首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Arrestins bind active phosphorylated G protein-coupled receptors, precluding G protein activation and channeling signaling to alternative pathways. Arrestins also function as mitogen-activated protein kinase (MAPK) scaffolds, bringing together three components of MAPK signaling modules. Here we have demonstrated that all four vertebrate arrestins interact with JNK3, MKK4, and ASK1, but only arrestin3 facilitates JNK3 activation. Thus, the functional specificity of arrestins is not determined by differential binding of the kinases. Using receptor binding-impaired mutant, we have shown that free arrestin3 readily promotes JNK3 phosphorylation. We identified key arrestin-binding elements in JNK3 and ASK1 and investigated the molecular interactions of arrestin2 and arrestin3 and their individual domains with the components of the two MAPK cascades, ASK1-MKK4-JNK3 and c-Raf-1-MEK1-ERK2. We found that both arrestin domains interact with all six kinases. These findings shed new light on the mechanism of arrestin-mediated MAPK activation and the spatial arrangement of the three kinases on arrestin molecule.Arrestins are multifunctional regulators of cell signaling (1, 2). Arrestins, which bind active phosphorylated G protein-coupled receptors (GPCRs),2 which play a major role in receptor desensitization and internalization (3, 4). With the identification of numerous non-receptor binding partners, the classical paradigm of arrestin function has been expanded, implicating arrestins in mitogen-activated protein kinase (MAPK) activation, protein ubiquitination, chemotaxis, apoptosis, and other cellular functions (2, 5-11).The first indication that arrestins function as signaling adapters came from the studies of arrestin-dependent c-Src recruitment to the receptors, which results in the activation of extracellular signal-regulated kinases (ERK1/2) (10, 12, 13). Subsequently, arrestin2 and arrestin3 in complex with different receptors were reported to scaffold JNK3 (9), ERK1/2 (8, 14), and p38 (15, 16) activation cascades. Although arrestins play an important role in regulating different MAPK pathways, the mechanism of arrestin-dependent assembly of MAP kinases into a signaling complex remains largely unexplored. Existing models have limited predictive value. For example, the idea that JNK3 is activated solely by arrestin3 because this arrestin subtype has unique ability to bind JNK3 (9, 17) was not supported by further experimentation (18-20). Similarly, the hypothesis that only receptor-bound arrestins interact with MAP kinases (8, 9) was not confirmed (17-20).Here we addressed several key mechanistic issues in arrestin-dependent MAPK signaling. First, we show that the scaffolding function is not limited to receptor-bound arrestin; free arrestin3 facilitates ASK1-mediated JNK3 activation, indicating that arrestins are not exclusively receptor-regulated adapters as thought previously. Second, we show that all four mammalian arrestins bind each component of the JNK3 cascade with comparable affinity, demonstrating that binding does not necessarily translate into activation. This finding establishes the mechanistic basis of the “dominant-negative” effect of certain arrestin subtypes. Third, using truncated forms of ASK1 and JNK3, we identified the major arrestin-binding elements of these two kinases. Finally, we show that every kinase in JNK3 and ERK2 activation cascades binds both arrestin domains. Based on these findings, we propose a functional model of arrestin-dependent regulation of MAPK activity and a new structural model of the arrestin-MAPK multiprotein signaling complex.  相似文献   

2.
As obligate intracellular parasites, viruses exploit diverse cellular signaling machineries, including the mitogen-activated protein-kinase pathway, during their infections. We have demonstrated previously that the open reading frame 45 (ORF45) of Kaposi sarcoma-associated herpesvirus interacts with p90 ribosomal S6 kinases (RSKs) and strongly stimulates their kinase activities (Kuang, E., Tang, Q., Maul, G. G., and Zhu, F. (2008) J. Virol. 82 ,1838 -1850). Here, we define the mechanism by which ORF45 activates RSKs. We demonstrated that binding of ORF45 to RSK increases the association of extracellular signal-regulated kinase (ERK) with RSK, such that ORF45, RSK, and ERK formed high molecular mass protein complexes. We further demonstrated that the complexes shielded active pERK and pRSK from dephosphorylation. As a result, the complex-associated RSK and ERK were activated and sustained at high levels. Finally, we provide evidence that this mechanism contributes to the sustained activation of ERK and RSK in Kaposi sarcoma-associated herpesvirus lytic replication.The extracellular signal-regulated kinase (ERK)2 mitogen-activated protein kinase (MAPK) signaling pathway has been implicated in diverse cellular physiological processes including proliferation, survival, growth, differentiation, and motility (1-4) and is also exploited by a variety of viruses such as Kaposi sarcoma-associated herpesvirus (KSHV), human cytomegalovirus, human immunodeficiency virus, respiratory syncytial virus, hepatitis B virus, coxsackie, vaccinia, coronavirus, and influenza virus (5-17). The MAPK kinases relay the extracellular signaling through sequential phosphorylation to an array of cytoplasmic and nuclear substrates to elicit specific responses (1, 2, 18). Phosphorylation of MAPK is reversible. The kinetics of deactivation or duration of signaling dictates diverse biological outcomes (19, 20). For example, sustained but not transient activation of ERK signaling induces the differentiation of PC12 cells into sympathetic-like neurons and transformation of NIH3T3 cells (20-22). During viral infection, a unique biphasic ERK activation has been observed for some viruses (an early transient activation triggered by viral binding or entry and a late sustained activation correlated with viral gene expression), but the responsible viral factors and underlying mechanism for the sustained ERK activation remain largely unknown (5, 8, 13, 23).The p90 ribosomal S6 kinases (RSKs) are a family of serine/threonine kinases that lie at the terminus of the ERK pathway (1, 24-26). In mammals, four isoforms are known, RSK1 to RSK4. Each one has two catalytically functional kinase domains, the N-terminal kinase domain (NTKD) and C-terminal kinase domain (CTKD) as well as a linker region between the two. The NTKD is responsible for phosphorylation of exogenous substrates, and the CTKD and linker region regulate RSK activation (1, 24, 25). In quiescent cells ERK binds to the docking site in the C terminus of RSK (27-29). Upon mitogen stimulation, ERK is activated by its upstream MAPK/ERK kinase (MEK). The active ERK phosphorylates Thr-359/Ser-363 of RSK in the linker region (amino acid numbers refer to human RSK1) and Thr-573 in the CTKD activation loop. The activated CTKD then phosphorylates Ser-380 in the linker region, creating a docking site for 3-phosphoinositide-dependent protein kinase-1. The 3-phosphoinositide-dependent protein kinase-1 phosphorylates Ser-221 of RSK in the activation loop and activates the NTKD. The activated NTKD autophosphorylates the serine residue near the ERK docking site, causing a transient dissociation of active ERK from RSK (25, 26, 28). The stimulation of quiescent cells by a mitogen such as epidermal growth factor or a phorbol ester such as 12-O-tetradecanoylphorbol-13-acetate (TPA) usually results in a transient RSK activation that lasts less than 30 min. RSKs have been implicated in regulating cell survival, growth, and proliferation. Mutation or aberrant expression of RSK has been implicated in several human diseases including Coffin-Lowry syndrome and prostate and breast cancers (1, 24, 25, 30-32).KSHV is a human DNA tumor virus etiologically linked to Kaposi sarcoma, primary effusion lymphoma, and a subset of multicentric Castleman disease (33, 34). Infection and reactivation of KSHV activate multiple MAPK pathways (6, 12, 35). Noticeably, the ERK/RSK activation is sustained late during KSHV primary infection and reactivation from latency (5, 6, 12, 23), but the mechanism of the sustained ERK/RSK activation is unclear. Recently, we demonstrated that ORF45, an immediate early and also virion tegument protein of KSHV, interacts with RSK1 and RSK2 and strongly stimulates their kinase activities (23). We also demonstrated that the activation of RSK plays an essential role in KSHV lytic replication (23). In the present study we determined the mechanism of ORF45-induced sustained ERK/RSK activation. We found that ORF45 increases the association of RSK with ERK and protects them from dephosphorylation, causing sustained activation of both ERK and RSK.  相似文献   

3.
4.
5.
Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.Parkinson disease is an age-related neurodegenerative disease that affects ∼1% of the population worldwide. The causes of sporadic cases are unknown, although mitochondrial or oxidative toxins such as 1-methyl-4-phenylpyridinium, 6-hydroxydopamine (6-OHDA),3 and rotenone reproduce features of the disease in animal and cell culture models (1). Abnormalities in mitochondrial respiration and increased oxidative stress are observed in cells and tissues from parkinsonian patients (2, 3), which also exhibit increased mitochondrial autophagy (4). Furthermore, mutations in parkinsonian genes affect oxidative stress response pathways and mitochondrial homeostasis (5). Thus, disruption of mitochondrial homeostasis represents a major factor implicated in the pathogenesis of sporadic and inherited parkinsonian disorders (PD).The PARK6 locus involved in autosomal recessive and early-onset PD encodes for PTEN-induced kinase 1 (PINK1) (6, 7). PINK1 is a cytosolic and mitochondrially localized 581-amino acid serine/threonine kinase that possesses an N-terminal mitochondrial targeting sequence (6, 8). The primary sequence also includes a putative transmembrane domain important for orientation of the PINK1 domain (8), a conserved kinase domain homologous to calcium calmodulin kinases, and a C-terminal domain that regulates autophosphorylation activity (9, 10). Overexpression of wild-type PINK1, but not its PD-associated mutants, protects against several toxic insults in neuronal cells (6, 11, 12). Mitochondrial targeting is necessary for some (13) but not all of the neuroprotective effects of PINK1 (14), implicating involvement of cytoplasmic targets that modulate mitochondrial pathobiology (8). PINK1 catalytic activity is necessary for its neuroprotective role, because a kinase-deficient K219M substitution in the ATP binding pocket of PINK1 abrogates its ability to protect neurons (14). Although PINK1 mutations do not seem to impair mitochondrial targeting, PD-associated mutations differentially destabilize the protein, resulting in loss of neuroprotective activities (13, 15).Recent studies indicate that PINK1 and Parkin interact genetically (3, 16-18) to prevent oxidative stress (19, 20) and regulate mitochondrial morphology (21). Primary cells derived from PINK1 mutant patients exhibit mitochondrial fragmentation with disorganized cristae, recapitulated by RNA interference studies in HeLa cells (3).Mitochondria are degraded by macroautophagy, a process involving sequestration of cytoplasmic cargo into membranous autophagic vacuoles (AVs) for delivery to lysosomes (22, 23). Interestingly, mitochondrial fission accompanies autophagic neurodegeneration elicited by the PD neurotoxin 6-OHDA (24, 25). Moreover, mitochondrial fragmentation and increased autophagy are observed in neurodegenerative diseases including Alzheimer and Parkinson diseases (4, 26-28). Although inclusion of mitochondria in autophagosomes was once believed to be a random process, as observed during starvation, studies involving hypoxia, mitochondrial damage, apoptotic stimuli, or limiting amounts of aerobic substrates in facultative anaerobes support the concept of selective mitochondrial autophagy (mitophagy) (29, 30). In particular, mitochondrially localized kinases may play an important role in models involving oxidative mitochondrial injury (25, 31, 32).Autophagy is involved in the clearance of protein aggregates (33-35) and normal regulation of axonal-synaptic morphology (36). Chronic disruption of lysosomal function results in accumulation of subtly impaired mitochondria with decreased calcium buffering capacity (37), implicating an important role for autophagy in mitochondrial homeostasis (37, 38). Recently, Parkin, which complements the effects of PINK1 deficiency on mitochondrial morphology (3), was found to promote autophagy of depolarized mitochondria (39). Conversely, Beclin 1-independent autophagy/mitophagy contributes to cell death elicited by the PD toxins 1-methyl-4-phenylpyridinium and 6-OHDA (25, 28, 31, 32), causing neurite retraction in cells expressing a PD-linked mutation in leucine-rich repeat kinase 2 (40). Whereas properly regulated autophagy plays a homeostatic and neuroprotective role, excessive or incomplete autophagy creates a condition of “autophagic stress” that can contribute to neurodegeneration (28).As mitochondrial fragmentation (3) and increased mitochondrial autophagy (4) have been described in human cells or tissues of PD patients, we investigated whether or not the engineered loss of PINK1 function could recapitulate these observations in human neuronal cells (SH-SY5Y). Stable knockdown of endogenous PINK1 gave rise to mitochondrial fragmentation and increased autophagy and mitophagy, whereas stable or transient overexpression of PINK1 had the opposite effect. Autophagy/mitophagy was dependent upon increased mitochondrial oxidant production and activation of fission. The data indicate that PINK1 is important for the maintenance of mitochondrial networks, suggesting that coordinated regulation of mitochondrial dynamics and autophagy limits cell death associated with loss of PINK1 function.  相似文献   

6.
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent. However, many HCC cells show resistance to TRAIL-induced apoptosis. In this study, we showed that bortezomib, a proteasome inhibitor, overcame TRAIL resistance in HCC cells, including Huh-7, Hep3B, and Sk-Hep1. The combination of bortezomib and TRAIL restored the sensitivity of HCC cells to TRAIL-induced apoptosis. Comparing the molecular change in HCC cells treated with these agents, we found that down-regulation of phospho-Akt (P-Akt) played a key role in mediating TRAIL sensitization of bortezomib. The first evidence was that bortezomib down-regulated P-Akt in a dose- and time-dependent manner in TRAIL-treated HCC cells. Second, LY294002, a PI3K inhibitor, also sensitized resistant HCC cells to TRAIL-induced apoptosis. Third, knocking down Akt1 by small interference RNA also enhanced TRAIL-induced apoptosis in Huh-7 cells. Finally, ectopic expression of mutant Akt (constitutive active) in HCC cells abolished TRAIL sensitization effect of bortezomib. Moreover, okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, reversed down-regulation of P-Akt in bortezomib-treated cells, and PP2A knockdown by small interference RNA also reduced apoptosis induced by the combination of TRAIL and bortezomib, indicating that PP2A may be important in mediating the effect of bortezomib on TRAIL sensitization. Together, bortezomib overcame TRAIL resistance at clinically achievable concentrations in hepatocellular carcinoma cells, and this effect is mediated at least partly via inhibition of the PI3K/Akt pathway.Hepatocellular carcinoma (HCC)2 is currently the fifth most common solid tumor worldwide and the fourth leading cause of cancer-related death. To date, surgery is still the only curative treatment but is only feasible in a small portion of patients (1). Drug treatment is the major therapy for patients with advanced stage disease. Unfortunately, the response rate to traditional chemotherapy for HCC patients is unsatisfactory (1). Novel pharmacological therapy is urgently needed for patients with advanced HCC. In this regard, the approval of sorafenib might open a new era of molecularly targeted therapy in the treatment of HCC patients.Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a type II transmembrane protein and a member of the TNF family, is a promising anti-tumor agent under clinical investigation (2). TRAIL functions by engaging its receptors expressed on the surface of target cells. Five receptors specific for TRAIL have been identified, including DR4/TRAIL-R1, DR5/TRAIL-R2, DcR1, DcR2, and osteoprotegerin. Among TRAIL receptors, only DR4 and DR5 contain an effective death domain that is essential to formation of death-inducing signaling complex (DISC), a critical step for TRAIL-induced apoptosis. Notably, the trimerization of the death domains recruits an adaptor molecule, Fas-associated protein with death domain (FADD), which subsequently recruits and activates caspase-8. In type I cells, activation of caspase-8 is sufficient to activate caspase-3 to induce apoptosis; however, in another type of cells (type II), the intrinsic mitochondrial pathway is essential for apoptosis characterized by cleavage of Bid and release of cytochrome c from mitochondria, which subsequently activates caspase-9 and caspase-3 (3).Although TRAIL induces apoptosis in malignant cells but sparing normal cells, some tumor cells are resistant to TRAIL-induced apoptosis. Mechanisms responsible for the resistance include receptors and intracellular resistance. Although the cell surface expression of DR4 or DR5 is absolutely required for TRAIL-induced apoptosis, tumor cells expressing these death receptors are not always sensitive to TRAIL due to intracellular mechanisms. For example, the cellular FLICE-inhibitory protein (c-FLIP), a homologue to caspase-8 but without protease activity, has been linked to TRAIL resistance in several studies (4, 5). In addition, inactivation of Bax, a proapoptotic Bcl-2 family protein, resulted in resistance to TRAIL in MMR-deficient tumors (6, 7), and reintroduction of Bax into Bax-deficient cells restored TRAIL sensitivity (8), indicating that the Bcl-2 family plays a critical role in intracellular mechanisms for resistance of TRAIL.Bortezomib, a proteasome inhibitor approved clinically for multiple myeloma and mantle cell lymphoma, has been investigated intensively for many types of cancer (9). Accumulating studies indicate that the combination of bortezomib and TRAIL overcomes the resistance to TRAIL in various types of cancer, including acute myeloid leukemia (4), lymphoma (1013), prostate (1417), colon (15, 18, 19), bladder (14, 16), renal cell carcinoma (20), thyroid (21), ovary (22), non-small cell lung (23, 24), sarcoma (25), and HCC (26, 27). Molecular targets responsible for the sensitizing effect of bortezomib on TRAIL-induced cell death include DR4 (14, 27), DR5 (14, 20, 2223, 28), c-FLIP (4, 11, 2123, 29), NF-κB (12, 24, 30), p21 (16, 21, 25), and p27 (25). In addition, Bcl-2 family also plays a role in the combinational effect of bortezomib and TRAIL, including Bcl-2 (10, 21), Bax (13, 22), Bak (27), Bcl-xL (21), Bik (18), and Bim (15).Recently, we have reported that Akt signaling is a major molecular determinant in bortezomib-induced apoptosis in HCC cells (31). In this study, we demonstrated that bortezomib overcame TRAIL resistance in HCC cells through inhibition of the PI3K/Akt pathway.  相似文献   

7.
8.
In pemphigus vulgaris and pemphigus foliaceus (PF), autoantibodies against desmoglein-3 and desmoglein-1 induce epidermal cell detachment (acantholysis) and blistering. Activation of keratinocyte intracellular signaling pathways is emerging as an important component of pemphigus IgG-mediated acantholysis. We previously reported activation of p38 mitogen-activated protein kinase (MAPK) in response to pathogenic pemphigus vulgaris and PF IgG. Inhibition of p38MAPK blocked pemphigus IgG-induced cytoskeletal reorganization in tissue culture and blistering in pemphigus mouse models. We now extend these observations by demonstrating two peaks of p38MAPK activation in pemphigus tissue culture and mouse models. Administration of the p38MAPK inhibitor SB202190 before PF IgG injection blocked both peaks of p38MAPK phosphorylation and blister formation, consistent with our previous findings; however, administration of the inhibitor 4 h after PF IgG injection blocked only the later peak of p38MAPK activation but failed to block blistering. Examination of the temporal relationship of p38MAPK phosphorylation and apoptosis showed that apoptosis occurs at or after the second peak of p38MAPK activation. The time course of p38MAPK activation and apoptotic markers, as well as the ability of inhibitors of p38MAPK to block activation of the proapoptotic proteinase caspase-3, suggest that activation of apoptosis is downstream to, and a consequence of, p38MAPK activation in pemphigus acantholysis. Furthermore, these observations suggest that the earlier peak of p38MAPK activation is part of the mechanism leading to acantholysis, whereas the later peak of p38MAPK and apoptosis may not be essential for acantholysis.Pemphigus is a group of related autoimmune diseases characterized by blistering in the skin. The histologic hallmark of these disorders is termed acantholysis, which describes the loss of adhesion between adjacent epithelial cells. The two major variants are pemphigus foliaceus (PF)2 and pemphigus vulgaris (PV). In PF, acantholysis is observed beneath the stratum corneum and within the granular layer of epidermal epithelia, whereas in PV, blister formation occurs above the basal layer of epidermal epithelia and mucosal epithelium. Passive transfer of IgG purified from both PV and PF patient sera reproduces the clinical, histological, and immunologic features of the human diseases, demonstrating that these autoantibodies are pathogenic (1, 2). In PF, autoantibodies target the desmosomal cadherin desmoglein (dsg) 1, whereas in PV, autoantibodies initially target dsg3 (3, 4) in mucosal PV and then subsequently target both dsg1 and dsg3 in mucocutaneous PV (5-7).The mechanism by which pemphigus autoantibodies induce blistering has been under investigation. Work from a number of laboratories has suggested that activation of intracellular events is induced by binding of PF or PV IgG to dsg1 and dsg3, respectively (8-14). Previously, we have reported that PV IgG activate p38MAPK and heat shock protein (HSP) 27 in human keratinocyte tissue cultures (15). Significantly, p38MAPK inhibitors blocked PV IgG-induced keratin filament retraction and actin reorganization in human keratinocyte tissue cultures. Furthermore, we have demonstrated that both PV and PF IgG induce phosphorylation of p38MAPK and HSP25, the murine HSP27 homologue, in mouse models and that inhibitors of p38MAPK block blistering in both the PV (16) and the PF (17) passive transfer mouse models. Additionally, in human skin biopsies from both PV and PF patients, phosphorylation of p38MAPK and HSP27 has been observed (18). Collectively, these observations suggest that activation of p38MAPK within the target keratinocyte contributes directly to loss of cell-cell adhesion induced by pemphigus autoantibodies.Both p38MAPK and HSP27 have been implicated in the regulation of the intermediate filament and actin cytoskeletons (19-25); the ability of p38MAPK inhibitors to block both pemphigus IgG-activated cytoskeletal reorganization and pemphigus IgG-activated blistering suggests that p38MAPK may be acting upstream of the cytoskeleton in the mechanism of acantholysis; however, p38MAPK signaling has been implicated in other cellular responses (reviewed in Ref. 26). For example, there is abundant evidence for p38MAPK involvement in apoptosis (27-29); however, the role of p38MAPK in apoptosis seems to be cell type- and stimulus-dependent. Although p38MAPK signaling promotes cell death in some cell lines, it also functions to enhance survival, growth, and differentiation in other cell lines (30). Several reports describe increased apoptosis of keratinocytes in pemphigus (31-35); however, the relationship between PV IgG-mediated p38MAPK signaling, the induction of apoptosis, and the relationship of apoptosis to blistering has not been defined. This study was undertaken to investigate the relationship between p38MAPK activation, apoptosis, and acantholysis.  相似文献   

9.
10.
11.
The acid-sensing ion channel 1a (ASIC1a) is widely expressed in central and peripheral neurons where it generates transient cation currents when extracellular pH falls. ASIC1a confers pH-dependent modulation on postsynaptic dendritic spines and has critical effects in neurological diseases associated with a reduced pH. However, knowledge of the proteins that interact with ASIC1a and influence its function is limited. Here, we show that α-actinin, which links membrane proteins to the actin cytoskeleton, associates with ASIC1a in brain and in cultured cells. The interaction depended on an α-actinin-binding site in the ASIC1a C terminus that was specific for ASIC1a versus other ASICs and for α-actinin-1 and -4. Co-expressing α-actinin-4 altered ASIC1a current density, pH sensitivity, desensitization rate, and recovery from desensitization. Moreover, reducing α-actinin expression altered acid-activated currents in hippocampal neurons. These findings suggest that α-actinins may link ASIC1a to a macromolecular complex in the postsynaptic membrane where it regulates ASIC1a activity.Acid-sensing ion channels (ASICs)2 are H+-gated members of the DEG/ENaC family (13). Members of this family contain cytosolic N and C termini, two transmembrane domains, and a large cysteine-rich extracellular domain. ASIC subunits combine as homo- or heterotrimers to form cation channels that are widely expressed in the central and peripheral nervous systems (14). In mammals, four genes encode ASICs, and two subunits, ASIC1 and ASIC2, have two splice forms, a and b. Central nervous system neurons express ASIC1a, ASIC2a, and ASIC2b (57). Homomeric ASIC1a channels are activated when extracellular pH drops below 7.2, and half-maximal activation occurs at pH 6.5–6.8 (810). These channels desensitize in the continued presence of a low extracellular pH, and they can conduct Ca2+ (9, 1113). ASIC1a is required for acid-evoked currents in central nervous system neurons; disrupting the gene encoding ASIC1a eliminates H+-gated currents unless extracellular pH is reduced below pH 5.0 (5, 7).Previous studies found ASIC1a enriched in synaptosomal membrane fractions and present in dendritic spines, the site of excitatory synapses (5, 14, 15). Consistent with this localization, ASIC1a null mice manifested deficits in hippocampal long term potentiation, learning, and memory, which suggested that ASIC1a is required for normal synaptic plasticity (5, 16). ASICs might be activated during neurotransmission when synaptic vesicles empty their acidic contents into the synaptic cleft or when neuronal activity lowers extracellular pH (1719). Ion channels, including those at the synapse often interact with multiple proteins in a macromolecular complex that incorporates regulators of their function (20, 21). For ASIC1a, only a few interacting proteins have been identified. Earlier work indicated that ASIC1a interacts with another postsynaptic scaffolding protein, PICK1 (15, 22, 23). ASIC1a also has been reported to interact with annexin II light chain p11 through its cytosolic N terminus to increase cell surface expression (24) and with Ca2+/calmodulin-dependent protein kinase II to phosphorylate the channel (25). However, whether ASIC1a interacts with additional proteins and with the cytoskeleton remain unknown. Moreover, it is not known whether such interactions alter ASIC1a function.In analyzing the ASIC1a amino acid sequence, we identified cytosolic residues that might bind α-actinins. α-Actinins cluster membrane proteins and signaling molecules into macromolecular complexes and link membrane proteins to the actincytoskeleton (for review, Ref. 26). Four genes encode α-actinin-1, -2, -3, and -4 isoforms. α-Actinins contain an N-terminal head domain that binds F-actin, a C-terminal region containing two EF-hand motifs, and a central rod domain containing four spectrin-like motifs (2628). The C-terminal portion of the rod segment appears to be crucial for binding to membrane proteins. The α-actinins assemble into antiparallel homodimers through interactions in their rod domain. α-Actinins-1, -2, and -4 are enriched in dendritic spines, concentrating at the postsynaptic membrane (2935). In the postsynaptic membrane of excitatory synapses, α-actinin connects the NMDA receptor to the actin cytoskeleton, and this interaction is key for Ca2+-dependent inhibition of NMDA receptors (3638). α-Actinins can also regulate the membrane trafficking and function of several cation channels, including L-type Ca2+ channels, K+ channels, and TRP channels (3941).To better understand the function of ASIC1a channels in macromolecular complexes, we asked if ASIC1a associates with α-actinins. We were interested in the α-actinins because they and ASIC1a, both, are present in dendritic spines, ASIC1a contains a potential α-actinin binding sequence, and the related epithelial Na+ channel (ENaC) interacts with the cytoskeleton (42, 43). Therefore, we hypothesized that α-actinin interacts structurally and functionally with ASIC1a.  相似文献   

12.
13.
14.
15.
Intersectin-short (intersectin-s) is a multimodule scaffolding protein functioning in constitutive and regulated forms of endocytosis in non-neuronal cells and in synaptic vesicle (SV) recycling at the neuromuscular junction of Drosophila and Caenorhabditis elegans. In vertebrates, alternative splicing generates a second isoform, intersectin-long (intersectin-l), that contains additional modular domains providing a guanine nucleotide exchange factor activity for Cdc42. In mammals, intersectin-s is expressed in multiple tissues and cells, including glia, but excluded from neurons, whereas intersectin-l is a neuron-specific isoform. Thus, intersectin-I may regulate multiple forms of endocytosis in mammalian neurons, including SV endocytosis. We now report, however, that intersectin-l is localized to somatodendritic regions of cultured hippocampal neurons, with some juxtanuclear accumulation, but is excluded from synaptophysin-labeled axon terminals. Consistently, intersectin-l knockdown (KD) does not affect SV recycling. Instead intersectin-l co-localizes with clathrin heavy chain and adaptor protein 2 in the somatodendritic region of neurons, and its KD reduces the rate of transferrin endocytosis. The protein also co-localizes with F-actin at dendritic spines, and intersectin-l KD disrupts spine maturation during development. Our data indicate that intersectin-l is indeed an important regulator of constitutive endocytosis and neuronal development but that it is not a prominent player in the regulated endocytosis of SVs.Clathrin-mediated endocytosis (CME)4 is a major mechanism by which cells take up nutrients, control the surface levels of multiple proteins, including ion channels and transporters, and regulate the coupling of signaling receptors to downstream signaling cascades (1-5). In neurons, CME takes on additional specialized roles; it is an important process regulating synaptic vesicle (SV) availability through endocytosis and recycling of SV membranes (6, 7), it shapes synaptic plasticity (8-10), and it is crucial in maintaining synaptic membranes and membrane structure (11).Numerous endocytic accessory proteins participate in CME, interacting with each other and with core components of the endocytic machinery such as clathrin heavy chain (CHC) and adaptor protein-2 (AP-2) through specific modules and peptide motifs (12). One such module is the Eps15 homology domain that binds to proteins bearing NPF motifs (13, 14). Another is the Src homology 3 (SH3) domain, which binds to proline-rich domains in protein partners (15). Intersectin is a multimodule scaffolding protein that interacts with a wide range of proteins, including several involved in CME (16). Intersectin has two N-terminal Eps15 homology domains that are responsible for binding to epsin, SCAMP1, and numb (17-19), a central coil-coiled domain that interacts with Eps15 and SNAP-23 and -25 (17, 20, 21), and five SH3 domains in its C-terminal region that interact with multiple proline-rich domain proteins, including synaptojanin, dynamin, N-WASP, CdGAP, and mSOS (16, 22-25). The rich binding capability of intersectin has linked it to various functions from CME (17, 26, 27) and signaling (22, 28, 29) to mitogenesis (30, 31) and regulation of the actin cytoskeleton (23).Intersectin functions in SV recycling at the neuromuscular junction of Drosophila and C. elegans where it acts as a scaffold, regulating the synaptic levels of endocytic accessory proteins (21, 32-34). In vertebrates, the intersectin gene is subject to alternative splicing, and a longer isoform (intersectin-l) is generated that is expressed exclusively in neurons (26, 28, 35, 36). This isoform has all the binding modules of its short (intersectin-s) counterpart but also has additional domains: a DH and a PH domain that provide guanine nucleotide exchange factor (GEF) activity specific for Cdc42 (23, 37) and a C2 domain at the C terminus. Through its GEF activity and binding to actin regulatory proteins, including N-WASP, intersectin-l has been implicated in actin regulation and the development of dendritic spines (19, 23, 24). In addition, because the rest of the binding modules are shared between intersectin-s and -l, it is generally thought that the two intersectin isoforms have the same endocytic functions. In particular, given the well defined role for the invertebrate orthologs of intersectin-s in SV endocytosis, it is thought that intersectin-l performs this role in mammalian neurons, which lack intersectin-s. Defining the complement of intersectin functional activities in mammalian neurons is particularly relevant given that the protein is involved in the pathophysiology of Down syndrome (DS). Specifically, the intersectin gene is localized on chromosome 21q22.2 and is overexpressed in DS brains (38). Interestingly, alterations in endosomal pathways are a hallmark of DS neurons and neurons from the partial trisomy 16 mouse, Ts65Dn, a model for DS (39, 40). Thus, an endocytic trafficking defect may contribute to the DS disease process.Here, the functional roles of intersectin-l were studied in cultured hippocampal neurons. We find that intersectin-l is localized to the somatodendritic regions of neurons, where it co-localizes with CHC and AP-2 and regulates the uptake of transferrin. Intersectin-l also co-localizes with actin at dendritic spines and disrupting intersectin-l function alters dendritic spine development. In contrast, intersectin-l is absent from presynaptic terminals and has little or no role in SV recycling.  相似文献   

16.
The intestinal epithelium is repetitively deformed by shear, peristalsis, and villous motility. Such repetitive deformation stimulates the proliferation of intestinal epithelial cells on collagen or laminin substrates via ERK, but the upstream mediators of this effect are poorly understood. We hypothesized that the phosphatidylinositol 3-kinase (PI3K)/AKT cascade mediates this mitogenic effect. PI3K, AKT, and glycogen synthase kinase-3β (GSK-3β) were phosphorylated by 10 cycles/min strain at an average 10% deformation, and pharmacologic blockade of these molecules or reduction by small interfering RNA (siRNA) prevented the mitogenic effect of strain in Caco-2 or IEC-6 intestinal epithelial cells. Strain MAPK activation required PI3K but not AKT. AKT isoform-specific siRNA transfection demonstrated that AKT2 but not AKT1 is required for GSK-3β phosphorylation and the strain mitogenic effect. Furthermore, overexpression of AKT1 or an AKT chimera including the PH domain and hinge region of AKT2 and the catalytic domain and C-tail of AKT1 prevented strain activation of GSK-3β, but overexpression of AKT2 or a chimera including the PH domain and hinge region of AKT1 and the catalytic domain and C-tail of AKT2 did not. These data delineate a role for PI3K, AKT2, and GSK-3β in the mitogenic effect of strain. PI3K is required for both ERK and AKT2 activation, whereas AKT2 is sequentially required for GSK-3β. Furthermore, AKT2 specificity requires its catalytic domain and tail region. Manipulating this pathway may prevent mucosal atrophy and maintain the mucosal barrier in conditions such as ileus, sepsis, and prolonged fasting when peristalsis and villous motility are decreased and the mucosal barrier fails.Mechanical forces are part of the normal intestinal epithelial environment. Numerous different forces deform these cells including shear stress from endoluminal chyme, bowel peristalsis, and villous motility (1, 2). During normal bowel function the mucosa is subjected to injury that must be repaired to maintain the mucosal barrier (3, 4). Deformation patterns of the bowel are altered in conditions such as prolonged fasting, post-surgical ileus, and sepsis states, resulting in profoundly reduced mucosal deformation. When such states are prolonged, proliferation slows, the mucosa becomes atrophic, and bacterial translocation may ensue as the mucosal barrier of the gut breaks down (57).In vitro, repetitive deformation is trophic for intestinal epithelial cells (8) cultured on type I or type IV collagen or laminin. Human Caco-2 intestinal epithelial cells (9), non-transformed rat IEC-6 intestinal epithelial cells (10), and primary human intestinal epithelial cells isolated from surgical specimens (11) proliferate more rapidly in response to cyclic strain (12) unless substantial quantities of fibronectin are added to the media or matrix (11) to mimic the acute phase reaction of acute or chronic inflammation and injury. Cyclic strain also stimulates proliferation in HCT 116 colon cancer cells (13) and differentiation of Caco-2 cells cultured on a collagen substrate (9). This phenomenon has also been observed in vivo (14). Thus, repetitive deformation may help to maintain the normal homeostasis of the gut mucosa under non-inflammatory conditions. Previous work in our laboratory has implicated Src, focal adhesion kinase, and the mitogen-activated protein kinase (MAPK)2 extracellular signal-related kinase (ERK) in the mitogenic effect of strain (10). Although p38 is also activated in Caco-2 cells subjected to cyclic strain on a collagen matrix, its activity is not required for the mitogenic effect of strain (12).Although often the PI3K/AKT pathway is thought of as a parallel pathway to the MAPK, this is not always the case. Protein kinase C isoenzymes differentially modulate thrombin effect on MAPK-dependent retinal pigment epithelial cell (RPE) proliferation, and it has been shown that PI3K or AKT inhibition prevented thrombin-induced ERK activation and RPE proliferation (15).PI3K, AKT, and glycogen synthase kinase (GSK), a downstream target of AKT (16), have been implemented in intestinal epithelial cell proliferation in numerous cell systems not involving strain (1719) including uncontrolled proliferation in gastrointestinal cancers (2022). Mechanical forces activate this pathway as well. PI3K and AKT are required for increased extracellular pressure to stimulate colon cancer cell adhesion (23), although the pathway by which pressure stimulates colon cancer cells in suspension differs from the response of adherent intestinal epithelial cells to repetitive deformation (24), and GSK is not involved in this effect.3 Repetitive strain also stimulates vascular endothelial cell proliferation via PI3K and AKT (25, 26), whereas respiratory strain stimulates angiogenic responses via PI3K (27). We, therefore, hypothesized that the PI3K/AKT/GSK axis would be involved in the mitogenic effects of repetitive deformation on a collagen matrix.To test this hypothesis, we used the Flexcell apparatus to rhythmically deform Caco-2 intestinal epithelial cells. IEC-6 cells were used to confirm key results. A frequency of 10 cycles per min was used, which is similar in order of magnitude to the frequency that the intestinal mucosa might be deformed by peristalsis or villous motility in vivo (28, 29). Mechanical forces such as repetitive deformation are likely cell-type and frequency-specific, as different cell types respond to different frequencies. Vascular endothelial cells respond to frequencies of 60–80 cycles/min (25), whereas intestinal epithelial cells may actually decrease proliferation in response to frequencies of 5 cycles/min (30). We characterized PI3K, AKT, and GSK phosphorylation with strain, blocked these molecules pharmacologically or by siRNA, and delineated the specificity of the AKT effect using isozyme-specific siRNA and transfection of AKT1/2 chimeras. We also characterized the interaction of this pathway with the activation of ERK by strain, which has previously been implicated in the mitogenic response (12).  相似文献   

17.
18.
19.
A new role is reported for CP12, a highly unfolded and flexible protein, mainly known for its redox function with A4 glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Both reduced and oxidized CP12 can prevent the in vitro thermal inactivation and aggregation of GAPDH from Chlamydomonas reinhardtii. This mechanism is thus not redox-dependent. The protection is specific to CP12, because other proteins, such as bovine serum albumin, thioredoxin, and a general chaperone, Hsp33, do not fully prevent denaturation of GAPDH. Furthermore, CP12 acts as a specific chaperone, since it does not protect other proteins, such as catalase, alcohol dehydrogenase, or lysozyme. The interaction between CP12 and GAPDH is necessary to prevent the aggregation and inactivation, since the mutant C66S that does not form any complex with GAPDH cannot accomplish this protection. Unlike the C66S mutant, the C23S mutant that lacks the N-terminal bridge is partially able to protect and to slow down the inactivation and aggregation. Tryptic digestion coupled to mass spectrometry confirmed that the S-loop of GAPDH is the interaction site with CP12. Thus, CP12 not only has a redox function but also behaves as a specific “chaperone-like protein” for GAPDH, although a stable and not transitory interaction is observed. This new function of CP12 may explain why it is also present in complexes involving A2B2 GAPDHs that possess a regulatory C-terminal extension (GapB subunit) and therefore do not require CP12 to be redox-regulated.CP12 is a small 8.2-kDa protein present in the chloroplasts of most photosynthetic organisms, including cyanobacteria (1, 2), higher plants (3), the diatom Asterionella formosa (4, 5), and green (1) and red algae (6). It allows the formation of a supramolecular complex between phosphoribulokinase (EC 2.7.1.19) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH),3 two key enzymes of the Calvin cycle pathway, and was recently shown to interact with fructose bisphosphate aldolase, another enzyme of the Calvin cycle pathway (7). The phosphoribulokinase·GAPDH·CP12 complex has been extensively studied in Chlamydomonas reinhardtii (8, 9) and in Arabidopsis thaliana (10, 11). In the green alga C. reinhardtii, the interaction between CP12 and GAPDH is strong (8). GAPDH may exist as a homotetramer composed of four GapA subunits (A4) in higher plants, cyanobacteria, and green and red algae (6, 12), but in higher plants, it can also exist as a heterotetramer (A2B2), composed of two subunits, GapA and GapB (13, 14). GapB, up to now, has exclusively been found in Streptophyta, but recently two prasinophycean green algae, Ostreococcus tauri and Ostreococcus lucimarinus, were also shown to possess a GapB gene, whereas CP12 is missing (15). The GapB subunit is similar to the GapA subunit but has a C-terminal extension containing two redox-regulated cysteine residues (16). Thus, although the A4 GAPDHs lack these regulatory cysteine residues (13, 14, 1720), they are also redox-regulated through its interaction with CP12, since the C terminus of this small protein resembles the C-terminal extension of the GapB subunit. The regulatory cysteine residues for GapA are thus supplied by CP12, as is well documented in the literature (1, 8, 11, 16).CP12 belongs to the family of intrinsically unstructured proteins (IUPs) (2126). The amino acid composition of these proteins causes them to have no or few secondary structures. Their total or partial lack of structure and their high flexibility allow them to be molecular adaptors (27, 28). They are often able to bind to several partners and are involved in most cellular functions (29, 30). Recently, some IUPs have been described in photosynthetic organisms (31, 32).There are many functional categories of IUPs (22, 33). They can be, for instance, involved in permanent binding and have (i) a scavenger role, neutralizing or storing small ligands; (ii) an assembler role by forming complexes; and (iii) an effector role by modulating the activity of a partner molecule (33). These functions are not exclusive; thus, CP12 can form a stable complex with GAPDH, regulating its redox properties (8, 34, 35), and can also bind a metal ion (36, 37). IUPs can also bind transiently to partners, and some of them have been found to possess a chaperone activity (31, 38). This chaperone function was first shown for α-synuclein (39) and for α-casein (40), which are fully disordered. The amino acid composition of IUPs is less hydrophobic than those of soluble proteins; hence, they lack hydrophobic cores and do not become insoluble when heated. Since CP12 belongs to this family, we tested if it was resistant to heat treatment and finally, since it is tightly bound to GAPDH, if it could prevent aggregation of its partner, GAPDH, an enzyme well known for its tendency to aggregate (4144) and consequently a substrate commonly used in chaperone studies (45, 46).Unlike chaperones, which form transient, dynamic complexes with their protein substrates through hydrophobic interactions (47, 48), CP12 forms a stable complex with GAPDH. The interaction involves the C-terminal part of the protein and the presence of negatively charged residues on CP12 (35). However, only a site-directed mutagenesis has been performed to characterize the interaction site on GAPDH. Although the mutation could have an indirect effect, the residue Arg-197 was shown to be a good candidate for the interaction site (49).In this report, we accordingly used proteolysis experiments coupled with mass spectrometry to detect which regions of GAPDH are protected by its association with CP12. To conclude, the aim of this report was to characterize a chaperone function of CP12 that had never been described before and to map the interaction site on GAPDH using an approach that does not involve site-directed mutagenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号