首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The human ether-a-go-go-related gene (hERG) encodes the rapidly activating delayed rectifier potassium channel (IKr) which plays an important role in cardiac repolarization. A reduction or increase in hERG current can cause long or short QT syndrome, respectively, leading to fatal cardiac arrhythmias. The channel density in the plasma membrane is a key determinant of the whole cell current amplitude. To gain insight into the molecular mechanisms for the regulation of hERG density at the plasma membrane, we used whole cell voltage clamp, Western blotting, and immunocytochemical methods to investigate the effects of an integral membrane protein, caveolin-3 (Cav3) on hERG expression levels. Our data demonstrate that Cav3, hERG, and ubiquitin-ligase Nedd4-2 interact with each other and form a complex. Expression of Cav3 thus enhances the hERG-Nedd4-2 interaction, leading to an increased ubiquitination and degradation of mature, plasma-membrane localized hERG channels. Disrupting Nedd4-2 interaction with hERG by mutations eliminates the effects of Cav3 on hERG channels. Knockdown of endogenous Cav3 or Nedd4-2 in cultured neonatal rat ventricular myocytes using siRNA led to an increase in native IKr. Our data demonstrate that hERG expression in the plasma membrane is regulated by Cav3 via Nedd4-2. These findings extend our understanding of the regulation of hERG channels and cardiac electrophysiology.  相似文献   

2.
3.

Background

The epithelial sodium channel (ENaC) is an integral component of the pathway for Na+ absorption in epithelial cells. The ubiquitin ligases Nedd4 and Nedd4-2 bind to ENaC and decrease its activity. Conversely, Serum- and Glucocorticoid regulated Kinase-1 (SGK1), a downstream mediator of aldosterone, increases ENaC activity. This effect is at least partly mediated by direct interaction between SGK and Nedd4-2. SGK binds both Nedd4 and Nedd4-2, but it is only able to phosphorylate Nedd4-2. Phosphorylation of Nedd4-2 reduces its ability to bind to ENaC, due to the interaction of phosphorylated Nedd4-2 with 14-3-3 proteins, and hence increases ENaC activity. WW-domains in Nedd4-like proteins bind PY-motifs (PPXY) present in ENaC subunits, and SGK also has a PY-motif.

Principal Finding

Here we show that single or tandem WW-domains of Nedd4 and Nedd4-2 mediate binding to SGK and that different WW-domains of Nedd4 and Nedd4-2 are involved. Our data also show that WW-domains 2 and 3 of Nedd4-2 mediate the interaction with SGK in a cooperative manner, that activated SGK has increased affinity for the WW-domains of Nedd4-2 in vitro, and a greater stimulatory effect on ENaC Na+ transport compared to wildtype SGK. Further, SGK lacking a PY motif failed to stimulate ENaC activity in the presence of Nedd4-2.

Conclusions

Binding of Nedd4-2 WW-domains to SGK is necessary for SGK-induced ENaC activity.  相似文献   

4.
Cell swelling induced by hypo-osmotic stress results in activation of volume-regulated anion channels (VRAC) that drive a compensatory regulatory volume decrease. We have previously shown that the Best1 gene in Drosophila encodes a VRAC that is also activated by increases in intracellular Ca2+. The role of Best1 as a VRAC has recently been independently confirmed by the Clapham lab in an unbiased RNAi screen. Although dBest1 is clearly a volume-regulated channel, its mechanisms of regulation remain unknown. Here we investigate Drosophila Best1 (dBest1) regulation using the Drosophila S2 cell model system. Because dBest1 activates slowly after establishing whole-cell recording, we tested the hypothesis that the channel is activated by phosphorylation. Two experiments indicate that phosphorylation is required for dBest1 activation: nonspecific protein kinase inhibitors or intracellular perfusion with the non-hydrolyzable ATP analog AMP-PNP dramatically reduce the amplitude of dBest1 currents. Furthermore, intracellular perfusion with ATP-γ-S augments channel activation. The kinase responsible for dBest1 activation is likely Ca2+/calmodulin dependent kinase II (CaMKII), because specific inhibitors of this kinase dramatically inhibit dBest1 current activation. Neither specific PKA inhibitors nor inactive control inhibitors have effects on dBest1currents. Our results demonstrate that dBest1 currents are regulated by phosphorylation via a CaMKII dependent mechanism.  相似文献   

5.
The HOXB1 gene plays a critical role as an oncogene in diverse tumors. However, the functional role of HOXB1 and the mechanism regulating HOXB1 expression in glioma are not fully understood. A preliminary bioinformatics analysis showed that HOXB1 is ectopically expressed in glioma, and that HOXB1 is a possible target of miR-3175. In this study, we investigated the function of HOXB1 and the relationship between HOXB1 and miR-3175 in glioma. We show that HOXB1 expression is significantly downregulated in glioma tissues and cell lines, and that its expression may be closely associated with the degree of malignancy. Reduced HOXB1 expression promoted the proliferation and invasion of glioma cells, and inhibited their apoptosis in vitro, and the downregulation of HOXB1 was also associated with worse survival in glioma patients. More importantly, HOXB1 was shown experimentally to be a direct target of miR-3175 in this study. The downregulated expression of miR-3175 inhibited cell proliferation and invasion, and promoted apoptosis in glioma. The oncogenicity induced by low HOXB1 expression was prevented by an miR-3175 inhibitor in glioma cells. Our results suggest that HOXB1 functions as a tumor suppressor, regulated by miR-3175 in glioma. These results clarify the pathogenesis of glioma and offer a potential target for its treatment.  相似文献   

6.
Toxoplasma gondii is an obligate intracellular protozoan parasite that invades and replicates within most nucleated cells of warm-blooded animals. The basis for this wide host cell tropism is unknown but could be because parasites invade host cells using distinct pathways and/or repertoires of host factors. Using synchronized parasite invasion assays, we found that host microtubule disruption significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are specifically associated with the moving junction, which is the site of contact between the host cell and the invading parasite. Host microtubules are specifically associated with the moving junction of those parasites invading early after stimulating invasion but not with those invading later. Disruption of host microtubules has no effect on parasite contact, attachment, motility, or rate of penetration. Rather, host microtubules hasten the time before parasites commence invasion. This effect on parasite invasion is distinct from the role that host microtubules play in bacterial and viral infections, where they function to traffic the pathogen or pathogen-derived material from the host cell''s periphery to its interior. These data indicate that the host microtubule cytoskeleton is a structure used by Toxoplasma to rapidly infect its host cell and highlight a novel function for host microtubules in microbial pathogenesis.Toxoplasma gondii is an obligate intracellular protozoan parasite that is capable of causing disease in fetuses and immunocompromised individuals (23). The parasite infects a wide range of nucleated cells of most warm-blooded animals. The mechanisms underlying this wide tropism are not known but could be due to either the parasite infecting cells using a ubiquitously expressed host receptor and associated machinery, inserting its own receptor into the host cell''s plasma membrane, or using multiple host cell receptors/machinery (5).Toxoplasma invasion is a multistep, complex process consisting of parasite contact to host cells, intimate attachment, parasite motility, and then penetration (5). Host cell contact is a loose, low-affinity interaction that is mediated by parasite surface antigens. An unknown signal then triggers the release of proteins from a specialized secretory organelle called micronemes whose contents include proteins that function as adhesins. This is then followed by parasite gliding motility on the host cell surface. At some point, proteins from a second secretory organelle, named rhoptries, are exocytosed. Among these rhoptry proteins, several (RON2, RON4, RON5, and RON8) are part of a preformed complex that binds the previously secreted AMA1 microneme protein (1, 2, 20, 33). Together, these proteins form the moving junction complex, which defines the parasite entry site on the host cell plasma membrane. Parasite penetration occurs by the parasite propelling itself forward, via acto-myosin-dependent motility, into the host plasma membrane (35). This causes an invagination of the plasma membrane resulting in the formation of the parasitophorous vacuole (PV), which is the compartment that the parasite resides in throughout its time in the host cell. However, host plasma membrane-associated proteins are selectively incorporated into the developing PV such that glycosylphosphatidylinositol (GPI)-linked proteins are included, while single-pass transmembrane proteins are excluded (7, 24).In contrast to parasite molecules that function during invasion, few host cell components involved in this process are known. A notable exception is the finding that host Arp2/3-dependent actin polymerization promotes Toxoplasma invasion (11). Nevertheless, how actin or other host molecules function during invasion remains to be determined. The host microtubule cytoskeleton has been widely studied for its role during receptor-mediated endocytosis, as well as in bacterial and viral infections, where microtubules act to facilitate cargo transport from the host cell periphery to the interior (8, 15, 27, 29, 40). Consistent with this role in cargo transport, host microtubules also promote trafficking of rhoptry proteins secreted into the host cell (12). However, whether this host cell structure functions during parasite invasion per se is unknown.Here, we tested the hypothesis that host microtubules are used by Toxoplasma tachyzoites to penetrate into its host cell. Using synchronized parasite invasion assays, we find that disruption of host microtubules significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are localized to the moving junction but, unlike their previously described role in pathogen invasion, host microtubules promote tachyzoite invasion by hastening the time that parasites initiate invasion.  相似文献   

7.
Cold temperatures robustly activate a small cohort of somatosensory nerves, yet during a prolonged cold stimulus their activity will decrease, or adapt, over time. This process allows for the discrimination of subtle changes in temperature. At the molecular level, cold is detected by transient receptor potential melastatin 8 (TRPM8), a nonselective cation channel expressed on a subset of peripheral afferent fibers. We and others have reported that TRPM8 channels also adapt in a calcium-dependent manner when activated by the cooling compound menthol. Additionally, TRPM8 activity is sensitive to the phospholipid phosphoinositol 4,5-bisphosphate (PIP2), a substrate for the enzyme phospholipase C (PLC). These results suggest an adaptation model whereby TRPM8-mediated Ca2+ influx activates PLC, thereby decreasing PIP2 levels and resulting in reduced TRPM8 activity. Here we tested this model using pharmacological activation of PLC and by manipulating PIP2 levels independent of both PLC and Ca2+. PLC activation leads to adaptation-like reductions in cold- or menthol-evoked TRPM8 currents in both heterologous and native cells. Moreover, PLC-independent reductions in PIP2 had a similar effect on cold- and menthol-evoked currents. Mechanistically, either form of adaptation does not alter temperature sensitivity of TRPM8 but does lead to a change in channel gating. Our results show that adaptation is a shift in voltage dependence toward more positive potentials, reversing the trend toward negative potentials caused by agonist. These data suggest that PLC activity not only mediates adaptation to thermal stimuli, but likely underlies a more general mechanism that establishes the temperature sensitivity of somatosensory neurons.The detection of temperature is a fundamental task of the nervous system. Temperature-sensing sensory afferent neurons reside in either the trigeminal (TG)2 or dorsal root (DRG) sensory ganglia and project peripherally, terminating as free nerve endings that innervate areas of the head or trunk, respectively (1, 2). Subpopulations of these afferents respond to distinct sub-modalities of thermal stimuli, including noxious heat, innocuous cooling and warmth, and painfully cold temperatures. Each carries thermal information to the dorsal horn of the spinal cord, synapsing with neurons that project centrally (1, 3).The discovery of thermosensitive ion channels of the transient receptor potential (TRP) family demonstrated an underlying molecular mechanism for temperature detection (4). Cold temperature sensation is largely mediated by TRPM8, a nonselective cation channel expressed on a small subset of neurons (5, 6). TRPM8 is activated by cooling compounds, such as menthol, as well as cold temperatures below ∼28 °C, in vitro (7, 8). Recent reports on the behavioral phenotype of TRPM8-null mice suggest that this lone channel is required for the majority of cold sensing in vivo (5, 911). These and other data strongly implicate TRPM8 in not only the detection of both innocuous cool and some aspects of noxious cold but also injury-induced hypersensitivity to cold and, paradoxically, cooling-mediated analgesia (11, 12). Thus, understanding regulatory mechanisms that alter TRPM8 activity will provide keen insights into temperature sensation, nociception, and analgesia.One fundamental property of cold-sensitive neurons is an intrinsic ability to adapt to prolonged cold stimuli, a mechanism that is likely critical for discrimination of changing environmental conditions (13, 14). We and others have shown that cold-sensitive neurons adapt to cold and menthol over time in vitro (6, 15), a phenomenon also observed with recombinant TRPM8 channels activated by menthol (7). During sustained exposure to menthol, TRPM8 currents adapt in a manner that is dependent upon the presence of external calcium (7). Interestingly, cold- and menthol-evoked currents are highly sensitive to cellular manipulation. In heterologous cells, TRPM8 currents quickly decrease or run down upon membrane patch excision (16, 17). Moreover, in membrane patches excised from cold- and menthol-sensitive DRG neurons, cold thresholds for current activation exhibit a shift of ∼10 °C to colder temperatures in comparison with thresholds recorded in intact cells (18).Phosphatidylinositol 4,5-bisphosphate (PIP2) is a membrane phospholipid that accounts for ∼1% of all lipids in the inner leaflet of the plasma membrane and is known to regulate a variety of ion channels, including TRPM8 (16, 17). When applied to the cytoplasmic face of excised membrane patches containing TRPM8 channels, PIP2 can recover menthol-evoked currents to near pre-rundown levels (16, 17). PIP2 is proposed to interact with channels either through electrostatic interactions or by binding to target proteins at specific phosphoinositide-binding sites (19, 20). Membrane PIP2 levels are a product of enzymatic activity, such as phosphoinositide kinases that synthesize PIP2 from membrane precursors and phospholipase C (PLC) that hydrolyzes it, creating membrane-bound diacylglycerol (DAG) and cytosolic inositol trisphosphate (IP3), both of which function as second messengers. Of the three different PLC isotypes, PLCδ isoforms are modulated by increases in intracellular calcium (21).When taken in context with the sensitivity of TRPM8 currents to PIP2 levels, a model has been proposed whereby adaption is a result of channel-mediated Ca2+ influx activating one or more PLCδ isoforms (16, 17). The subsequent reductions in PIP2 levels then promote reduced or adapted TRPM8 currents. However, this hypothesis has not been conclusively shown in intact heterologous cells or in somatosensory neurons expressing TRPM8. Moreover, other alternative hypotheses for TRPM8 adaptation have been proposed, including Ca2+-dependent kinase activity mediated by protein kinase C (22, 23). Thus, the cellular and molecular mechanisms for Ca2+-mediated TRPM8 adaptation are unclear.Here we show, in both heterologous cells and native TRPM8-expressing neurons, that Ca2+-independent activation of PLC results in adapted TRPM8 currents. Moreover, PLC- and Ca2+-independent PIP2 depletion in heterologous cells produces similar effects on TRPM8 activity, again reducing both cold- and menthol-evoked currents. Mechanistically, we find that all such manipulations do not alter the temperature sensitivity of the channel but do lead to a shift in the voltage dependence of TRPM8 channel gating.  相似文献   

8.
Serine protease inhibitors (SERPINs) are a superfamily of highly conserved proteins that play a key role in controlling the activity of proteases in diverse biological processes. The SERPIN cluster located at the 14q32.1 region includes the gene coding for SERPINA1, and a highly homologous sequence, SERPINA2, which was originally thought to be a pseudogene. We have previously shown that SERPINA2 is expressed in different tissues, namely leukocytes and testes, suggesting that it is a functional SERPIN. To investigate the function of SERPINA2, we used HeLa cells stably transduced with the different variants of SERPINA2 and SERPINA1 (M1, S and Z) and leukocytes as the in vivo model. We identified SERPINA2 as a 52 kDa intracellular glycoprotein, which is localized at the endoplasmic reticulum (ER), independently of the variant analyzed. SERPINA2 is not significantly regulated by proteasome, proposing that ER localization is not due to misfolding. Specific features of SERPINA2 include the absence of insoluble aggregates and the insignificant response to cell stress, suggesting that it is a non-polymerogenic protein with divergent activity of SERPINA1. Using phylogenetic analysis, we propose an origin of SERPINA2 in the crown of primates, and we unveiled the overall conservation of SERPINA2 and A1. Nonetheless, few SERPINA2 residues seem to have evolved faster, contributing to the emergence of a new advantageous function, possibly as a chymotrypsin-like SERPIN. Herein, we present evidences that SERPINA2 is an active gene, coding for an ER-resident protein, which may act as substrate or adjuvant of ER-chaperones.  相似文献   

9.
10.
11.
MicroRNAs (miRNAs) are predicted to regulate approximately 30% of all human genes; however, only a few miRNAs have been assigned their targets and specific functions. Here we demonstrate that miR-24, a ubiquitously expressed miRNA, has an anti-proliferative effect independent of p53 function. Cell lines with differential p53 status were used as a model to study the effects of miR-24 on cell proliferation, cell cycle control, gene regulation and cellular transformation. Overexpression of miR-24 in six different cell lines, independent of p53 function, inhibited cell proliferation and resulted in G2/S cell cycle arrest. MiR-24 over expression in cells with wt-p53 upregulated TP53 and p21 protein; however, in p53-null cells miR-24 still induced cell cycle arrest without the involvement of p21. We show that miR-24 regulates p53-independent cellular proliferation by regulating an S-phase enzyme, dihydrofolate reductase (DHFR) a target of the chemotherapeutic drug methotrexate (MTX). Of interest, we found that a miR-24 target site polymorphism in DHFR 3′ UTR that results in loss of miR-24-function and high DHFR levels in the cell imparts a growth advantage to immortalized cells and induces neoplastic transformation. Of clinical significance, we found that miR-24 is deregulated in human colorectal cancer tumors and a subset of tumors has reduced levels of miR-24. A novel function for miR-24 as a p53-independent cell cycle inhibitory miRNA is proposed.  相似文献   

12.
13.
14.
15.
Nedd4 and Nedd4-2 are ubiquitin-protein ligases known to regulate a number of membrane proteins including receptors and ion transporters. Regulation of the epithelial Na(+) channel by Nedd4 and Nedd4-2 is mediated via interactions between the PY motifs of the epithelial sodium channel subunits and the Nedd4/Nedd4-2 WW domains. This example serves as a model for the regulation of other PY motif-containing ion channels by Nedd4 and Nedd4-2. We found that the carboxyl termini of the six voltage-gated Na(+) (Na(v)) channels contain typical PY motifs (PPXY), and a further Na(v) contains a PY motif variant (LPXY). Not only did we demonstrate by Far-Western analysis that Nedd4 and Nedd4-2 interact with the PY motif-containing Na(v) channels, but we also showed that these channels have conserved WW domain binding specificity. We further showed that the carboxyl termini fusion proteins of one central nervous system and one peripheral nervous system-derived Na(+) channel (Na(v)1.2 and Na(v)1.7, respectively) are readily ubiquitinated by Nedd4-2. In Xenopus oocytes, Nedd4-2 strongly inhibited the activities of all three Na(v)s (Na(v)1.2, Na(v)1.7, and Na(v)1.8) tested. Interestingly, Nedd4 suppressed the activity of Na(v)1.2 and Na(v)1.7 but was a poor inhibitor of Na(v)1.8. Our results provide evidence that Nedd4 and Nedd4-2 are likely to be key regulators of specific neuronal Na(v) channels in vivo.  相似文献   

16.
Pathogens have developed diverse strategies to infect their hosts and evade the host defense systems. Many pathogens reside within host phagocytic cells, thus evading much of the host immune system. For dimorphic fungal pathogens which grow in a multicellular hyphal form, a central attribute which facilitates growth inside host cells without rapid killing is the capacity to switch from the hyphal growth form to a unicellular yeast form. Blocking this transition abolishes or severely reduces pathogenicity. Host body temperature (37°C) is the most common inducer of the hyphal to yeast transition in vitro for many dimorphic fungi, and it is often assumed that this is the inducer in vivo. This work describes the identification and analysis of a new pathway involved in sensing the environment inside a host cell by a dimorphic fungal pathogen, Penicillium marneffei. The pakB gene, encoding a p21-activated kinase, defines this pathway and operates independently of known effectors in P. marneffei. Expression of pakB is upregulated in P. marneffei yeast cells isolated from macrophages but absent from in vitro cultured yeast cells produced at 37°C. Deletion of pakB leads to a failure to produce yeast cells inside macrophages but no effect in vitro at 37°C. Loss of pakB also leads to the inappropriate production of yeast cells at 25°C in vitro, and the mechanism underlying this requires the activity of the central regulator of asexual development. The data shows that this new pathway is central to eliciting the appropriate morphogenetic response by the pathogen to the host environment independently of the common temperature signal, thus clearly separating the temperature- and intracellular-dependent signaling systems.  相似文献   

17.
The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the host´s cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that process.  相似文献   

18.

Background

MicroRNA-101 (miR-101) expression is negatively associated with tumor growth and blood vessel formation in several solid epithelial cancers. However, the role of miR-101 in human breast cancer remains elusive.

Results

MiR-101 was significantly decreased in different subtypes of human breast cancer tissues compared with that in adjacent normal breast tissues (P<0.01). Up-regulation of miR-101 inhibited cell proliferation, migration and invasion, and promoted cell apoptosis in ER alpha-positive and ER alpha-negative breast cancer cells and normal breast cells. Down-regulation of miR-101 displayed opposite effects on cell growth and metastasis. Further investigation revealed a significant inverse correlation between the expression of miR-101 and Stathmin1 (Stmn1), and miR-101 could bind to the 3′-untranslated region (UTR) of Stmn1 to inhibit Stmn1 translation. The inhibition of cell growth and metastasis induced by up-regulation of miR-101 was partially restored by overexpresson of Stmn1. Knockdown of Stmn1 attenuates the down-regulation of miR-101-mediated enhancement of cell growth and metastasis. More importantly, in vivo analysis found that Stmn1 mRNA and protein level in different subtypes of human breast cancer tissues, contrary to the down-regulation of miR-101, were significantly elevated.

Conclusions

This study demonstrates that down-regulation of miR-101 in different subtypes of human breast cancer tissues is linked to the increase of cellular proliferation and invasiveness via targeting Stmn1, which highlights novel regulatory mechanism in breast cancer and may provide valuable clues for the future clinical diagnosis of breast cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号