首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent. However, many HCC cells show resistance to TRAIL-induced apoptosis. In this study, we showed that bortezomib, a proteasome inhibitor, overcame TRAIL resistance in HCC cells, including Huh-7, Hep3B, and Sk-Hep1. The combination of bortezomib and TRAIL restored the sensitivity of HCC cells to TRAIL-induced apoptosis. Comparing the molecular change in HCC cells treated with these agents, we found that down-regulation of phospho-Akt (P-Akt) played a key role in mediating TRAIL sensitization of bortezomib. The first evidence was that bortezomib down-regulated P-Akt in a dose- and time-dependent manner in TRAIL-treated HCC cells. Second, LY294002, a PI3K inhibitor, also sensitized resistant HCC cells to TRAIL-induced apoptosis. Third, knocking down Akt1 by small interference RNA also enhanced TRAIL-induced apoptosis in Huh-7 cells. Finally, ectopic expression of mutant Akt (constitutive active) in HCC cells abolished TRAIL sensitization effect of bortezomib. Moreover, okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, reversed down-regulation of P-Akt in bortezomib-treated cells, and PP2A knockdown by small interference RNA also reduced apoptosis induced by the combination of TRAIL and bortezomib, indicating that PP2A may be important in mediating the effect of bortezomib on TRAIL sensitization. Together, bortezomib overcame TRAIL resistance at clinically achievable concentrations in hepatocellular carcinoma cells, and this effect is mediated at least partly via inhibition of the PI3K/Akt pathway.Hepatocellular carcinoma (HCC)2 is currently the fifth most common solid tumor worldwide and the fourth leading cause of cancer-related death. To date, surgery is still the only curative treatment but is only feasible in a small portion of patients (1). Drug treatment is the major therapy for patients with advanced stage disease. Unfortunately, the response rate to traditional chemotherapy for HCC patients is unsatisfactory (1). Novel pharmacological therapy is urgently needed for patients with advanced HCC. In this regard, the approval of sorafenib might open a new era of molecularly targeted therapy in the treatment of HCC patients.Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a type II transmembrane protein and a member of the TNF family, is a promising anti-tumor agent under clinical investigation (2). TRAIL functions by engaging its receptors expressed on the surface of target cells. Five receptors specific for TRAIL have been identified, including DR4/TRAIL-R1, DR5/TRAIL-R2, DcR1, DcR2, and osteoprotegerin. Among TRAIL receptors, only DR4 and DR5 contain an effective death domain that is essential to formation of death-inducing signaling complex (DISC), a critical step for TRAIL-induced apoptosis. Notably, the trimerization of the death domains recruits an adaptor molecule, Fas-associated protein with death domain (FADD), which subsequently recruits and activates caspase-8. In type I cells, activation of caspase-8 is sufficient to activate caspase-3 to induce apoptosis; however, in another type of cells (type II), the intrinsic mitochondrial pathway is essential for apoptosis characterized by cleavage of Bid and release of cytochrome c from mitochondria, which subsequently activates caspase-9 and caspase-3 (3).Although TRAIL induces apoptosis in malignant cells but sparing normal cells, some tumor cells are resistant to TRAIL-induced apoptosis. Mechanisms responsible for the resistance include receptors and intracellular resistance. Although the cell surface expression of DR4 or DR5 is absolutely required for TRAIL-induced apoptosis, tumor cells expressing these death receptors are not always sensitive to TRAIL due to intracellular mechanisms. For example, the cellular FLICE-inhibitory protein (c-FLIP), a homologue to caspase-8 but without protease activity, has been linked to TRAIL resistance in several studies (4, 5). In addition, inactivation of Bax, a proapoptotic Bcl-2 family protein, resulted in resistance to TRAIL in MMR-deficient tumors (6, 7), and reintroduction of Bax into Bax-deficient cells restored TRAIL sensitivity (8), indicating that the Bcl-2 family plays a critical role in intracellular mechanisms for resistance of TRAIL.Bortezomib, a proteasome inhibitor approved clinically for multiple myeloma and mantle cell lymphoma, has been investigated intensively for many types of cancer (9). Accumulating studies indicate that the combination of bortezomib and TRAIL overcomes the resistance to TRAIL in various types of cancer, including acute myeloid leukemia (4), lymphoma (1013), prostate (1417), colon (15, 18, 19), bladder (14, 16), renal cell carcinoma (20), thyroid (21), ovary (22), non-small cell lung (23, 24), sarcoma (25), and HCC (26, 27). Molecular targets responsible for the sensitizing effect of bortezomib on TRAIL-induced cell death include DR4 (14, 27), DR5 (14, 20, 2223, 28), c-FLIP (4, 11, 2123, 29), NF-κB (12, 24, 30), p21 (16, 21, 25), and p27 (25). In addition, Bcl-2 family also plays a role in the combinational effect of bortezomib and TRAIL, including Bcl-2 (10, 21), Bax (13, 22), Bak (27), Bcl-xL (21), Bik (18), and Bim (15).Recently, we have reported that Akt signaling is a major molecular determinant in bortezomib-induced apoptosis in HCC cells (31). In this study, we demonstrated that bortezomib overcame TRAIL resistance in HCC cells through inhibition of the PI3K/Akt pathway.  相似文献   

2.
3.
4.
5.
Mismatch repair (MMR) proteins participate in cytotoxicity induced by certain DNA damage-inducing agents, including cisplatin (cis-diamminedichloroplatinum(II), CDDP), a cancer chemotherapeutic drug utilized clinically to treat a variety of malignancies. MMR proteins have been demonstrated to bind to CDDP-DNA adducts and initiate MMR protein-dependent cell death in cells treated with CDDP; however, the molecular events underlying this death remain unclear. As MMR proteins have been suggested to be important in clinical responses to CDDP, a clear understanding of MMR protein-dependent, CDDP-induced cell death is critical. In this report, we demonstrate MMR protein-dependent relocalization of cytochrome c to the cytoplasm and cleavage of caspase-9, caspase-3, and poly(ADP-ribose) polymerase upon treatment of cells with CDDP. Chemical inhibition of caspases specifically attenuates CDDP/MMR protein-dependent cytotoxicity, suggesting that a caspase-dependent signaling mechanism is required for the execution of this cell death. p53 protein levels were up-regulated independently of MMR protein status, suggesting that p53 is not a mediator of MMR-dependent, CDDP-induced death. This work is the first indication of a required signaling mechanism in CDDP-induced, MMR protein-dependent cytotoxicity, which can be uncoupled from other CDDP response pathways, and defines a critical contribution of MMR proteins to the control of cell death.The MMR2 system of proteins plays roles in diverse cellular processes, perhaps most notably in preserving genomic integrity by recognizing and facilitating the repair of post-DNA replication base pairing errors. Recognition of these errors and recruitment of repair machinery is performed by the MutSα complex (consisting of the MMR proteins MSH2 and MSH6) or MutSβ complex (consisting of MSH2 and MSH3). Defects in MMR proteins render cells hypermutable and promote microsatellite instability, a hallmark of MMR defects. MMR protein defects are found in a wide variety of sporadic cancers, as well as in hereditary non-polyposis colorectal cancer (1).In addition to their role in DNA repair, MMR proteins also play a role in cytotoxicity induced by specific types of DNA-damaging chemotherapeutic drugs, such as CDDP, which is utilized clinically to treat a number of different cancer types. MutSα recognizes multiple types of DNA damage, including 1,2-intrastrand CDDP adducts and O6-methylguanine lesions (2). Treatment of cells with compounds that induce these types of lesions, including CDDP and methylating agents such as N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), results in MMR protein-dependent cell cycle arrest and cell death (37). This suggests that MMR proteins, in addition to their role in DNA repair, are also capable of initiating cell death in response to certain types of DNA damage.Cells treated with DNA-damaging agents frequently activate an apoptotic cell death pathway mediated by the mitochondria. This intrinsic death signaling pathway predominantly involves the coordinated activity of two groups of proteins: pro-death members of the Bcl-2 family that control the integrity of mitochondrial membranes, and members of the caspase family of cysteinyl proteases that proteolytically cleave intracellular substrates, giving rise to apoptotic morphology and destruction of the cell (8, 9). Pro-death Bcl-2 family members, such as Bax and Bak, target the outer mitochondrial membrane and cause the cytosolic release of pro-death factors residing within the mitochondria of unstressed cells (8). Predominant among these factors is cytochrome c, whose cytoplasmic localization results in the formation of a caspase-activating platform known as the apoptosome (10). This complex includes the adaptor protein Apaf-1, and when formed the apoptosome promotes the cleavage and activation of caspase-9 (11, 12). Once activated, this apical caspase proceeds to cleave and activate caspase-3, the predominant effector protease of apoptosis.A significant amount of evidence has been gathered illustrating MMR protein-dependent pro-death signaling in response to methylating agents (1316, 3). In contrast, the MMR protein-dependent cytotoxic response to CDDP is largely unknown, with only the p53-related transactivator protein p73 and the c-Abl kinase clearly implicated as potential mediators of CDDP/MMR protein-dependent cell death in human cells (17, 18). Interestingly, ATM, Chk1, Chk2, and p53, which are activated in an MMR protein-dependent manner after treatment of cells with MNNG (3, 13), are not involved in the MMR-dependent response to CDDP (7, 17). In addition, the magnitude of MMR protein-dependent cell death induced by methylating agents and CDDP differs (4). These findings suggest that unique signaling pathways may be engaged by MMR proteins depending upon the type of recognized lesion. As such, there is a requirement for further study of the molecular events underlying MMR protein-dependent cell death and cell cycle arrest for each type of recognized DNA lesion. This is particularly relevant in the case of CDDP, as evidence from a limited number of retrospective clinical studies suggests that MMR proteins play an important role in patient response to CDDP. Several studies examining immunohistochemical staining against MSH2 or MLH1 have demonstrated that levels of these proteins are reduced in ovarian and esophageal tumor samples following CDDP-based chemotherapy (19, 20). Low levels of MMR protein post-chemotherapy seem to be predictive of lower overall survival in a certain subset of tumors (esophageal cancer), but not others (ovarian and non-small cell lung cancer) (1921). Two recent studies examining MMR protein levels and microsatellite instability in germ cell tumors from patients receiving platinum-based chemotherapy have suggested a prognostic value for pre-chemotherapy MMR protein status in these tumors (22, 23). This potential clinical relevance underscores the need for a greater understanding of MMR protein-dependent mechanisms of CDDP-induced cell death.In this study, we report that CDDP induces an MMR protein-dependent decrease in cell viability and MMR protein-dependent signaling in the form of cytochrome c release to the cytoplasm and cleavage of caspase-9, caspase-3, and PARP. Chemical inhibition of caspases specifically attenuates CDDP/MMR protein-dependent loss of cell viability, indicating a requirement for caspase activation in this process and uncoupling MMR protein-dependent cytotoxic signaling from other CDDP response pathways. Additionally, the CDDP-induced, MMR protein-dependent cytotoxic response is independent of p53 signaling. Our results demonstrate for the first time an MMR protein-dependent pro-death signaling pathway in cells treated with CDDP.  相似文献   

6.
7.
ATP-binding cassette (ABC) transporters transduce the free energy of ATP hydrolysis to power the mechanical work of substrate translocation across cell membranes. MsbA is an ABC transporter implicated in trafficking lipid A across the inner membrane of Escherichia coli. It has sequence similarity and overlapping substrate specificity with multidrug ABC transporters that export cytotoxic molecules in humans and prokaryotes. Despite rapid advances in structure determination of ABC efflux transporters, little is known regarding the location of substrate-binding sites in the transmembrane segment and the translocation pathway across the membrane. In this study, we have mapped residues proximal to the daunorubicin (DNR)-binding site in MsbA using site-specific, ATP-dependent quenching of DNR intrinsic fluorescence by spin labels. In the nucleotide-free MsbA intermediate, DNR-binding residues cluster at the cytoplasmic end of helices 3 and 6 at a site accessible from the membrane/water interface and extending into an aqueous chamber formed at the interface between the two transmembrane domains. Binding of a nonhydrolyzable ATP analog inverts the transporter to an outward-facing conformation and relieves DNR quenching by spin labels suggesting DNR exclusion from proximity to the spin labels. The simplest model consistent with our data has DNR entering near an elbow helix parallel to the water/membrane interface, partitioning into the open chamber, and then translocating toward the periplasm upon ATP binding.ATP-binding cassette (ABC)2 transporters transduce the energy of ATP hydrolysis to power the movement of a wide range of substrates across the cell membranes (1, 2). They constitute the largest family of prokaryotic transporters, import essential cell nutrients, flip lipids, and export toxic molecules (3). Forty eight human ABC transporters have been identified, including ABCB1, or P-glycoprotein, which is implicated in cross-resistance to drugs and cytotoxic molecules (4, 5). Inherited mutations in these proteins are linked to diseases such as cystic fibrosis, persistent hypoglycemia of infancy, and immune deficiency (6).The functional unit of an ABC transporter consists of four modules. Two highly conserved ABCs or nucleotide-binding domains (NBDs) bind and hydrolyze ATP to supply the active energy for transport (7). ABCs drive the mechanical work of proteins with diverse functions ranging from membrane transport to DNA repair (3, 5). Substrate specificity is determined by two transmembrane domains (TMDs) that also provide the translocation pathway across the bilayer (7). Bacterial ABC exporters are expressed as monomers, each consisting of one NBD and one TMD, that dimerize to form the active transporter (3). The number of transmembrane helices and their organization differ significantly between ABC importers and exporters reflecting the divergent structural and chemical nature of their substrates (1, 8, 9). Furthermore, ABC exporters bind substrates directly from the cytoplasm or bilayer inner leaflet and release them to the periplasm or bilayer outer leaflet (10, 11). In contrast, bacterial importers have their substrates delivered to the TMD by a dedicated high affinity substrate-binding protein (12).In Gram-negative bacteria, lipid A trafficking from its synthesis site on the inner membrane to its final destination in the outer membrane requires the ABC transporter MsbA (13). Although MsbA has not been directly shown to transport lipid A, suppression of MsbA activity leads to cytoplasmic accumulation of lipid A and inhibits bacterial growth strongly suggesting a role in translocation (14-16). In addition to this role in lipid A transport, MsbA shares sequence similarity with multidrug ABC transporters such as human ABCB1, LmrA of Lactococcus lactis, and Sav1866 of Staphylococcus aureus (16-19). ABCB1, a prototype of the ABC family, is a plasma membrane protein whose overexpression provides resistance to chemotherapeutic agents in cancer cells (1). LmrA and MsbA have overlapping substrate specificity with ABCB1 suggesting that both proteins can function as drug exporters (18, 20). Indeed, cells expressing MsbA confer resistance to erythromycin and ethidium bromide (21). MsbA can be photolabeled with the ABCB1/LmrA substrate azidopine and can transport Hoechst 33342 (H33342) across membrane vesicles in an energy-dependent manner (21).The structural mechanics of ABC exporters was revealed from comparison of the MsbA crystal structures in the apo- and nucleotide-bound states as well as from analysis by spin labeling EPR spectroscopy in liposomes (17, 19, 22, 23). The energy harnessed from ATP binding and hydrolysis drives a cycle of NBD association and dissociation that is transmitted to induce reorientation of the TMD from an inward- to outward-facing conformation (17, 19, 22). Large amplitude motion closes the cytoplasmic end of a chamber found at the interface between the two TMDs and opens it to the periplasm (23). These rearrangements lead to significant changes in chamber hydration, which may drive substrate translocation (22).Substrate binding must precede energy input, otherwise the cycle is futile, wasting the energy of ATP hydrolysis without substrate extrusion (7). Consistent with this model, ATP binding reduces ABCB1 substrate affinity, potentially through binding site occlusion (24-26). Furthermore, the TMD substrate-binding event signals the NBD to stimulate ATP hydrolysis increasing transport efficiency (1, 27, 28). However, there is a paucity of information regarding the location of substrate binding, the transport pathway, and the structural basis of substrate recognition by ABC exporters. In vitro studies of MsbA substrate specificity identify a broad range of substrates that stimulate ATPase activity (29). In addition to the putative physiological substrates lipid A and lipopolysaccharide (LPS), the ABCB1 substrates Ilmofosine, H33342, and verapamil differentially enhance ATP hydrolysis of MsbA (29, 30). Intrinsic MsbA tryptophan (Trp) fluorescence quenching by these putative substrate molecules provides further support of interaction (29).Extensive biochemical analysis of ABCB1 and LmrA provides a general model of substrate binding to ABC efflux exporters. This so-called “hydrophobic cleaner model” describes substrates binding from the inner leaflet of the bilayer and then translocating through the TMD (10, 31, 32). These studies also identified a large number of residues involved in substrate binding and selectivity (33). When these crucial residues are mapped onto the crystal structures of MsbA, a subset of homologous residues clusters to helices 3 and 6 lining the putative substrate pathway (34). Consistent with a role in substrate binding and specificity, simultaneous replacement of two serines (Ser-289 and Ser-290) in helix 6 of MsbA reduces binding and transport of ethidium and taxol, although H33342 and erythromycin interactions remain unaffected (34).The tendency of lipophilic substrates to partition into membranes confounds direct analysis of substrate interactions with ABC exporters (35, 36). Such partitioning may promote dynamic collisions with exposed Trp residues and nonspecific cross-linking in photo-affinity labeling experiments. In this study, we utilize a site-specific quenching approach to identify residues in the vicinity of the daunorubicin (DNR)-binding site (37). Although the data on DNR stimulation of ATP hydrolysis is inconclusive (20, 29, 30), the quenching of MsbA Trp fluorescence suggests a specific interaction. Spin labels were introduced along transmembrane helices 3, 4, and 6 of MsbA to assess their ATP-dependent quenching of DNR fluorescence. Residues that quench DNR cluster along the cytoplasmic end of helices 3 and 6 consistent with specific binding of DNR. Furthermore, many of these residues are not lipid-exposed but face the putative substrate chamber formed between the two TMDs. These residues are proximal to two Trps, which likely explains the previously reported quenching (29). Our results suggest DNR partitions to the membrane and then binds MsbA in a manner consistent with the hydrophobic cleaner model. Interpretation in the context of the crystal structures of MsbA identifies a putative translocation pathway through the transmembrane segment.  相似文献   

8.
Intersectin-short (intersectin-s) is a multimodule scaffolding protein functioning in constitutive and regulated forms of endocytosis in non-neuronal cells and in synaptic vesicle (SV) recycling at the neuromuscular junction of Drosophila and Caenorhabditis elegans. In vertebrates, alternative splicing generates a second isoform, intersectin-long (intersectin-l), that contains additional modular domains providing a guanine nucleotide exchange factor activity for Cdc42. In mammals, intersectin-s is expressed in multiple tissues and cells, including glia, but excluded from neurons, whereas intersectin-l is a neuron-specific isoform. Thus, intersectin-I may regulate multiple forms of endocytosis in mammalian neurons, including SV endocytosis. We now report, however, that intersectin-l is localized to somatodendritic regions of cultured hippocampal neurons, with some juxtanuclear accumulation, but is excluded from synaptophysin-labeled axon terminals. Consistently, intersectin-l knockdown (KD) does not affect SV recycling. Instead intersectin-l co-localizes with clathrin heavy chain and adaptor protein 2 in the somatodendritic region of neurons, and its KD reduces the rate of transferrin endocytosis. The protein also co-localizes with F-actin at dendritic spines, and intersectin-l KD disrupts spine maturation during development. Our data indicate that intersectin-l is indeed an important regulator of constitutive endocytosis and neuronal development but that it is not a prominent player in the regulated endocytosis of SVs.Clathrin-mediated endocytosis (CME)4 is a major mechanism by which cells take up nutrients, control the surface levels of multiple proteins, including ion channels and transporters, and regulate the coupling of signaling receptors to downstream signaling cascades (1-5). In neurons, CME takes on additional specialized roles; it is an important process regulating synaptic vesicle (SV) availability through endocytosis and recycling of SV membranes (6, 7), it shapes synaptic plasticity (8-10), and it is crucial in maintaining synaptic membranes and membrane structure (11).Numerous endocytic accessory proteins participate in CME, interacting with each other and with core components of the endocytic machinery such as clathrin heavy chain (CHC) and adaptor protein-2 (AP-2) through specific modules and peptide motifs (12). One such module is the Eps15 homology domain that binds to proteins bearing NPF motifs (13, 14). Another is the Src homology 3 (SH3) domain, which binds to proline-rich domains in protein partners (15). Intersectin is a multimodule scaffolding protein that interacts with a wide range of proteins, including several involved in CME (16). Intersectin has two N-terminal Eps15 homology domains that are responsible for binding to epsin, SCAMP1, and numb (17-19), a central coil-coiled domain that interacts with Eps15 and SNAP-23 and -25 (17, 20, 21), and five SH3 domains in its C-terminal region that interact with multiple proline-rich domain proteins, including synaptojanin, dynamin, N-WASP, CdGAP, and mSOS (16, 22-25). The rich binding capability of intersectin has linked it to various functions from CME (17, 26, 27) and signaling (22, 28, 29) to mitogenesis (30, 31) and regulation of the actin cytoskeleton (23).Intersectin functions in SV recycling at the neuromuscular junction of Drosophila and C. elegans where it acts as a scaffold, regulating the synaptic levels of endocytic accessory proteins (21, 32-34). In vertebrates, the intersectin gene is subject to alternative splicing, and a longer isoform (intersectin-l) is generated that is expressed exclusively in neurons (26, 28, 35, 36). This isoform has all the binding modules of its short (intersectin-s) counterpart but also has additional domains: a DH and a PH domain that provide guanine nucleotide exchange factor (GEF) activity specific for Cdc42 (23, 37) and a C2 domain at the C terminus. Through its GEF activity and binding to actin regulatory proteins, including N-WASP, intersectin-l has been implicated in actin regulation and the development of dendritic spines (19, 23, 24). In addition, because the rest of the binding modules are shared between intersectin-s and -l, it is generally thought that the two intersectin isoforms have the same endocytic functions. In particular, given the well defined role for the invertebrate orthologs of intersectin-s in SV endocytosis, it is thought that intersectin-l performs this role in mammalian neurons, which lack intersectin-s. Defining the complement of intersectin functional activities in mammalian neurons is particularly relevant given that the protein is involved in the pathophysiology of Down syndrome (DS). Specifically, the intersectin gene is localized on chromosome 21q22.2 and is overexpressed in DS brains (38). Interestingly, alterations in endosomal pathways are a hallmark of DS neurons and neurons from the partial trisomy 16 mouse, Ts65Dn, a model for DS (39, 40). Thus, an endocytic trafficking defect may contribute to the DS disease process.Here, the functional roles of intersectin-l were studied in cultured hippocampal neurons. We find that intersectin-l is localized to the somatodendritic regions of neurons, where it co-localizes with CHC and AP-2 and regulates the uptake of transferrin. Intersectin-l also co-localizes with actin at dendritic spines and disrupting intersectin-l function alters dendritic spine development. In contrast, intersectin-l is absent from presynaptic terminals and has little or no role in SV recycling.  相似文献   

9.
10.
Melanoma cells express the chemokine receptor CXCR4 that confers high invasiveness upon binding to its ligand CXCL12. Melanoma cells at initial stages of the disease show reduction or loss of E-cadherin expression, but recovery of its expression is frequently found at advanced phases. We overexpressed E-cadherin in the highly invasive BRO lung metastatic cell melanoma cell line to investigate whether it could influence CXCL12-promoted cell invasion. Overexpression of E-cadherin led to defective invasion of melanoma cells across Matrigel and type I collagen in response to CXCL12. A decrease in individual cell migration directionality toward the chemokine and reduced adhesion accounted for the impaired invasion. A p190RhoGAP-dependent inhibition of RhoA activation was responsible for the impairment in chemokine-stimulated E-cadherin melanoma transfectant invasion. Furthermore, we show that p190RhoGAP and p120ctn associated predominantly on the plasma membrane of cells overexpressing E-cadherin, and that E-cadherin-bound p120ctn contributed to RhoA inactivation by favoring p190RhoGAP-RhoA association. These results suggest that melanoma cells at advanced stages of the disease could have reduced metastatic potency in response to chemotactic stimuli compared with cells lacking E-cadherin, and the results indicate that p190RhoGAP is a central molecule controlling melanoma cell invasion.Cadherins are a family of Ca2+-dependent adhesion molecules that mediate cell-cell contacts and are expressed in most solid tissues providing a tight control of morphogenesis (1, 2). Classical cadherins, such as epithelial (E) cadherin, are found in adherens junctions, forming core protein complexes with β-catenin, α-catenin, and p120 catenin (p120ctn). Both β-catenin and p120ctn directly interact with E-cadherin, whereas α-catenin associates with the complex through its binding to β-catenin, providing a link with the actin cytoskeleton (1, 2). E-cadherin is frequently lost or down-regulated in many human tumors, coincident with morphological epithelial to mesenchymal transition and acquisition of invasiveness (3-6).Although melanoma only accounts for 5% of skin cancers, when metastasis starts, it is responsible for 80% of deaths from skin cancers (7). Melanocytes express E-cadherin (8-10), but melanoma cells at early radial growth phase show a large reduction in the expression of this cadherin, and surprisingly, expression has been reported to be partially recovered by vertical growth phase and metastatic melanoma cells (9, 11, 12).Trafficking of cancer cells from primary tumor sites to intravasation into blood circulation and later to extravasation to colonize distant organs requires tightly regulated directional cues and cell migration and invasion that are mediated by chemokines, growth factors, and adhesion molecules (13). Solid tumor cells express chemokine receptors that provide guidance of these cells to organs where their chemokine ligands are expressed, constituting a homing model resembling the one used by immune cells to exert their immune surveillance functions (14). Most solid cancer cells express CXCR4, a receptor for the chemokine CXCL12 (also called SDF-1), which is expressed in lungs, bone marrow, and liver (15). Expression of CXCR4 in human melanoma has been detected in the vertical growth phase and on regional lymph nodes, which correlated with poor prognosis and increased mortality (16, 17). Previous in vivo experiments have provided evidence supporting a crucial role for CXCR4 in the metastasis of melanoma cells (18).Rho GTPases control the dynamics of the actin cytoskeleton during cell migration (19, 20). The activity of Rho GTPases is tightly regulated by guanine-nucleotide exchange factors (GEFs),4 which stimulate exchange of bound GDP by GTP, and inhibited by GTPase-activating proteins (GAPs), which promote GTP hydrolysis (21, 22), whereas guanine nucleotide dissociation inhibitors (GDIs) appear to mediate blocking of spontaneous activation (23). Therefore, cell migration is finely regulated by the balance between GEF, GAP, and GDI activities on Rho GTPases. Involvement of Rho GTPases in cancer is well documented (reviewed in Ref. 24), providing control of both cell migration and growth. RhoA and RhoC are highly expressed in colon, breast, and lung carcinoma (25, 26), whereas overexpression of RhoC in melanoma leads to enhancement of cell metastasis (27). CXCL12 activates both RhoA and Rac1 in melanoma cells, and both GTPases play key roles during invasion toward this chemokine (28, 29).Given the importance of the CXCL12-CXCR4 axis in melanoma cell invasion and metastasis, in this study we have addressed the question of whether changes in E-cadherin expression on melanoma cells might affect cell invasiveness. We show here that overexpression of E-cadherin leads to impaired melanoma cell invasion to CXCL12, and we provide mechanistic characterization accounting for the decrease in invasion.  相似文献   

11.
The intestinal epithelium is repetitively deformed by shear, peristalsis, and villous motility. Such repetitive deformation stimulates the proliferation of intestinal epithelial cells on collagen or laminin substrates via ERK, but the upstream mediators of this effect are poorly understood. We hypothesized that the phosphatidylinositol 3-kinase (PI3K)/AKT cascade mediates this mitogenic effect. PI3K, AKT, and glycogen synthase kinase-3β (GSK-3β) were phosphorylated by 10 cycles/min strain at an average 10% deformation, and pharmacologic blockade of these molecules or reduction by small interfering RNA (siRNA) prevented the mitogenic effect of strain in Caco-2 or IEC-6 intestinal epithelial cells. Strain MAPK activation required PI3K but not AKT. AKT isoform-specific siRNA transfection demonstrated that AKT2 but not AKT1 is required for GSK-3β phosphorylation and the strain mitogenic effect. Furthermore, overexpression of AKT1 or an AKT chimera including the PH domain and hinge region of AKT2 and the catalytic domain and C-tail of AKT1 prevented strain activation of GSK-3β, but overexpression of AKT2 or a chimera including the PH domain and hinge region of AKT1 and the catalytic domain and C-tail of AKT2 did not. These data delineate a role for PI3K, AKT2, and GSK-3β in the mitogenic effect of strain. PI3K is required for both ERK and AKT2 activation, whereas AKT2 is sequentially required for GSK-3β. Furthermore, AKT2 specificity requires its catalytic domain and tail region. Manipulating this pathway may prevent mucosal atrophy and maintain the mucosal barrier in conditions such as ileus, sepsis, and prolonged fasting when peristalsis and villous motility are decreased and the mucosal barrier fails.Mechanical forces are part of the normal intestinal epithelial environment. Numerous different forces deform these cells including shear stress from endoluminal chyme, bowel peristalsis, and villous motility (1, 2). During normal bowel function the mucosa is subjected to injury that must be repaired to maintain the mucosal barrier (3, 4). Deformation patterns of the bowel are altered in conditions such as prolonged fasting, post-surgical ileus, and sepsis states, resulting in profoundly reduced mucosal deformation. When such states are prolonged, proliferation slows, the mucosa becomes atrophic, and bacterial translocation may ensue as the mucosal barrier of the gut breaks down (57).In vitro, repetitive deformation is trophic for intestinal epithelial cells (8) cultured on type I or type IV collagen or laminin. Human Caco-2 intestinal epithelial cells (9), non-transformed rat IEC-6 intestinal epithelial cells (10), and primary human intestinal epithelial cells isolated from surgical specimens (11) proliferate more rapidly in response to cyclic strain (12) unless substantial quantities of fibronectin are added to the media or matrix (11) to mimic the acute phase reaction of acute or chronic inflammation and injury. Cyclic strain also stimulates proliferation in HCT 116 colon cancer cells (13) and differentiation of Caco-2 cells cultured on a collagen substrate (9). This phenomenon has also been observed in vivo (14). Thus, repetitive deformation may help to maintain the normal homeostasis of the gut mucosa under non-inflammatory conditions. Previous work in our laboratory has implicated Src, focal adhesion kinase, and the mitogen-activated protein kinase (MAPK)2 extracellular signal-related kinase (ERK) in the mitogenic effect of strain (10). Although p38 is also activated in Caco-2 cells subjected to cyclic strain on a collagen matrix, its activity is not required for the mitogenic effect of strain (12).Although often the PI3K/AKT pathway is thought of as a parallel pathway to the MAPK, this is not always the case. Protein kinase C isoenzymes differentially modulate thrombin effect on MAPK-dependent retinal pigment epithelial cell (RPE) proliferation, and it has been shown that PI3K or AKT inhibition prevented thrombin-induced ERK activation and RPE proliferation (15).PI3K, AKT, and glycogen synthase kinase (GSK), a downstream target of AKT (16), have been implemented in intestinal epithelial cell proliferation in numerous cell systems not involving strain (1719) including uncontrolled proliferation in gastrointestinal cancers (2022). Mechanical forces activate this pathway as well. PI3K and AKT are required for increased extracellular pressure to stimulate colon cancer cell adhesion (23), although the pathway by which pressure stimulates colon cancer cells in suspension differs from the response of adherent intestinal epithelial cells to repetitive deformation (24), and GSK is not involved in this effect.3 Repetitive strain also stimulates vascular endothelial cell proliferation via PI3K and AKT (25, 26), whereas respiratory strain stimulates angiogenic responses via PI3K (27). We, therefore, hypothesized that the PI3K/AKT/GSK axis would be involved in the mitogenic effects of repetitive deformation on a collagen matrix.To test this hypothesis, we used the Flexcell apparatus to rhythmically deform Caco-2 intestinal epithelial cells. IEC-6 cells were used to confirm key results. A frequency of 10 cycles per min was used, which is similar in order of magnitude to the frequency that the intestinal mucosa might be deformed by peristalsis or villous motility in vivo (28, 29). Mechanical forces such as repetitive deformation are likely cell-type and frequency-specific, as different cell types respond to different frequencies. Vascular endothelial cells respond to frequencies of 60–80 cycles/min (25), whereas intestinal epithelial cells may actually decrease proliferation in response to frequencies of 5 cycles/min (30). We characterized PI3K, AKT, and GSK phosphorylation with strain, blocked these molecules pharmacologically or by siRNA, and delineated the specificity of the AKT effect using isozyme-specific siRNA and transfection of AKT1/2 chimeras. We also characterized the interaction of this pathway with the activation of ERK by strain, which has previously been implicated in the mitogenic response (12).  相似文献   

12.
Rheb G-protein plays critical roles in the TSC/Rheb/mTOR signaling pathway by activating mTORC1. The activation of mTORC1 by Rheb can be faithfully reproduced in vitro by using mTORC1 immunoprecipitated by the use of anti-raptor antibody from mammalian cells starved for nutrients. The low in vitro kinase activity against 4E-BP1 of this mTORC1 preparation is dramatically increased by the addition of recombinant Rheb. On the other hand, the addition of Rheb does not activate mTORC2 immunoprecipitated from mammalian cells by the use of anti-rictor antibody. The activation of mTORC1 is specific to Rheb, because other G-proteins such as KRas, RalA/B, and Cdc42 did not activate mTORC1. Both Rheb1 and Rheb2 activate mTORC1. In addition, the activation is dependent on the presence of bound GTP. We also find that the effector domain of Rheb is required for the mTORC1 activation. FKBP38, a recently proposed mediator of Rheb action, appears not to be involved in the Rheb-dependent activation of mTORC1 in vitro, because the preparation of mTORC1 that is devoid of FKBP38 is still activated by Rheb. The addition of Rheb results in a significant increase of binding of the substrate protein 4E-BP1 to mTORC1. PRAS40, a TOR signaling (TOS) motif-containing protein that competes with the binding of 4EBP1 to mTORC1, inhibits Rheb-induced activation of mTORC1. A preparation of mTORC1 that is devoid of raptor is not activated by Rheb. Rheb does not induce autophosphorylation of mTOR. These results suggest that Rheb induces alteration in the binding of 4E-BP1 with mTORC1 to regulate mTORC1 activation.Rheb defines a unique member of the Ras superfamily G-proteins (1). We have shown that Rheb proteins are conserved and are found from yeast to human (2). Although yeast and fruit fly have one Rheb, mouse and human have two Rheb proteins termed Rheb1 (or simply Rheb) and Rheb2 (RhebL1) (2). Structurally, these proteins contain G1-G5 boxes, short stretches of amino acids that define the function of the Ras superfamily G-proteins including guanine nucleotide binding (1, 3, 4). Rheb proteins have a conserved arginine at residue 15 that corresponds to residue 12 of Ras (1). The effector domain required for the binding with downstream effectors encompasses the G2 box and its adjacent sequences (1, 5). Structural analysis by x-ray crystallography further shows that the effector domain is exposed to solvent, is located close to the phosphates of GTP especially at residues 35–38, and undergoes conformational change during GTP/GDP exchange (6). In addition, all Rheb proteins end with the CAAX (C is cysteine, A is an aliphatic amino acid, and X is the C-terminal amino acid) motif that signals farnesylation. In fact, we as well as others have shown that these proteins are farnesylated (79).Rheb plays critical roles in the TSC/Rheb/mTOR signaling, a signaling pathway that plays central roles in regulating protein synthesis and growth in response to nutrient, energy, and growth conditions (1014). Rheb is down-regulated by a TSC1·TSC2 complex that acts as a GTPase-activating protein for Rheb (1519). Recent studies established that the GAP domain of TSC2 defines the functional domain for the down-regulation of Rheb (20). Mutations in the Tsc1 or Tsc2 gene lead to tuberous sclerosis whose symptoms include the appearance of benign tumors called hamartomas at different parts of the body as well as neurological symptoms (21, 22). Overexpression of Rheb results in constitutive activation of mTOR even in the absence of nutrients (15, 16). Two mTOR complexes, mTORC1 and mTORC2, have been identified (23, 24). Whereas mTORC1 is involved in protein synthesis activation mediated by S6K and 4EBP1, mTORC2 is involved in the phosphorylation of Akt in response to insulin. It has been suggested that Rheb is involved in the activation of mTORC1 but not mTORC2 (25).Although Rheb is clearly involved in the activation of mTOR, the mechanism of activation has not been established. We as well as others have suggested a model that involves the interaction of Rheb with the TOR complex (2628). Rheb activation of mTOR kinase activity using immunoprecipitated mTORC1 was reported (29). Rheb has been shown to interact with mTOR (27, 30), and this may involve direct interaction of Rheb with the kinase domain of mTOR (27). However, this Rheb/mTOR interaction is a weak interaction and is not dependent on the presence of GTP bound to Rheb (27, 28). Recently, a different model proposing that FKBP38 (FK506-binding protein 38) mediates the activation of mTORC1 by Rheb was proposed (31, 32). In this model, FKBP38 binds mTOR and negatively regulates mTOR activity, and this negative regulation is blocked by the binding of Rheb to FKBP38. However, recent reports dispute this idea (33).To further characterize Rheb activation of mTOR, we have utilized an in vitro system that reproduces activation of mTORC1 by the addition of recombinant Rheb. We used mTORC1 immunoprecipitated from nutrient-starved cells using anti-raptor antibody and have shown that its kinase activity against 4E-BP1 is dramatically increased by the addition of recombinant Rheb. Importantly, the activation of mTORC1 is specific to Rheb and is dependent on the presence of bound GTP as well as an intact effector domain. FKBP38 is not detected in our preparation and further investigation suggests that FKBP38 is not an essential component for the activation of mTORC1 by Rheb. Our study revealed that Rheb enhances the binding of a substrate 4E-BP1 with mTORC1 rather than increasing the kinase activity of mTOR.  相似文献   

13.
It is known that platelet-activating factor (PAF) induces severe endothelial barrier leakiness, but the signaling mechanisms remain unclear. Here, using a wide range of biochemical and morphological approaches applied in both mouse models and cultured endothelial cells, we addressed the mechanisms of PAF-induced disruption of interendothelial junctions (IEJs) and of increased endothelial permeability. The formation of interendothelial gaps filled with filopodia and lamellipodia is the cellular event responsible for the disruption of endothelial barrier. We observed that PAF ligation of its receptor induced the activation of the Rho GTPase Rac1. Following PAF exposure, both Rac1 and its guanine nucleotide exchange factor Tiam1 were found associated with a membrane fraction from which they co-immunoprecipitated with PAF receptor. In the same time frame with Tiam1-Rac1 translocation, the junctional proteins ZO-1 and VE-cadherin were relocated from the IEJs, and formation of numerous interendothelial gaps was recorded. Notably, the response was independent of myosin light chain phosphorylation and thus distinct from other mediators, such as histamine and thrombin. The changes in actin status are driven by the PAF-induced localized actin polymerization as a consequence of Rac1 translocation and activation. Tiam1 was required for the activation of Rac1, actin polymerization, relocation of junctional associated proteins, and disruption of IEJs. Thus, PAF-induced IEJ disruption and increased endothelial permeability requires the activation of a Tiam1-Rac1 signaling module, suggesting a novel therapeutic target against increased vascular permeability associated with inflammatory diseases.The endothelial barrier is made up of endothelial cells (ECs)4 connected to each other by interendothelial junctions (IEJs) consisting of protein complexes organized as tight junctions (TJs) and adherens junctions (AJs). In addition, the focal adhesion complex located at the basal plasma membrane enables firm contact of ECs with the underlying basement membrane and also contributes to the barrier function (1-3). The glycocalyx, the endothelial monolayer, and the basement membrane all together constitute the vascular barrier.The structural integrity of the ECs along with their proper functionality are the two most important factors controlling the tightness of the endothelial barrier. Changes affecting these factors cause loss of barrier restrictiveness and leakiness. Therefore, defining and understanding the cellular and molecular mechanisms controlling these processes is of paramount importance. Increased width of IEJs in response to permeability-increasing mediators (4) regulates the magnitude of transendothelial exchange of fluid and solutes. Disruption of IEJs and the resultant barrier leakiness contribute to the genesis of diverse pathological conditions, such as inflammation (5), metastasis (6, 7), and uncontrolled angiogenesis (8, 9).Accumulated evidence demonstrated that IEJs changes are responsible for increased or decreased vascular permeability, and the generally accepted mechanism responsible for them was the myosin light chain (MLC)-mediated contraction of ECs (5, 10). However, published evidence showed that an increase in vascular permeability could be obtained without a direct involvement of any contractile mechanism (11-16).The main component of the vascular barrier, the ECs, has more than 10% of their total protein represented by actin (17), which under physiological salt concentrations subsists as monomers (G-actin) and assembled into filaments (F-actin). A large number of actin-interacting proteins may modulate the assembly, disassembly, and organization of G-actin and of actin filaments within a given cell type. Similar to the complexity of actin-interacting proteins found in other cell types, the ECs utilize their actin binding proteins to stabilize the endothelial monolayer in order to efficiently function as a selective barrier (11). In undisturbed ECs, the actin microfilaments are organized as different networks with distinctive functional and morphological characteristics: the peripheral filaments also known as peripheral dense band (PDB), the cytoplasmic fibers identified as stress fibers (SF), and the actin from the membrane cytoskeleton (18). The peripheral web, localized immediately under the membrane, is associated with (i) the luminal plasmalemma (on the apical side), (ii) the IEJ complexes on the lateral surfaces, and (iii) the focal adhesion complexes on the abluminal side (the basal part) of polarized ECs. The SF reside inside the endothelial cytoplasm and are believed to be directly connected with the plasmalemma proper on the luminal as well as on the abluminal side of the cell. As described, the endothelial actin cytoskeleton (specifically the SF) seems to be a stable structure helping the cells to remain flat under flow (19). It is also established that the actin fibers participate in correct localization of different junctional complexes while keeping them in place (20). However, it was suggested that the dynamic equilibrium between F- and G-actin might modulate the tightness of endothelial barrier in response to different challenges (13).Mediators effective at nanomolar concentrations or less that disrupt the endothelial barrier and increase vascular permeability include C2 toxin of Clostridium botulinum, vascular permeability factor, better known as vascular endothelial growth factor, and PAF (21). C2 toxin increases endothelial permeability by ribosylating monomeric G-actin at Arg-177 (22). This results in the impairment of actin polymerization (23), followed by rounding of ECs (16) and the disruption of junctional integrity. Vascular permeability factor was shown to open IEJs by redistribution of junctional proteins (24, 25) and by interfering with the equilibrium of actin pools (26). PAF (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocoline), a naturally synthesized phospholipid is active at 10-10 m or less (27). PAF is synthesized by and acts on a variety of cell types, including platelets (28), neutrophils (29), monocytes (30), and ECs (31). PAF-mediated activation of ECs induced cell migration (32), angiogenesis (7), and vascular hyperpermeability (33) secondary to disassembly of IEJs (34). The effects of PAF on the endothelium are initiated through a G protein-coupled receptor (PAF-R) localized at the plasmalemma, in a large endosomal compartment inside the cell (34), and also in the nuclear membrane (35). In ECs, PAF-R was shown to signal through Gαq and downstream activation of phospholipase C isozymes (PLCβ3 and PLCγ1), and via cSrc (32, 36). Studies have shown that PAF challenge induced endothelial actin cytoskeletal rearrangement (37) and marked vascular leakiness (38); however, the signaling pathways have not been elucidated.Therefore, in the present study, we carried out a systematic analysis of PAF-induced morphological and biochemical changes of endothelial barrier in vivo and in cultured ECs. We found that the opening of endothelial barrier and the increased vascular leakiness induced by PAF are the result of a shift in actin pools without involvement of EC contraction, followed by a redistribution of tight junctional associated protein ZO-1 and adherens junctional protein VE-cadherin.  相似文献   

14.
15.
16.
17.
Galectins have been implicated in T cell homeostasis playing complementary pro-apoptotic roles. Here we show that galectin-8 (Gal-8) is a potent pro-apoptotic agent in Jurkat T cells inducing a complex phospholipase D/phosphatidic acid signaling pathway that has not been reported for any galectin before. Gal-8 increases phosphatidic signaling, which enhances the activity of both ERK1/2 and type 4 phosphodiesterases (PDE4), with a subsequent decrease in basal protein kinase A activity. Strikingly, rolipram inhibition of PDE4 decreases ERK1/2 activity. Thus Gal-8-induced PDE4 activation releases a negative influence of cAMP/protein kinase A on ERK1/2. The resulting strong ERK1/2 activation leads to expression of the death factor Fas ligand and caspase-mediated apoptosis. Several conditions that decrease ERK1/2 activity also decrease apoptosis, such as anti-Fas ligand blocking antibodies. In addition, experiments with freshly isolated human peripheral blood mononuclear cells, previously stimulated with anti-CD3 and anti-CD28, show that Gal-8 is pro-apoptotic on activated T cells, most likely on a subpopulation of them. Anti-Gal-8 autoantibodies from patients with systemic lupus erythematosus block the apoptotic effect of Gal-8. These results implicate Gal-8 as a novel T cell suppressive factor, which can be counterbalanced by function-blocking autoantibodies in autoimmunity.Glycan-binding proteins of the galectin family have been increasingly studied as regulators of the immune response and potential therapeutic agents for autoimmune disorders (1). To date, 15 galectins have been identified and classified according with the structural organization of their distinctive monomeric or dimeric carbohydrate recognition domain for β-galactosides (2, 3). Galectins are secreted by unconventional mechanisms and once outside the cells bind to and cross-link multiple glycoconjugates both at the cell surface and at the extracellular matrix, modulating processes as diverse as cell adhesion, migration, proliferation, differentiation, and apoptosis (410). Several galectins have been involved in T cell homeostasis because of their capability to kill thymocytes, activated T cells, and T cell lines (1116). Pro-apoptotic galectins might contribute to shape the T cell repertoire in the thymus by negative selection, restrict the immune response by eliminating activated T cells at the periphery (1), and help cancer cells to escape the immune system by eliminating cancer-infiltrating T cells (17). They have also a promising therapeutic potential to eliminate abnormally activated T cells and inflammatory cells (1). Studies on the mostly explored galectins, Gal-1, -3, and -9 (14, 15, 1820), as well as in Gal-2 (13), suggest immunosuppressive complementary roles inducing different pathways to apoptosis. Galectin-8 (Gal-8)4 is one of the most widely expressed galectins in human tissues (21, 22) and cancerous cells (23, 24). Depending on the cell context and mode of presentation, either as soluble stimulus or extracellular matrix, Gal-8 can promote cell adhesion, spreading, growth, and apoptosis (6, 7, 9, 10, 22, 25). Its role has been mostly studied in relation to tumor malignancy (23, 24). However, there is some evidence regarding a role for Gal-8 in T cell homeostasis and autoimmune or inflammatory disorders. For instance, the intrathymic expression and pro-apoptotic effect of Gal-8 upon CD4highCD8high thymocytes suggest a role for Gal-8 in shaping the T cell repertoire (16). Gal-8 could also modulate the inflammatory function of neutrophils (26), Moreover Gal-8-blocking agents have been detected in chronic autoimmune disorders (10, 27, 28). In rheumatoid arthritis, Gal-8 has an anti-inflammatory action, promoting apoptosis of synovial fluid cells, but can be counteracted by a specific rheumatoid version of CD44 (CD44vRA) (27). In systemic lupus erythematosus (SLE), a prototypic autoimmune disease, we recently described function-blocking autoantibodies against Gal-8 (10, 28). Thus it is important to define the role of Gal-8 and the influence of anti-Gal-8 autoantibodies in immune cells.In Jurkat T cells, we previously reported that Gal-8 interacts with specific integrins, such as α1β1, α3β1, and α5β1 but not α4β1, and as a matrix protein promotes cell adhesion and asymmetric spreading through activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) (10). These early effects occur within 5–30 min. However, ERK1/2 signaling supports long term processes such as T cell survival or death, depending on the moment of the immune response. During T cell activation, ERK1/2 contributes to enhance the expression of interleukin-2 (IL-2) required for T cell clonal expansion (29). It also supports T cell survival against pro-apoptotic Fas ligand (FasL) produced by themselves and by other previously activated T cells (30, 31). Later on, ERK1/2 is required for activation-induced cell death, which controls the extension of the immune response by eliminating recently activated and restimulated T cells (32, 33). In activation-induced cell death, ERK1/2 signaling contributes to enhance the expression of FasL and its receptor Fas/CD95 (32, 33), which constitute a preponderant pro-apoptotic system in T cells (34). Here, we ask whether Gal-8 is able to modulate the intensity of ERK1/2 signaling enough to participate in long term processes involved in T cell homeostasis.The functional integration of ERK1/2 and PKA signaling (35) deserves special attention. cAMP/PKA signaling plays an immunosuppressive role in T cells (36) and is altered in SLE (37). Phosphodiesterases (PDEs) that degrade cAMP release the immunosuppressive action of cAMP/PKA during T cell activation (38, 39). PKA has been described to control the activity of ERK1/2 either positively or negatively in different cells and processes (35). A little explored integration among ERK1/2 and PKA occurs via phosphatidic acid (PA) and PDE signaling. Several stimuli activate phospholipase D (PLD) that hydrolyzes phosphatidylcholine into PA and choline. Such PLD-generated PA plays roles in signaling interacting with a variety of targeting proteins that bear PA-binding domains (40). In this way PA recruits Raf-1 to the plasma membrane (41). It is also converted by phosphatidic acid phosphohydrolase (PAP) activity into diacylglycerol (DAG), which among other functions, recruits and activates the GTPase Ras (42). Both Ras and Raf-1 are upstream elements of the ERK1/2 activation pathway (43). In addition, PA binds to and activates PDEs of the type 4 subfamily (PDE4s) leading to decreased cAMP levels and PKA down-regulation (44). The regulation and role of PA-mediated control of ERK1/2 and PKA remain relatively unknown in T cell homeostasis, because it is also unknown whether galectins stimulate the PLD/PA pathway.Here we found that Gal-8 induces apoptosis in Jurkat T cells by triggering cross-talk between PKA and ERK1/2 pathways mediated by PLD-generated PA. Our results for the first time show that a galectin increases the PA levels, down-regulates the cAMP/PKA system by enhancing rolipram-sensitive PDE activity, and induces an ERK1/2-dependent expression of the pro-apoptotic factor FasL. The enhanced PDE activity induced by Gal-8 is required for the activation of ERK1/2 that finally leads to apoptosis. Gal-8 also induces apoptosis in human peripheral blood mononuclear cells (PBMC), especially after activating T cells with anti-CD3/CD28. Therefore, Gal-8 shares with other galectins the property of killing activated T cells contributing to the T cell homeostasis. The pathway involves a particularly integrated signaling context, engaging PLD/PA, cAMP/PKA, and ERK1/2, which so far has not been reported for galectins. The pro-apoptotic function of Gal-8 also seems to be unique in its susceptibility to inhibition by anti-Gal-8 autoantibodies.  相似文献   

18.
19.
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is an intracellular enzyme that has been proposed to metabolize peptides within cells, thereby affecting antigen presentation and G protein-coupled receptor signal transduction. However, only a small number of intracellular substrates of EP24.15 have been reported previously. Here we have identified over 100 peptides in human embryonic kidney 293 (HEK293) cells that are derived from intracellular proteins; many but not all of these peptides are substrates or products of EP24.15. First, cellular peptides were extracted from HEK293 cells and incubated in vitro with purified EP24.15. Then the peptides were labeled with isotopic tags and analyzed by mass spectrometry to obtain quantitative data on the extent of cleavage. A related series of experiments tested the effect of overexpression of EP24.15 on the cellular levels of peptides in HEK293 cells. Finally, synthetic peptides that corresponded to 10 of the cellular peptides were incubated with purified EP24.15 in vitro, and the cleavage was monitored by high pressure liquid chromatography and mass spectrometry. Many of the EP24.15 substrates identified by these approaches are 9–11 amino acids in length, supporting the proposal that EP24.15 can function in the degradation of peptides that could be used for antigen presentation. However, EP24.15 also converts some peptides into products that are 8–10 amino acids, thus contributing to the formation of peptides for antigen presentation. In addition, the intracellular peptides described here are potential candidates to regulate protein interactions within cells.Intracellular protein turnover is a crucial step for cell functioning, and if this process is impaired, the elevated levels of aged proteins usually lead to the formation of intracellular insoluble aggregates that can cause severe pathologies (1). In mammalian cells, most proteins destined for degradation are initially tagged with a polyubiquitin chain in an energy-dependent process and then digested to small peptides by the 26 S proteasome, a large proteolytic complex involved in the regulation of cell division, gene expression, and other key processes (2, 3). In eukaryotes, 30–90% of newly synthesized proteins may be degraded by proteasomes within minutes of synthesis (3, 4). In addition to proteasomes, other extralysosomal proteolytic systems have been reported (5, 6). The proteasome cleaves proteins into peptides that are typically 2–20 amino acids in length (7). In most cases, these peptides are thought to be rapidly hydrolyzed into amino acids by aminopeptidases (810). However, some intracellular peptides escape complete degradation and are imported into the endoplasmic reticulum where they associate with major histocompatibility complex class I (MHC-I)3 molecules and traffic to the cell surface for presentation to the immune system (1012). Additionally, based on the fact that free peptides added to the intracellular milieu can regulate cellular functions mediated by protein interactions such as gene regulation, metabolism, cell signaling, and protein targeting (13, 14), intracellular peptides generated by proteasomes that escape degradation have been suggested to play a role in regulating protein interactions (15). Indeed, oligopeptides isolated from rat brain tissue using the catalytically inactive EP24.15 (EC 3.4.24.15) were introduced into Chinese hamster ovarian-S and HEK293 cells and were found capable of altering G protein-coupled receptor signal transduction (16). Moreover, EP24.15 overexpression itself changed both angiotensin II and isoproterenol signal transduction, suggesting a physiological function for its intracellular substrates/products (16).EP24.15 is a zinc-dependent peptidase of the metallopeptidase M3 family that contains the HEXXH motif (17). This enzyme was first described as a neuropeptide-degrading enzyme present in the soluble fraction of brain homogenates (18). Whereas EP24.15 can be secreted (19, 20), its predominant location in the cytosol and nucleus suggests that the primary function of this enzyme is not the extracellular degradation of neuropeptides and hormones (21, 22). EP24.15 was shown in vivo to participate in antigen presentation through MHC-I (2325) and in vitro to bind (26) or degrade (27) some MHC-I associated peptides. EP24.15 has also been shown in vitro to degrade peptides containing 5–17 amino acids produced after proteasome digestion of β-casein (28). EP24.15 shows substrate size restriction to peptides containing from 5 to 17 amino acids because of its catalytic center that is located in a deep channel (29). Despite the size restriction, EP24.15 has a broad substrate specificity (30), probably because a significant portion of the enzyme-binding site is lined with potentially flexible loops that allow reorganization of the active site following substrate binding (29). Recently, it has also been suggested that certain substrates may be cleaved by an open form of EP24.15 (31). This characteristic is supported by the ability of EP24.15 to accommodate different amino acid residues at subsites S4 to S3′, which even includes the uncommon post-proline cleavage (30). Such biochemical and structural features make EP24.15 a versatile enzyme to degrade structurally unrelated oligopeptides.Previously, brain peptides that bound to catalytically inactive EP24.15 were isolated and identified using mass spectrometry (22). The majority of peptides captured by the inactive enzyme were intracellular protein fragments that efficiently interacted with EP24.15; the smallest peptide isolated in these assays contained 5 and the largest 17 amino acids (15, 16, 22, 32), which is within the size range previously reported for natural and synthetic substrates of EP24.15 (18, 30, 33, 34). Interestingly, the peptides released by the proteasome are in the same size range of EP24.15 competitive inhibitors/substrates (7, 35, 36). Taken altogether, these data suggest that in the intracellular environment EP24.15 could further cleave proteasome-generated peptides unrelated to MHC-I antigen presentation (15).Although the mutated inactive enzyme “capture” assay was successful in identifying several cellular protein fragments that were substrates for EP24.15, it also found some interacting peptides that were not substrates. In this study, we used several approaches to directly screen for cellular peptides that were cleaved by EP24.15. The first approach involved the extraction of cellular peptides from the HEK293 cell line, incubation in vitro with purified EP24.15, labeling with isotopic tags, and analysis by mass spectrometry to obtain quantitative data on the extent of cleavage. The second approach examined the effect of EP24.15 overexpression on the cellular levels of peptides in the HEK293 cell line. The third set of experiments tested synthetic peptides with purified EP24.15 in vitro, and examined cleavage by high pressure liquid chromatography and mass spectrometry. Collectively, these studies have identified a large number of intracellular peptides, including those that likely represent the endogenous substrates and products of EP24.15, and this original information contributes to a better understanding of the function of this enzyme in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号