首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The voltage-dependent sodium channel from the eel electroplax was purified and reconstituted into vesicles of varying lipid composition. Isotopic sodium uptake experiments were conducted with vesicles at zero membrane potential, using veratridine to activate channels and tetrodotoxin to block them. Under these conditions, channel-dependent uptake of isotopic sodium by the vesicles was observed, demonstrating that a certain fraction of the reconstituted protein was capable of mediating ion fluxes. In addition, vesicles untreated with veratridine showed significant background uptake of sodium; a considerable proportion of this flux was blocked by tetrodotoxin. Thus these measurements showed that a significant subpopulation of channels was present that could mediate ionic fluxes in the absence of activating toxins. The proportion of channels exhibiting this behavior was dependent on the lipid composition of the vesicles and the temperature at which the uptake was measured; furthermore, the effect of temperature was reversible. However, the phenomenon was not affected by the degree of purification of the protein used for reconstitution, and channels in resealed electroplax membrane fragments or reconstituted, solely into native eel lipids did not show this behavior. The kinetics of vesicular uptake through these spontaneously-opening channels was slow, and we attribute this behavior to a modification of sodium channel inactivation.  相似文献   

2.
We here describe a protocol for fusing vesicles into large structures suitable for patch clamp recording. The method may be used with native membrane vesicles or with liposomes containing reconstituted/purified ion channels. The resulting unilamellar membranes exhibit high channel surface abundance, yielding multiple channels in the average excised patch. The procedure has been used to record voltage-sensitive Na channels from three native membrane preparations (eel electroplax, rat skeletal muscle, squid optic nerve), and from reconstituted protein purified from eel electroplax. Channels treated with batrachotoxin (BTX) displayed characteristic activation voltage dependence, conductances, selectivity, and sensitivity to saxitoxin (STX).  相似文献   

3.
Antibodies against a peptide (SP19) corresponding to a highly conserved, predicted intracellular region of the sodium channel alpha subunit bind rat brain sodium channels with a similar affinity as the peptide antigen, indicating that the corresponding segment of the alpha subunit is fully accessible in the intact channel structure. These antibodies recognize sodium channel alpha subunits from rat or eel brain, rat skeletal muscle, rat heart, eel electroplax, and locust nervous system. alpha subunits from all these tissues except rat skeletal muscle are substrates for phosphorylation by cAMP-dependent protein kinase. Disulfide linkage of alpha and beta 2 subunits was observed for both the RI and RII subtypes of rat brain sodium channels and for sodium channels from eel brain but not for sodium channels from rat heart, eel electroplax, or locust nerve cord. Treatment with neuraminidase reduced the apparent molecular weight of sodium channel alpha subunits from rat and eel brain and eel electroplax by 22,000-58,000, those from heart by 8000, and those from locust nerve cord by less than 4000. Our results provide the first identification of sodium channel alpha subunits from rat heart and locust brain and nerve cord and show that sodium channel alpha subunits are expressed with different subunit associations and posttranslational modifications in different excitable tissues.  相似文献   

4.
  • 1.1. Co-isolating proteins (Mr 170,000–220,000) from sodium channel preparations made from the electric organ of the electric eel (Electrophorus electricus) were detected on Western blots using monoclonal a antibodies.
  • 2.2. Similar protein patterns were seen on immunoblots containing immunoprecipitated protein from eel muscle and brain tissues but not heart.
  • 3.3. These co-isolating proteins could be separated from the mature TTX-sensitive channel protein (Mr 280,000) using a lentil lectin-Sepharose column.
  • 4.4. The 180 kDa proteins do not appear to be channel-related and can be detected as contaminants in electroplax sodium channel preparations using the monoclonal antibodies described here.
  相似文献   

5.
In the interest of continuing structure-function studies, highly purified sodium channel preparations from the eel electroplax were incorporated into planar lipid bilayers in the presence of veratridine. This lipoglycoprotein originates from muscle-derived tissue and consists of a single polypeptide. In this study it is shown to have properties analogous to sodium channels from another muscle tissue (Garber, S. S., and C. Miller. 1987. Journal of General Physiology. 89:459-480), which have an additional protein subunit. However, significant qualitative and quantitative differences were noted. Comparison of veratridine-modified with batrachotoxin-modified eel sodium channels revealed common properties. Tetrodotoxin blocked the channels in a voltage-dependent manner indistinguishable from that found for batrachotoxin-modified channels. Veratridine-modified channels exhibited a range of single-channel conductance and subconductance states. The selectivity of the veratridine-modified sodium channels for sodium vs. potassium ranged from 6-8 in reversal potential measurements, while conductance ratios ranged from 12-15. This is similar to BTX-modified eel channels, though the latter show a predominant single-channel conductance twice as large. In contrast to batrachotoxin-modified channels, the fractional open times of these channels had a shallow voltage dependence which, however, was similar to that of the slow interaction between veratridine and sodium channels in voltage-clamped biological membranes. Implications for sodium channel structure are discussed.  相似文献   

6.
Highly purified sodium channel protein from the electric eel, Electrophorus electricus, was reconstituted into liposomes and incorporated into planar bilayers made from neutral phospholipids dissolved in decane. The purest sodium channel preparations consisted of only the large, 260-kD tetrodotoxin (TTX)-binding polypeptide. For all preparations, batrachotoxin (BTX) induced long-lived single-channel currents (25 pS at 500 mM NaCl) that showed voltage-dependent activation and were blocked by TTX. This block was also voltage dependent, with negative potentials increasing block. The permeability ratios were 4.7 for Na+:K+ and 1.6 for Na+:Li+. The midpoint for steady state activation occurred around -70 mV and did not shift significantly when the NaCl concentration was increased from 50 to 1,000 mM. Veratridine-induced single-channel currents were about half the size of those activated by BTX. Unpurified, nonsolubilized sodium channels from E. electricus membrane fragments were also incorporated into planar bilayers. There were no detectable differences in the characteristics of unpurified and purified sodium channels, although membrane stability was considerably higher when purified material was used. Thus, in the eel, the large, 260-kD polypeptide alone is sufficient to demonstrate single-channel activity like that observed for mammalian sodium channel preparations in which smaller subunits have been found.  相似文献   

7.
Summary Eleven monoclonal antibodies were identified that recognized eel electroplax sodium channels. All the monoclonal antibodies specifically immunostained the mature TTX-sensitive sodium channel (M r 265,000) on immunoblots. None of the monoclonal antibodies would precipitate the in vitro translated channel core polypeptide in solution. One monoclonal antibody, 3G4, was found to bind to an epitope involving terminal polysialic acids. Extensive digestion of the channel by the exosialidase, neuraminidase, or partial polysialic acid removal bythe endosialidase, endo-N-acetylneuraminidase, destroy the 3G4 epitope, 3G4 is, therefore, a highly selective probe for the post-translationally attached polysialic acids. Except for this monoclonal antibody, the epitopes recognized by the remaining antibodies were highly resistant to extensive N-linked deglycosylation. Thus, the monoclonal antibodies may be directed against unique post-translationally produced domains of the electroplax sodium channel, presumably sugar groups that are abundant on this protein (Miller, J.A., Agnew, W.S., Levinson, S.R. 1983.Biochemistry 22:462–470). These monoclonal antibodies should prove useful as tools to study discrete post-translational processing events in sodium channel biosynthesis.  相似文献   

8.
The alpha-peptide of the rat brain sodium channel of apparent molecular weight 260K has been purified to homogeneity in order to determine its structural and chemical properties. By negative-stain electron microscopy, the molecule morphology of the solubilized channel protein appears as a stack of disks or rouleaux whose dimensions are 40 A X 200 A. Measurement of the secondary structure by circular dichroism shows that the alpha-peptide is a conformationally flexible polypeptide that contains mostly beta-sheet and random-coil in mixed detergent-phospholipid micelles and folds into a conformation that has approximately 65% alpha-helix after reconstitution into phosphatidylcholine vesicles. Preparative polyacrylamide gel electrophoresis was used to obtain a chemically homogeneous peptide to analyze the amino acid and carbohydrate composition. The amino acid composition shows a reasonably high content of acidic amino acids with no striking excess of hydrophobic amino acids, while carbohydrate analyses show that carbohydrate is 31% by weight of the protein with sialic acid representing over 50% of the total carbohydrates. The high alpha-helical content, the amino acid composition, and the large carbohydrate mass are similar to those of the eel electroplax sodium channel and appear to be general features of the sodium channels which have been analyzed structurally and chemically to date.  相似文献   

9.
Saturable, high-affinity binding of iodinated toxin gamma from Tityus serrulatus scorpion venom (TiTx gamma) to Na+ channel receptor was identified in sarcolemma membrane of chick heart. A binding capacity of 450-600 fmol/mg of protein was found similar to that of tetrodotoxin-binding component. The enrichment of these membrane-bound toxin binding sites follows that of other sarcolemma markers. Kinetic data and displacement of 125I-TiTx gamma from its binding sites by unlabeled TiTx gamma gave an equilibrium dissociation constant (Kd) of 1-3 pM. The gating component and the selectivity filter of the voltage-sensitive Na+ channel, identified as binding sites of TiTx gamma and of tetrodotoxin respectively, have been efficiently solubilized with Nonidet P-40. Purification was achieved by ion-exchange chromatography on DEAE-Sephadex A-25, affinity chromatography on wheat-germ-agglutinin-Sepharose and sucrose density gradient centrifugation. An enrichment of 1400-fold from the original detergent extract was measured for both toxin binding sites (1120-1230 pmol/mg of protein). Sodium dodecyl sulfate gel electrophoresis reveals a single large polypeptide component of Mr230000-270000. The purified material exhibits an apparent sedimentation coefficient of 8.8S. Covalent cross-linking of 125I-TiTx gamma to its membrane-embedded cardiac receptor shows that the cross-linked material, solubilized and purified by the same procedure comprises a single polypeptide chain of the same Mr of 230000-270000. Furthermore, as seen for Electrophorus electricus electroplax and rat brain, the tetrodotoxin-binding component and the TiTx gamma-binding component are carried by the same polypeptide chain. The functional Na+ channel might be an oligomer of this subunit of Mr23000-270000.  相似文献   

10.
Summary We have investigated the ion permeability properties of sodium channels purified from eel electroplax and reconstituted into liposomes. Under the influence of a depolarizing diffusion potential, these channels appear capable of occasional spontaneous openings. Fluxes which result from these openings are sodium selective and blocked (from opposite sides of the membrane) by tetrodotoxin (TTX) and moderate concentrations of the lidocaine analogue QX-314. Low concentrations of QX-314 paradoxically enhance this channel-mediated flux. N-bromoacetamide (NBA) and N-bromosuccinimide (NBS), reagents which remove inactivation gating in physiological preparations, transiently stimulate the sodium permeability of inside-out facing channels to high levels. The rise and subsequent fall of permeability appear to result from consecutive covalent modifications of the protein. Titration of the protein with the more reactive NBS can be used to produce stable, chronically active forms of the protein. Low concentrations of QX-314 produce a net facilitation of channel activation by NBA, while higher concentrations produce block of conductance. This suggests that rates of modifications by NBA which lead to the activation of permeability are influenced by conformational changes induced by QX-314 binding.  相似文献   

11.
The voltage-sensitive sodium channel from eel electroplax is formed of a polypeptide of 208,321 Da, to which is attached ca. 85 kDa of carbohydrate. Sialic acid is a prominent constituent, contributing ca. 113 negative charges to the protein surface. We here demonstrate that antibodies raised against the bacterial antigen alpha-(2----8)-polysialic acid, specific for polymers of ten or more consecutive sialic acid residues, react specifically and with high affinity to the electroplax sodium channel. In extracts of electroplax membranes, the sodium channel is the only protein that demonstrates this immunoreactivity, suggesting the presence of a polysialosyl-sialyltransferase specifically committed to this unique post-translational modification of the sodium channel. Polysialic acid is rare in vertebrates, having previously been found only associated with neural-cell adhesion molecules, present in the developing neuromuscular system. The other prominent source is the capsular polysaccharide of highly pathogenic meningitis bacteria. Antibodies to the bacterial antigen thus provide highly specific affinity markers for the sodium channel. The high avidity of these antibodies and the ratio of sialic acid residues to consensus glycosylation sites suggest that the terminal chains are well over ten sialosyl residues in length, potentially extending 10-30 nm into the extracellular environment.  相似文献   

12.
Membrane vesicles from Escherichia coli wild type and an otherwise isogenic dnaA mutant were used to immunize rabbits. In addition, a membrane protein fraction, containing the material found deficient in dnaA mutants, was purified by preparative polyacrylamide gel electrophoresis in sodium dodecylsulfate, and used for immunization. The antisera produced were analyzed by immunoelectrophoresis and immunofluorescence microscopy. The antisera obtained by immunization with membrane vesicles from either wild type or dnaA mutant membrane preparations were qualitatively similar in the precipitin bands seen after immunoelectrophoresis. The antisera obtained by immunization with the purified protein fraction contained a subset of the antibodies seen when whole vesicles were used for immunization. In a semiquantitative precipitin assay, the antisera prepared against whole membrane vesicles or the isolated protein fraction both caused the precipitation of more protein from sodium dodecylsulfate-solubilized membranes of wild type than of dnaA mutants. No difference was seen by immunoelectrophoresis between the protein composition of wild type or dnaA membrane preparations. Thus, the dnaA mutant appears to differ from the wild type in the quantitative composition of its membrane proteins, whereas no qualitative differences were detected.Fluorescein-conjugated antiserum preparations were employed to assess the reactivity of intact cells, spheroplasts and membrane vesicles with the antisera studied above. Wild type cells of E. coli have a barrier to reaction with the antisera; this barrier is removed when the cells are converted to spheroplasts or to membrane vesicle. Similarly, a highly permeable mutant of E. coli permits reaction of the antisera with unaltered cells. Antisera to both whole membrane vesicles and to the isolated protein fraction react identically with the cellular and subcellular preparations. Thus, antisera prepared from membrane proteins isolated after sodium dodecylsulfate-polyacrylamide gel electrophoresis can still recognize some antigens present in membrane vesicle preparations.  相似文献   

13.
We have synthesized the eel electroplax sodium channel core polypeptide in both a cell-free and a frog oocyte system and report it does not possess the unusual electrophoretic properties of the mature, native sodium channel polypeptide isolated from electroplax membranes. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the mature channel polypeptide exhibits both a diffuse banding pattern (microheterogeneity) and an extremely high electrophoretic free mobility. In contrast, the core polypeptide synthesized in vitro or in vivo migrates as a sharp band with a near-normal electrophoretic free mobility (Mr 230,000). The microheterogeneity of the mature peptide has been inferred to result from varying degrees of glycosylation of the channel polypeptide [Miller, J.A., Agnew, W.S., & Levinson, S.R. (1983) Biochemistry 22, 462-470]. We present evidence here that the anomalously high electrophoretic free mobility is due to the binding of large amounts of sodium dodecyl sulfate to posttranslationally modified domains on the protein. In addition, we have followed the posttranslational processing of eel sodium channels in both the eel electrocyte and the frog oocyte. Using lectin binding and Ferguson analysis, we found that the channel was processed relatively rapidly to an intermediate form in the Golgi apparatus that apparently contained fewer carbohydrate and hydrophobic domains than the mature channel. The further addition of carbohydrate and hydrophobic domains, which are required before the channel acquires its characteristic physicochemical properties, proceeded relatively slowly in the electrocyte and appeared not to have occurred to the majority of intermediately processed channels in the frog oocyte.  相似文献   

14.
Tetrodotoxin-binding sites were covalently labelled with a highly tritiated derivative of tetrodotoxin. Cross-linking experiments, using dissucinimidyl suberate, on partially purified tetrodotoxin-binding component from electroplax of Electrophorus electricus, revealed covalent labelling of a single polypeptide chain of MW 270,000.  相似文献   

15.
Batrachotoxinin-A [3H]benzoate ([3H]BTX-B) binds specifically and with high affinity (KD 48 nM) to sites (Bmax 2.1 pmol/mg protein) associated with voltage-dependent sodium channels in rodent brain vesicular preparations. High affinity binding requires the presence of scorpion (Leiurus) venom and a membrane potential. Local anesthetics antagonize the binding. Nonspecific binding is defined in the presence of veratridine. In particulate preparations from electroplax of the eel Electrophorus electricus, [3H]BTX-B binds with a KD of about 140 nM and a Bmax of 2.5 pmol/mg protein in the presence of scorpion venom. Higher concentrations of scorpion venom are required to enhance binding in Electrophorus preparations than in brain preparations. Local anesthetics antagonize binding in Electrophorus preparations with potencies similar to those in brain preparations. Veratridine and batrachotoxin are less potent in blocking binding in Electrophorus than in brain preparations. It appears likely that binding in Electrophorus preparations is primarily to membrane fragments rather than vesicular entities as in brain. Binding of [3H]BTX-B to particulate preparations from electroplax of the ray Torpedo californica and the catfish Malapterurus electricus is mainly nonspecific. Scorpion venom does not enhance total binding and local anesthetics are not effective in antagonizing binding.  相似文献   

16.
W M James  M C Emerick  W S Agnew 《Biochemistry》1989,28(14):6001-6009
The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including alpha-(2----8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis alpha-(2----8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3200 pmol of [3H]TTX-binding sites/mg of protein and a single polypeptide of approximately 285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. We further describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.  相似文献   

17.
The electroplax of the electric eel Electrophorus electricus is the most abundant source of the calcium-binding protein calmodulin. The electroplax has 250 times the amount of calmodulin and its mRNA than eel skeletal muscle. Our data suggest that there is no major difference in gene copies, the degree of methylation, or genome rearrangement of the calmodulin gene in DNAs from eel electroplax and muscle. Differences in the calmodulin-binding proteins in electroplax and muscle suggest a differential role for the functional expression of calmodulin in cellular regulation.  相似文献   

18.
The veratridine/tetrodotoxin-sensitive sodium influx was measured in membrane fractions isolated from the electric organ of Electrophorus electricus. The fractions were characterized, and the main biochemical markers and their acetylcholine receptor content were determined. The innervated and noninnervated faces of the electroplax were separated. The different biochemical criteria used indicate that the pre- and postsynaptic membranes of the innervated face were isolated. Sodium influx increased by veratridine and blocked by tetrodotoxin was found in fractions from the presynaptic membrane. Because some of the vesicles in this fraction are in the inside-out conformation, tetrodotoxin had to be applied to both faces of the vesicles so that sodium influx was blocked completely. The fractions from the innervated face of the electroplax contained sodium channels with sensitivities to tetrodotoxin and veratridine similar to those of fractions from other nerve membrane preparations.  相似文献   

19.
The effects of some cholinergic ligands, harmala alkaloids and local anesthetics on the activity of eel electroplax and Naja naja siamensis venom acetylcholinesterase have been studied. In most cases, eel electroplax was found to be more susceptible towards inhibition than the venom acetylcholinesterase. No major difference was observed with respect to the type of inhibition in both enzymes. The activation of the two enzyme preparations by inorganic cations (Ca2+, Mg2+ and Na+) showed a similar pattern. In both preparations, the onset of activation was detectable at much lower concentration with the divalent metal ions than with the monovalent Na+. Antagonism between Ca2+ and decamethonium, tubocurarine and tetracaine in both enzymes approached competitive kinetics. The onset of substrate inhibition is delayed by Ca2+ (30 mM) in both enzymes. It is suggested that the Ca2+ binding site overlaps with the substrate inhibitory site. It is concluded that cobra venom acetylcholinesterase has similar allosteric binding sites to those of eel electroplax.  相似文献   

20.
The flagellar glycoproteins exposed on Chlamydomonas eugametos gametes were labeled by means of lactoperoxidase, diiodosulfanilic acid and chloramine T, and characterised in SDS-electrophoresis gels. The medium from gamete cultures contains particles (isoagglutinins) that agglutinate gametes of the opposite mating type. When crude preparations of these particles were subjected to isopycnic centrifugation in a caesium chloride gradient, two bands of particles were found. The lighter, active band consisted of membrane vesicles. The denser, inactive band consisted of cell wall material. The active band had the same glycoprotein composition as membrane vesicles artificially made from isolated flagella. Preparations of glagella were also separated on a caesium chloride cushion into pure flagella and cell wall material. The flagella, but not the cell wall material, isoagglutinated opposite gametes. Again the glycoprotein composition of pure flagella was similar to that of pure isoagglutinin vesicles. No difference was detected between the protein and glycoprotein compositions of flagella and isoagglutinins from both mating types.Abbreviations LPO lactoperoxidase - PB phosphate buffer - DISA diazotized 125I-iodo-sulfanilic acid - SDS sodium dodecyl sulphate - CBD coomassie Brilliant Blue - PAS periodic acid Schiff  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号