首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The running behavior and biochemical markers of oxidative and glycolytic activities associated with voluntary running activity were studied in male Sprague-Dawley rats after 6 wk of training in exercise wheel cages. Twenty-four-hour recordings of running activity were used to quantify the number of individual running bouts, their duration and running speed, and the distance run per day. We then established three categories of voluntary running activity based on the mean distance run per day during the last 3 wk of training: low-activity runners averaged 2-5 km/day, medium runners 6-9 km/day, and high runners greater than 11 km/day. Each group demonstrated an intermittent, nocturnal running pattern, at relatively high intensities, with a similar mean running speed for all groups (avg approximately 45 m/min). Differences in total distance run per day were the result of variations in both the number and duration of individual running bouts. Specifically, high runners (n = 7) had 206 +/- 30 individual running bouts per 24 h, each lasting 87 +/- 7 s; medium runners (n = 7) 221 +/- 22 running bouts, lasting 47 +/- 5 s; and low runners (n = 7) 113 +/- 7 bouts, each lasting 40 +/- 7 s. Voluntary running depressed the rate of body weight gain compared with sedentary control rats, despite an increased food and water intake for all runners. Furthermore, drinking activity was temporally associated with running periods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Chronic voluntary exercise in wheels for 5 weeks in spontaneously hypertensive rats (SHR) augments in vivo natural killer (NK) cell cytotoxicity. Endogenous beta-endorphin is increased in cerebrospinal fluid after voluntary exercise in rats and we have recently shown that beta-endorphin administered i.c.v. augments NK cell mediated cytotoxicity in vivo in a similar way as chronic voluntary exercise. We have now further investigated the involvement of central opioid systems in the exercise-induced augmentation in natural immunity. Exercise consisted of voluntary running in wheels for 5 weeks. In vivo cytotoxicity was measured as clearance of injected 51Cr-labeled YAC-1 lymphoma cells from the lungs. The clearance of YAC-1 cells in vivo was significantly increased in runners as compared to sedentary controls. Selective delta, kappa, or mu-opioid receptor antagonists were administered i.c.v. with osmotic minipumps during the last 6 days of the 5 weeks of running. The delta-receptor antagonist naltrindole (40-50 microg/day) significantly but not completely inhibited the enhanced NK-cell cytotoxicity seen after 5 weeks of exercise. Neither the kappa-receptor antagonist nor-BNI or the mu-receptor antagonist beta-FNA influenced the augmentation in NK cell cytotoxicity. Nor-BNI per se significantly augments in vivo cytotoxicity, indicating some inhibiting effect on natural immunity that could be mediated through the kappa-opioid receptor. Our data suggest the involvement of central delta-opioid receptors in the enhancement of natural cytotoxicity seen after chronic voluntary exercise.  相似文献   

3.
Mitogenic response of T-lymphocytes to exercise training and stress   总被引:3,自引:0,他引:3  
The impact of exercise training and stress on the immune response was examined by measuring the mitogenic response of spleen lymphocytes to the T-cell mitogen concanavalin A (Con-A). Male Sprague-Dawley rats were divided into four groups: sedentary controls (n = 11), handled controls (n = 12), treadmill runners (n = 10), and voluntary runners (n = 11) housed in running wheels. The treadmill group ran at 22 m/min (0.8 mph) for 45 min, 5 days/wk for 8 wk. After the training period, spleen lymphocytes isolated from each rat were incubated with Con-A for 54 h, pulsed with radiolabeled thymidine for 18 h, and counted for tritium activity. Counts per minute per group (means +/- SE) were as follows: sedentary, 6,839 +/- 1,461; handled, 8,959 +/- 1,576; voluntary runners, 13,126 +/- 2,069; and treadmill runners, 18,950 +/- 5,975. One-way analysis of variance and Tukey's highly significant difference test found the counts per minute of the treadmill runners to be significantly different from the counts per minute of the sedentary animals. These results indicate that the responsiveness of spleen lymphocytes to Con-A increases as the level of stress and exercise increases.  相似文献   

4.
Moderate-intensity treadmill running can alter male Apc(Min/+) mouse polyp formation. This purpose of this study was to examine whether exercise mode differentially affects Apc(Min/+) mouse intestinal polyp development in male and female mice. Male and female Apc(Min/+) mice were randomly assigned to control, treadmill (18 m/min; 60 min/day; 6 days/wk), or voluntary wheel running (24-h access) groups. Nine weeks of training decreased total intestinal polyps by 29% in male treadmill runners (66 +/- 9; P = 0.038) compared with male controls (93 +/- 7). The number of large polyps (>/=1-mm diameter) were also reduced by 38% in male treadmill runners (49 +/- 6; P = 0.005) compared with male controls (79 +/- 6). Treadmill running in female Apc(Min/+) mice and wheel running in both genders did not affect polyp number or size. Spleen weight decreased in male treadmill runners (91 +/- 9 mg; P = 0.011) and wheel runners (75 +/- 6 mg; P = 0.004) compared with controls (141 +/- 13 mg). Plasma IL-6 was reduced by 96% in male treadmill runners (1.2 +/- 0.6 pg/ml) and 78% in male wheel runners (6.6 +/- 3.3 pg/ml) compared with control mice (27.9 +/- 2.8 pg/ml; P < 0.05). Female mice responded similarly with an 86% decrease in plasma IL-6 with treadmill running (3.2 +/- 1.2 pg/ml) and 90% decrease with wheel running (2.9 +/- 2.0 pg/ml) compared with control mice (21.1 +/- 5.3 pg/ml; P < 0.05). The crypt depth-to-villus height ratio in the intestine, an indirect marker of intestinal inflammation, decreased by 21 (P = 0.024) and 24% (P = 0.029), respectively, in male and female treadmill runners but not wheel runners. Physical activity-induced attenuation of intestinal polyp number and size is dependent on exercise mode and differs between genders. The modulation of systemic and intestinal inflammation may also depend on exercise mode.  相似文献   

5.
Effect of voluntary exercise on longevity of rats   总被引:5,自引:0,他引:5  
The purpose of this study was to obtain information regarding the effects of exercise on longevity in rats. The exercise used was voluntary activity wheel running. The runners gradually decreased their running from approximately 4 to approximately 1 mile/day as they aged from 9 to 30 mo. The runners lived slightly but significantly longer than sedentary freely eating controls and sedentary pair-fed controls (1,012 +/- 138 vs. 923 +/- 160 and 928 +/- 186 days) but significantly less long than food-restricted paired-weight sedentary controls (1,113 +/- 150 days). Although the exercise improved survival, it did not result in an extension of life-span. In contrast, the food-restricted paired-weight sedentary rats showed a true increase in life-span. The paired-weight rats also had a significantly reduced incidence of malignancies compared with the other three groups. However, there was no significant difference between the runners and the freely eating or pair-fed sedentary controls in the cause of death. These results provide evidence that exercise improves survival but does not result in an extension of life-span in rats.  相似文献   

6.
Beneficial effects of voluntary wheel running on hippocampal neurogenesis, morphology and hippocampal-dependent behavior have widely been studied in rodents, but also serious side effects and similarities to stereotypy have been reported. Some mouse strains run excessively when equipped with running wheels, complicating the comparability to human exercise regimes. Here, we investigated how exercise restriction to 6 h/day affects hippocampal morphology and metabolism, stereotypic and basal behaviors, as well as the endocannabinoid system in wheel running C57BL/6 mice; the strain most commonly used for behavioral analyses and psychiatric disease models. Restricted and unrestricted wheel running had similar effects on immature hippocampal neuron numbers, thermoregulatory nest building and basal home-cage behaviors. Surprisingly, hippocampal gray matter volume, assessed with magnetic resonance (MR) imaging at 9.4 Tesla, was only increased in unrestricted but not in restricted runners. Moreover, unrestricted runners showed less stereotypic behavior than restricted runners did. However, after blockage of running wheels for 24 h stereotypic behavior also increased in unrestricted runners, arguing against a long-term effect of wheel running on stereotypic behavior. Stereotypic behaviors correlated with frontal glutamate and glucose levels assessed by 1H-MR spectroscopy. While acute running increased plasma levels of the endocannabinoid anandamide in former studies in mice and humans, we found an inverse correlation of anandamide with the daily running distance after long-term running. In conclusion, although there are some diverging effects of restricted and unrestricted running on brain and behavior, restricted running does not per se seem to be a better animal model for aerobic exercise in mice.  相似文献   

7.
Reports of plasma beta-endorphin (B-EN) levels in response to submaximal exercise have been highly disparate. Variations in experimental design have complicated interpretation of previous research. The present study was designed to determine whether a sequential change in plasma beta-endorphin (B-EN), corticotropin (ACTH), and cortisol levels occurs in response to a 30-min submaximal run. Twenty-three subjects were divided into four groups: male runners, female runners, sedentary males and sedentary females. Subjects ran on a treadmill at 80% of previously determined maximum heart rate. Five plasma samples were obtained through an indwelling catheter before exercise (-30 and 0 min), at 15 and 30 min of exercise, and after 30 minutes of recovery. The run resulted in no rise in B-EN, ACTH, and cortisol despite an elevated rectal temperature. B-EN values were significantly higher in males than in females (p less than 0.01). No sex or training differences were seen with respect to change of hormone concentrations over the course of the run. Three male runners developed symptoms of vasovagal syncope after the catheter placement and had high initial B-EN, ACTH, and cortisol concentrations which decreased throughout the run. These data indicate that gender and training do not affect ACTH and cortisol concentrations before, during, and after 30 min of treadmill running at 80% of maximum heart rate, whereas B-EN concentrations are higher in males under these conditions.  相似文献   

8.
We examined the effect of voluntary exercise on antioxidant enzyme activities (catalase, glutathione peroxidase, superoxide dismutase) in skeletal muscle (hind- and forelimb) and heart of a model small mammal species: short-tailed field vole Microtus agrestis. In addition, DNA oxidation was determined in lymphocytes and hepatocytes using the comet assay and lipid peroxidation estimated in hindlimb muscle by measurement of thiobarbituric-acid-reactive substances. Voles (approximately 6 weeks old), exposed to a 16L:8D photoperiod (lights on 0500 h), ran almost continuously during darkness. We studied the effects of voluntary running over 1 or 7 days duration, with or without an 8-h rest period, on various biomarkers of oxidative stress compared to nonrunning controls. No differences were observed in antioxidant enzyme activities, except in heart total superoxide dismutase activity (P=0.037), with the lowest levels in 1- and 7-day runners at 0500 h. DNA oxidative damage, in lymphocytes or hepatocytes, and lipid peroxidation did not differ between groups. There was no evidence of any significant increase in any oxidative stress parameter in running individuals, despite having significantly elevated energy expenditures compared to sedentary controls.  相似文献   

9.
The discovery that the endogenous opioid peptides contribute to the modulation of appetitive behavior and neuroendocrine function has raised questions as to whether disturbances of opioids contributes to the pathophysiology of eating disorders. To assess central nervous system (CNS) beta-endorphin in patients with anorexia nervosa we measured cerebrospinal fluid (CSF) beta-endorphin concentrations before, and at intervals after weight correction. In addition, we measured three sister peptides (beta-lipotropin, adrenocorticotropic hormone (ACTH), and the N-terminal fragment) derived from the same precursor molecule, pro-opiomelanocortin (POMC) to determine whether possible disturbances might extend to sister peptides. Underweight anorectics (58 +/- 5% of average body weight (ABW), n = 10) had significantly lower CSF concentrations of all 4 peptides compared to healthy controls (102 +/- 10% ABW, n = 11). CSF concentrations of all 4 POMC-related peptides were found to be significantly increased when the same anorectics were restudied 4 to 6 weeks after weight gain (83 +/- 4% ABW). After weight gain, levels of CSF beta-endorphin, beta-lipotropin, and ACTH were similar to controls, whereas levels of CSF N-POMC remained significantly less than controls. Another group of women, previously underweight with anorexia nervosa, but weight-restored (93 +/- 11% ABW, n = 12) for greater than 1 year had CSF concentrations of all 4 POMC-related peptides that were similar to controls. We conclude that underweight anorectics have state-associated disturbances of CNS beta-endorphin as well as other POMC-related peptides. These abnormalities are part of the neurobiological syndrome of anorexia nervosa and may contribute to the characteristic alterations in behavior and neuroendocrine function.  相似文献   

10.
Patellar tendon matrix changes associated with aging and voluntary exercise   总被引:1,自引:0,他引:1  
Male rats maintained under constant environmental conditions were randomly assigned to nonrunner (NR) and voluntary exercise (R) groups. At 9 mo, voluntary exercise significantly increased muscle cytochrome c concentration and citrate synthase activity. Also, at the same age, R animals had significantly greater glycosaminoglycan concentration than NR, but no changes in dry weight and collagen concentration were significant. By age 28 mo, the R groups had reduced daily running by 70%, and elevation of tendon glycosaminoglycans relative to NR animals was no longer statistically significant. A similar trend was noted for muscle mitochondrial markers. Aging significantly decreased tendon glycosaminoglycans and increased collagen concentration. Although aging reduced the total amount of voluntary exercise, the concentration of tendon glycosaminoglycans in 28-mo-old runners was equivalent to levels in 9-mo-old sedentary rats, suggesting that voluntary exercise slowed the decline in galactosamine-containing glycosaminoglycans with aging.  相似文献   

11.
Evidence suggests that mitochondrial dysfunction and oxidant production, in association with an accumulation of oxidative damage, contribute to the aging process. Regular physical activity can delay the onset of morbidity, increase mean lifespan, and reduce the risk of developing several pathological states. No studies have examined age-related changes in oxidant production and oxidative stress in both subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria in combination with lifelong exercise. Therefore, we investigated whether long-term voluntary wheel running in Fischer 344 rats altered hydrogen peroxide (H2O2) production, antioxidant defenses, and oxidative damage in cardiac SSM and IFM. At 10-11 wk of age, rats were randomly assigned to one of two groups: sedentary and 8% food restriction (sedentary; n = 20) or wheel running and 8% food restriction (runners; n = 20); rats were killed at 24 mo of age. After the age of 6 mo, running activity was maintained at an average of 1,145 +/- 248 m/day. Daily energy expenditure determined by doubly labeled water technique showed that runners expended on average approximately 70% more energy per day than the sedentary rats. Long-term voluntary wheel running significantly reduced H2O2 production from both SSM (-10.0%) and IFM (-9.6%) and increased daily energy expenditure (kJ/day) significantly in runners compared with sedentary controls. Additionally, MnSOD activity was significantly lowered in SSM and IFM from wheel runners, which may reflect a reduction in mitochondrial superoxide production. Activities of the other major antioxidant enzymes (glutathione peroxidase and catalase) and glutathione levels were not altered by wheel running. Despite the reduction in mitochondrial oxidant production, no significant differences in oxidative stress levels (4-hydroxy-2-nonenal-modified proteins, protein carbonyls, and malondialdehyde) were detected between the two groups. The health benefits of chronic exercise may be, at least partially, due to a reduction in mitochondrial oxidant production; however, we could not detect a significant reduction in several selected parameters of oxidative stress.  相似文献   

12.
Male rats that exercise in running wheels have a longer average survival than freely eating sedentary controls but, in contrast to food-restricted sedentary controls of the same weight, show no extension of maximal life span (J. Appl. Physiol. 59: 826-831, 1985). To test the possibility that exercise may counteract a life-extending effect of decreased availability of energy for certain biological processes such as cell proliferation, we examined the combined effects of exercise and food restriction on longevity of male rats. As before, wheel running improved average length of life, 978 +/- 172 vs. 875 +/- 175 (SD) days, for the sedentary controls (P less than 0.01) without increasing maximal life span. Paired-weight controls, food restricted (approximately 30% below ad libitum) to weight the same as the runners, showed increases in both average (1,056 +/- 144 days) and maximal life span. Food-restricted runners, with intake restricted to the same extent (approximately 30%), had an increased mortality rate over the first approximately 50% of their survival curve up to approximately 900 days of age; their average life span (995 +/- 226) was similar to that of the control group of runners and shorter than that of their paired-weight food-restricted sedentary controls (1,088 +/- 159 days, P less than 0.05). However, after approximately 900 days of age the food-restricted runners' survival became similar to that of the food-restricted sedentary groups, with a comparable increase in maximal life span. Thus the exercise did not counteract the increase in maximal life span induced by food restriction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
These experiments were designed to study skeletal muscle pathology resulting from eccentric-biased exercise in rats. The effects on the muscles of running on a treadmill on a 0 degrees incline (similar amounts of concentric and eccentric contractions), down a 16 degrees incline (primarily eccentric contractions), and up a 16 degrees incline (primarily concentric contractions) at 16 m . min-1 for 90 min were assessed by following postexercise changes in 1) plasma creatine kinase and lactate dehydrogenase activities, 2) glucose-6-phosphate dehydrogenase (G-6-PDase) activity (bio- and histochemically) in the physiological extensor muscles, and 3) histological appearance of the muscles. The data indicate the following. 1) Whereas all exercise protocols resulted in elevations of plasma enzymes immediately after running, only eccentric exercise caused late phase elevations 1.5-2 days postexercise. 2) Significant increases in muscle G-6-PDase activity, which were always associated with accumulations of mononuclear cells, always occurred within some muscles of each extensor group 1-3 days following downhill and uphill running and did not occur following level running; the increases in activity were usually of lower magnitude in the muscles of uphill runners than in those of downhill runners; the deeply located, predominantly slow-twitch muscles were most affected by both down- and uphill running. 3) Muscle histology demonstrated localized disruption of normal banding patterns of some fibers immediately after exercise and accumulations of macrophages in the interstitium and in some (less than 5%) muscle fibers by 24 h postexercise in the deep slow muscles of the antigravity groups. Although the data generally indicated that eccentric exercise causes greater injury to the muscles, questions remain.  相似文献   

14.
We studied the effects of exhausting exercise and exercise training on skeletal muscle mitochondrial membrane fluidity and lipid peroxidation in rats. The first part of the study involved 60 untrained rats divided into six equal groups. Of the total number 10 rats were sedentary and acted as controls. The remaining 50 rats exercised to exhaustion and were sacrificed at 0-h, 24-h, 48-h, 72-h, and 96-h post-exercise. The second part of the study involved 40 rats which were divided into four equal groups. Of these 10 rats were sedentary and acted as controls. The remaining 30 rats underwent 8 weeks of exercise training. They were then subjected to a single period of exhausting exercise and were sacrificed at 0-h, 24-h and 48-h post-exercise. Membrane fluidity was measured using the fluorescence polarization method. Lipid peroxidation was estimated by determining the thiobarbituric acid-reactive substances (TBARS) in mitochondria. In the untrained rats, mitochondrial fluorescence polarization and TBARS contents were significantly increased post-exercise compared with the sedentary controls (P < 0.05). They did not return to near control levels until 96 h and 48 h, respectively. In the trained rats, fluorescence polarization was raised compared with the sedentary controls but this was significantly lower than those measured at the same times of the untrained group post-exercise (P < 0.05). Exhausting exercise decreased membrane fluidity and increased lipid peroxidation in rat skeletal muscle mitochondria. These effects were relieved to some extent by exercise training.  相似文献   

15.
To investigate the hypothesis that endurance exercise may lead to a decrease in ventilatory chemosensitivity as possibly mediated by an increase in endogenous beta-endorphins, we measured hypercapnic ventilatory responsiveness (HCVR) and circulating beta-endorphin immunoreactivity in six runners before and after a marathon (42.2 km) race and after administration of 10 mg iv naloxone. Similar testing was performed at identical time periods on the day before the marathon as control data. On each occasion, HCVR was measured twice 15 min apart, and the mean value was used for analysis. Six active (training distance 50-104 km/wk) and experienced (no. of marathons completed, 1-25) runners participated in the study. There were no significant changes in beta-endorphin activity or HCVR on the control day. All runners experienced a rise in beta-endorphin activity from premarathon (21.3 +/- 16.0 pg/ml) to immediate postmarathon (89.6 +/- 84.9 pg/ml) values (P less than 0.05). However, HCVR showed no significant change at any of the three testing periods on the marathon day. To investigate whether a time delay may have affected the lack of response to naloxone, additional testing was performed in five subjects, except that 10 mg iv naloxone was given within 10 min after completion of the marathon, and then HCVR was measured. Although there was a greater than fourfold increase in beta-endorphin immunoreactivity after the marathon, there was no significant change in HCVR after naloxone administration. We conclude that natural increases in endogenous beta-endorphin activity associated with marathon running do not modulate central chemosensitivity.  相似文献   

16.
The nature and kinetics of postexercise cardiac troponin (cTn) appearance is poorly described and understood in most athlete populations. We compared the kinetics of high-sensitivity cTn T (hs-cTnT) after endurance running in training-matched adolescents and adults. Thirteen male adolescent (mean age: 14.1 ± 1.1 yr) and 13 male adult (24.0 ± 3.6 yr) runners performed a 90-min constant-load treadmill run at 95% of ventilatory threshold. Serum hs-cTnT levels were assessed preexercise, immediately postexercise, and at 1, 2, 3, 4, 5, 6, and 24 h postexercise. Serum NH(2)-terminal pro-brain natriuretic peptide (NT-pro-BNP) levels were recorded preexercise and 3, 6, and 24 h postexercise. Left ventricular function was assessed preexercise, immediately postexercise, and 6 h postexercise. Peak hs-cTnT occurred at 3-4 h postexercise in all subjects, but was substantially higher (P < 0.05) in adolescents [median (range): 211.0 (11.2-794.5) ng/l] compared with adults [median (range): 19.1 (9.7-305.6) ng/l]. Peak hs-cTnT was followed by a rapid decrease in both groups, although adolescent data had not returned to baseline at 24 h. Substantial interindividual variability was noted in peak hs-cTnT, especially in the adolescents. NT-pro-BNP was significantly elevated postexercise in both adults and adolescents and remained above baseline at 24 h in both groups. In both groups, left ventricular ejection fraction and the ratio of early-to-atrial peak Doppler flow velocities were significantly decreased immediately postexercise. Peak hs-cTnT was not related to changes in ejection fraction, ratio of early-to-atrial peak Doppler flow velocities, or NT-pro-BNP. The present data suggest that postexercise hs-cTnT elevation 1) occurred in all runners, 2) peaked 3-4 h postexercise, and 3) the peak hs-cTnT concentration after prolonged exercise was higher in adolescents than adults.  相似文献   

17.
Metabolic changes following eccentric exercise in trained and untrained men   总被引:10,自引:0,他引:10  
The effects of one 45-min bout of high-intensity eccentric exercise (250 W) were studied in four male runners and five untrained men. Plasma creatine kinase (CK) activity in these runners was higher (P less than 0.001) than in the untrained men before exercise and peaked at 207 IU/ml 1 day after exercise, whereas in untrained men the maximum was 2,143 IU/ml 5 days after exercise. Plasma interleukin-1 (IL-1) in the trained men was also higher (P less than 0.001) than in the untrained men before exercise but did not significantly increase after exercise. In the untrained men, IL-1 was significantly elevated 3 h after exercise (P less than 0.001). In the untrained group only, 24-h urines were collected before and after exercise while the men consumed a meat-free diet. Urinary 3-methylhistidine/creatinine in the untrained group rose significantly from 127 mumol/g before exercise to 180 mumol/g 10 days after exercise. The results suggest that in untrained men eccentric exercise leads to a metabolic response indicative of delayed muscle damage. Regularly performed long distance running was associated with chronically elevated plasma IL-1 levels and serum CK activities without acute increases after an eccentric exercise bout.  相似文献   

18.
This study was designed to investigate the expression of heat shock protein 70 (HSP70), after acute moderate intensity exercise, in human peripheral blood leukocytes of trained runners and untrained controls. Ten male long-distance trained runners (TR) and untrained sedentary control subjects (SED) ran for 1 h at 70% of heart rate reserve (HRR). Basal HSP70 expression in TR was usually lower than that in SED, but basal HSP70 gene expression in TR was usually higher than that in SED. Although expression rates of exercise-induced HSP70 in both groups were similar, levels of HSP70 in SED were significantly higher than in TR. Significant increases in leukocytes, neutrophils, and lymphocytes after exercise were observed in both groups, but there were some differences between groups. We conclude that 1 h treadmill running at 70% HRR intensity is a sufficient stimulus to leukocytosis, neutrocytosis, lymphocytosis, and HSP70 proteins and gene expression in leukocytes. Adaptation to training was observed in TR.  相似文献   

19.
Enhanced recovery following physical activity and exercise-induced muscle damage (EIMD) has become a priority for athletes. Consequently, a number of post-exercise recovery strategies are used, often without scientific evidence of their benefits. Within this framework, the purpose of this study was to test the efficacy of whole body cryotherapy (WBC), far infrared (FIR) or passive (PAS) modalities in hastening muscular recovery within the 48 hours after a simulated trail running race. In 3 non-adjoining weeks, 9 well-trained runners performed 3 repetitions of a simulated trail run on a motorized treadmill, designed to induce muscle damage. Immediately (post), post 24 h, and post 48 h after exercise, all participants tested three different recovery modalities (WBC, FIR, PAS) in a random order over the three separate weeks. Markers of muscle damage (maximal isometric muscle strength, plasma creatine kinase [CK] activity and perceived sensations [i.e. pain, tiredness, well-being]) were recorded before, immediately after (post), post 1 h, post 24 h, and post 48 h after exercise. In all testing sessions, the simulated 48 min trail run induced a similar, significant amount of muscle damage. Maximal muscle strength and perceived sensations were recovered after the first WBC session (post 1 h), while recovery took 24 h with FIR, and was not attained through the PAS recovery modality. No differences in plasma CK activity were recorded between conditions. Three WBC sessions performed within the 48 hours after a damaging running exercise accelerate recovery from EIMD to a greater extent than FIR or PAS modalities.  相似文献   

20.
Venous blood samples were obtained from 18 marathon runners before and after the 27 km uphill portion of a 46 km transmountain race at altitudes of 1,950-3,400 m. There was an inverse correlation between blood lactate levels and running time (r = -0.83), with the runners with higher lactate levels completing the race in less time. The faster half of the group had higher blood levels of glucose and lactate and lower free fatty acid levels at 26 km distance and 3,400 m elevation. The elevated lactate concentrations in the blood of the faster runners suggest that anaerobic metabolism can contribute significantly to total energy production during prolonged exercise at high altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号