acyl-CoA hydrolase (referred to as BACH) that is constitutively expressed in the brain, comparing it with other acyl-CoA hydrolases found in peripheral organs that have a role in fatty acid oxidation.  相似文献   

5.
6.
A translocation of phosphatidate phosphohydrolase from the cytosolic to the microsomal fraction was promoted in cell-free extracts of rat liver by oleate and palmitate and their CoA esters. Oleate was more potent in this respect than palmitate and the CoA esters were more effective than the unesterified acids. Octanoate, octanoyl-CoA and CoA did not cause the translocation. It is proposed that the interaction of phosphatidate phosphohydrolase with the membranes that synthesize glycerolipids causes it to become metabolically active. This enables the liver to increase its capacity for triacylglycerol synthesis in response to an increased supply of fatty acids.  相似文献   

7.
Because the signaling eicosanoids, epoxyeicosatrienoic acids (EETs) and HETEs, are esterified to membrane phospholipids, we asked which long-chain acyl-CoA synthetase (ACSL) isoforms would activate these molecules and whether the apparent FA substrate preferences of each ACSL isoform might differ depending on whether it was assayed in mammalian cell membranes or as a purified bacterial recombinant protein. We found that all five ACSL isoforms were able to use EETs and HETEs as substrates and showed by LC-MS/MS that ACSLs produce EET-CoAs. We found differences in substrate preference between ACS assays performed in COS7 cell membranes and recombinant purified proteins. Similarly, preferences and Michaelis-Menten kinetics for long-chain FAs were distinctive. Substrate preferences identified for the purified ACSLs did not correspond to those observed in ACSL-deficient mouse models. Taken together, these data support the concept that each ACSL isoform exhibits a distinct substrate preference, but apparent substrate specificities depend upon multiple factors including membrane character, coactivators, inhibitors, protein interactions, and posttranslational modification.  相似文献   

8.
Long-chain acyl-CoAs (LCACoA) are an activated lipid species that are key metabolites in lipid metabolism; they also have a role in the regulation of other cellular processes. However, few studies have linked LCACoA content in rat and human muscle to changes in nutritional status and insulin action. Fasting rats for 18 h significantly elevated the three major LCACoA species in muscle (P < 0.001), whereas high-fat feeding of rats with a safflower oil (18:2) diet produced insulin resistance and increased total LCACoA content (P < 0.0001) by specifically increasing 18:2-CoA. The LCACoA content of red muscle from rats (4-8 nmol/g) was 4- to 10-fold higher than adipose tissue (0.4-0.9 nmol/g, P < 0.001), suggesting that any contamination of muscle samples with adipocytes would contribute little to the LCACoA content of muscle. In humans, the LCACoA content of muscle correlated significantly with a measure of whole body insulin action in 17 male subjects (r(2) = 0.34, P = 0.01), supporting a link between muscle lipid metabolism and insulin action. These results demonstrate that the LCACoA pool reflects lipid metabolism and nutritional state in muscle. We conclude that the LCACoA content of muscle provides a direct index of intracellular lipid metabolism and its links to insulin action, which, unlike triglyceride content, is not subject to contamination by closely associated adipose tissue.  相似文献   

9.
Long-chain acyl-coenzyme A synthetases (ACSLs) are a family of enzymes that convert free long-chain fatty acids into their acyl-coenzyme A (CoA) forms. ACSL4, belonging to the ACSL family, shows a preferential use of arachidonic acid (AA) as its substrate and plays a role in the remodeling of AA-containing phospholipids by incorporating free AA. However, little is known about the roles of ACSL4 in inflammatory responses. Here, we assessed the roles of ACSL4 on the effector functions of bone marrow-derived macrophages (BMDMs) obtained from mice lacking ACSL4. Liquid chromatography–tandem mass spectrometry analysis revealed that various highly unsaturated fatty acid (HUFA)-derived fatty acyl-CoA species were markedly decreased in the BMDMs obtained from ACSL4-deficient mice compared with those in the BMDMs obtained from wild-type mice. BMDMs from ACSL4-deficient mice also showed a reduced incorporation of HUFA into phosphatidylcholines. The stimulation of BMDMs with lipopolysaccharide (LPS) elicited the release of prostaglandins (PGs), such as PGE2, PGD2 and PGF, and the production of these mediators was significantly enhanced by ACSL4 deficiency. In contrast, neither the LPS-induced release of cytokines, such as IL-6 and IL-10, nor the endocytosis of zymosan or dextran was affected by ACSL4 deficiency. These results suggest that ACSL4 has a crucial role in the maintenance of HUFA composition of certain phospholipid species and in the incorporation of free AA into the phospholipids in LPS-stimulated macrophages. ACSL4 dysfunction may facilitate inflammatory responses by an enhanced eicosanoid storm.  相似文献   

10.
11.
The lipolysis of rat chylomicron polyenoic fatty acid esters with bovine milk lipoprotein lipase and human hepatic lipase was examined in vitro. Chylomicrons obtained after feeding fish oil or soy bean oil emulsions were used as substrates. The lipolysis was followed by gas chromatography or by using chylomicrons containing radioactive fatty acids. Lipoprotein lipase hydrolyzed eicosapentaenoic (20:5) and arachidonic acid (20:4) esters at a slower rate than the C14-C18 acid esters. More 20:5 and 20:4 thus accumulated in remaining tri- and diacylglycerols. Eicosatrienoic, docosatrienoic and docosahexanoic acids exhibited an intermediate lipolysis pattern. When added together with lipoprotein lipase, hepatic lipase increased the rate of lipolysis of 20:5 and 20:4 esters of both tri- and diacylglycerols. Addition of NaCl (final concentration 1 M) during the course of lipolysis inhibited lipoprotein lipase as well as the enhancing effect of hepatic lipase on triacylglycerol lipolysis. Hepatic lipase however, hydrolyzed diacylglycerol that had already been formed. Chylomicron 20:4 and 20:5 esters thus exhibit a relative resistance to lipoprotein lipase. It is suggested that the tri- and diacylglycerol species containing these fatty acids may accumulate at the surface of the remnant particles and act as substrate for hepatic lipase during a concerted action of this enzyme and lipoprotein lipase.  相似文献   

12.
Evidence supporting a common peroxisomal beta-oxidation pathway for the coenzyme A thioesters of medium-chain-length dicarboxylic acids (DCn-CoA) and monocarboxylic acids (MCn-CoA) has been obtained. Using the mono-CoA esters of dodecanedioic acid (DC12-CoA) and lauroyl-CoA (MC12-CoA) as substrates, parallel inductions of activities and parallel increases in specific activities during purification of peroxisomal fatty acyl-CoA oxidase (EC 1.3.99.3) from rat liver after di(2-ethylhexyl)phthalate treatment were seen. The purified enzyme was used for antiserum production in rabbits; antiserum specificity was verified by immunoblot analysis. Coincident losses of oxidase activities with MC12-CoA and DC12-CoA were found in immunotitration experiments with rat liver homogenates, supporting the hypothesis that peroxisomal fatty acyl-CoA oxidase is solely responsible for the oxidation of medium-chain length dicarboxylic acid substrates. Kinetic studies with purified enzyme using the mono-CoA esters of sebacic (DC10-CoA), suberic (DC8-CoA), and adipic (DC6-CoA) acids along with DC12-CoA revealed substrate inhibition. Although these substrates exhibited similar calculated Vmax values, with decreasing chain length, the combination of increasing Km values and decreasing substrate inhibition constant (Ki) caused the maximum obtainable velocity to decrease. These studies offer an explanation for the previously observed limit of the ability of peroxisomes to chain-shorten dicarboxylates and increased urinary excretion of adipic acid when peroxisomal oxidation of dicarboxylic acids is enhanced.  相似文献   

13.
Synthesis of sugar fatty acid esters by modified lipase.   总被引:5,自引:0,他引:5  
A simple synthesis of sugar fatty acid esters was developed in a nonaqueous solution using lipase modified by synthetic detergent. Esterification of sugar was accelerated by continuous removal of water from the reaction mixture with a molecular sieve. When glucose and palmitic acid (1:1 by mole) were used as the starting substrates, more than 90% of glucose was converted to its ester in this system. The resultant product was 6-O-palmitoylglucose. Other mono- or disaccharides were also esterified by the modified lipase with high yield. It was shown that the modified lipase might act as a catalyst for the synthesis of sugar fatty acid esters.  相似文献   

14.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerols (IMTGs), but HSL regulation is poorly understood in skeletal muscle. The present study measured human skeletal muscle HSL activity at rest and during 120 min of cycling at 60% of peak O2 uptake. Several putative HSL regulators were also measured, including muscle long-chain fatty acyl-CoA (LCFA CoA) and free AMP contents and plasma epinephrine and insulin concentrations. HSL activity increased from resting levels by 10 min of exercise (from 2.09 +/- 0.19 to 2.56 +/- 0.22 mmol. min-1x kg dry mass-1, P < 0.05), increased further by 60 min (to 3.12 +/- 0.27 mmol x min-1x kg dry mass-1, P < 0.05), and decreased to near-resting rates after 120 min of cycling. Skeletal muscle LCFA CoA increased (P < 0.05) above rest by 60 min (from 15.9 +/- 3.0 to 50.4 +/- 7.9 micromol/kg dry mass) and increased further by 120 min. Estimated free AMP increased (P < 0.05) from rest to 60 min and was approximately 20-fold greater than that at rest by 120 min. Epinephrine was increased above rest (P < 0.05) at 60 (1.47 +/- 0.15 nM) and 120 min (4.87 +/- 0.76 nM) of exercise. Insulin concentrations decreased rapidly and were lower than resting levels by 10 min and continued to decrease throughout exercise. In summary, HSL activity was increased from resting levels by 10 min, increased further by 60 min, and decreased to near-resting values by 120 min. The increased HSL activity at 60 min was associated with the stimulating effect of increased epinephrine and decreased insulin levels. After 120 min, the decreased HSL activity was associated with the proposed inhibitory effects of increased free AMP. The accumulation of LCFA CoA in the 2nd h of exercise may also have reduced the flux through HSL and accounted for the reduction in IMTG utilization previously observed late in prolonged exercise.  相似文献   

15.
16.
We have used radio-high pressure liquid chromatography to study the acyl-CoA ester intermediates and the acylcarnitines formed during mitochondrial fatty acid oxidation. During oxidation of [U-14C]hexadecanoate by normal human fibroblast mitochondria, only the saturated acyl-CoA and acylcarnitine esters can be detected, supporting the concept that the acyl-CoA dehydrogenase step is rate-limiting in mitochondrial beta-oxidation. Incubations of fibroblast mitochondria from patients with defects of beta-oxidation show an entirely different profile of intermediates. Mitochondria from patients with defects in electron transfer flavoprotein and electron transfer flavoprotein:ubiquinone oxido-reductase are associated with slow flux through beta-oxidation and accumulation of long chain acyl-CoA and acylcarnitine esters. Increased amounts of saturated medium chain acyl-CoA and acylcarnitine esters are detected in the incubations of mitochondria with medium chain acyl-CoA dehydrogenase deficiency, whereas long chain 3-hydroxyacyl-CoA dehydrogenase deficiency is associated with accumulation of long chain 3-hydroxyacyl- and 2-enoyl-CoA and carnitine esters. These studies show that the control strength at the site of the defective enzyme has increased. Radio-high pressure liquid chromatography analysis of intermediates of mitochondrial fatty acid oxidation is an important new technique to study the control, organization and defects of the enzymes of beta-oxidation.  相似文献   

17.
Glucuronic acid n-alkyl esters, a novel class of promising biosurfactants and their corresponding glucose esters with the same side-chain length, were synthesized by direct esterification in a non-aqueous phase (tert-butanol) using an immobilized lipase.  相似文献   

18.
Willis RM  Wahlen BD  Seefeldt LC  Barney BM 《Biochemistry》2011,50(48):10550-10558
Fatty alcohols are of interest as a renewable feedstock to replace petroleum compounds used as fuels, in cosmetics, and in pharmaceuticals. One biological approach to the production of fatty alcohols involves the sequential action of two bacterial enzymes: (i) reduction of a fatty acyl-CoA to the corresponding fatty aldehyde catalyzed by a fatty acyl-CoA reductase, followed by (ii) reduction of the fatty aldehyde to the corresponding fatty alcohol catalyzed by a fatty aldehyde reductase. Here, we identify, purify, and characterize a novel bacterial enzyme from Marinobacter aquaeolei VT8 that catalyzes the reduction of fatty acyl-CoA by four electrons to the corresponding fatty alcohol, eliminating the need for a separate fatty aldehyde reductase. The enzyme is shown to reduce fatty acyl-CoAs ranging from C8:0 to C20:4 to the corresponding fatty alcohols, with the highest rate found for palmitoyl-CoA (C16:0). The dependence of the rate of reduction of palmitoyl-CoA on substrate concentration was cooperative, with an apparent K(m) ~ 4 μM, V(max) ~ 200 nmol NADP(+) min(-1) (mg protein)(-1), and n ~ 3. The enzyme also reduced a range of fatty aldehydes with decanal having the highest activity. The substrate cis-11-hexadecenal was reduced in a cooperative manner with an apparent K(m) of ~50 μM, V(max) of ~8 μmol NADP(+) min(-1) (mg protein)(-1), and n ~ 2.  相似文献   

19.
The polyol, trimethylolpropane (2-ethyl-2-hydroxymethyl-1,3-propanediol), and a mixture of rapeseed oil fatty acid methyl esters were transesterified by immobilized lipases without additional organic solvent. The conversion to the polyol tri-ester with immobilized Rhizomucor mieheilipase Lipozyme IM 20 was about 75% after 24 h at 58°C, 5.3 kPa, with no added water, and the highest conversion of about 90% was reached in 66 h.  相似文献   

20.
Mammalian liver peroxisomes are capable of beta-oxidizing a variety of substrates including very long chain fatty acids and the side chains of the bile acid intermediates di- and trihydroxycoprostanic acid. The first enzyme of peroxisomal beta-oxidation is acyl-CoA oxidase. It remains unknown whether peroxisomes possess one or several acyl-CoA oxidases. Peroxisomal oxidases from rat liver were partially purified by (NH4)2SO4 precipitation and heat treatment, and the preparation was subjected to chromatofocusing, chromatography on hydroxylapatite and dye affinity matrices, and gel filtration. The column eluates were assayed for palmitoyl-CoA and trihydroxycoprostanoyl-CoA oxidase activities and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results revealed the presence of three acyl-CoA oxidases: 1) a fatty acyl-CoA oxidase with a pI of 8.3 and an apparent molecular mass of 145 kDa. The enzyme consisted mainly of 52- and 22.5-kDa subunits and could be induced by clofibrate treatment; 2) a noninducible fatty acyl-CoA oxidase with a pI of 7.1 and an apparent molecular mass of 427 kDa. It consisted mainly, if not exclusively, of one polypeptide component of 71 kDa; and 3) a noninducile trihydroxycoprostanoyl-CoA oxidase with a pI of 7.1 and an apparent molecular mass of 139 kDa. It consisted mainly, if not exclusively, of one polypeptide component of 69 kDa. Our findings are probably related to the recent discovery of two species of acyl-CoA oxidase mRNA in rat liver (Miyazawa, S., Hayashi, H., Hijikata, M., Ishii, N., Furata, S., Kagamiyama, H., Osumi, T., and Hashimoto, T. (1987) J. Biol. Chem. 262, 8131-8137) and they probably also explain why in human peroxisomal beta-oxidation defects an accumulation of very long chain fatty acids is not always accompanied by an excretion of bile acid intermediates and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号