首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent. However, many HCC cells show resistance to TRAIL-induced apoptosis. In this study, we showed that bortezomib, a proteasome inhibitor, overcame TRAIL resistance in HCC cells, including Huh-7, Hep3B, and Sk-Hep1. The combination of bortezomib and TRAIL restored the sensitivity of HCC cells to TRAIL-induced apoptosis. Comparing the molecular change in HCC cells treated with these agents, we found that down-regulation of phospho-Akt (P-Akt) played a key role in mediating TRAIL sensitization of bortezomib. The first evidence was that bortezomib down-regulated P-Akt in a dose- and time-dependent manner in TRAIL-treated HCC cells. Second, LY294002, a PI3K inhibitor, also sensitized resistant HCC cells to TRAIL-induced apoptosis. Third, knocking down Akt1 by small interference RNA also enhanced TRAIL-induced apoptosis in Huh-7 cells. Finally, ectopic expression of mutant Akt (constitutive active) in HCC cells abolished TRAIL sensitization effect of bortezomib. Moreover, okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, reversed down-regulation of P-Akt in bortezomib-treated cells, and PP2A knockdown by small interference RNA also reduced apoptosis induced by the combination of TRAIL and bortezomib, indicating that PP2A may be important in mediating the effect of bortezomib on TRAIL sensitization. Together, bortezomib overcame TRAIL resistance at clinically achievable concentrations in hepatocellular carcinoma cells, and this effect is mediated at least partly via inhibition of the PI3K/Akt pathway.Hepatocellular carcinoma (HCC)2 is currently the fifth most common solid tumor worldwide and the fourth leading cause of cancer-related death. To date, surgery is still the only curative treatment but is only feasible in a small portion of patients (1). Drug treatment is the major therapy for patients with advanced stage disease. Unfortunately, the response rate to traditional chemotherapy for HCC patients is unsatisfactory (1). Novel pharmacological therapy is urgently needed for patients with advanced HCC. In this regard, the approval of sorafenib might open a new era of molecularly targeted therapy in the treatment of HCC patients.Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a type II transmembrane protein and a member of the TNF family, is a promising anti-tumor agent under clinical investigation (2). TRAIL functions by engaging its receptors expressed on the surface of target cells. Five receptors specific for TRAIL have been identified, including DR4/TRAIL-R1, DR5/TRAIL-R2, DcR1, DcR2, and osteoprotegerin. Among TRAIL receptors, only DR4 and DR5 contain an effective death domain that is essential to formation of death-inducing signaling complex (DISC), a critical step for TRAIL-induced apoptosis. Notably, the trimerization of the death domains recruits an adaptor molecule, Fas-associated protein with death domain (FADD), which subsequently recruits and activates caspase-8. In type I cells, activation of caspase-8 is sufficient to activate caspase-3 to induce apoptosis; however, in another type of cells (type II), the intrinsic mitochondrial pathway is essential for apoptosis characterized by cleavage of Bid and release of cytochrome c from mitochondria, which subsequently activates caspase-9 and caspase-3 (3).Although TRAIL induces apoptosis in malignant cells but sparing normal cells, some tumor cells are resistant to TRAIL-induced apoptosis. Mechanisms responsible for the resistance include receptors and intracellular resistance. Although the cell surface expression of DR4 or DR5 is absolutely required for TRAIL-induced apoptosis, tumor cells expressing these death receptors are not always sensitive to TRAIL due to intracellular mechanisms. For example, the cellular FLICE-inhibitory protein (c-FLIP), a homologue to caspase-8 but without protease activity, has been linked to TRAIL resistance in several studies (4, 5). In addition, inactivation of Bax, a proapoptotic Bcl-2 family protein, resulted in resistance to TRAIL in MMR-deficient tumors (6, 7), and reintroduction of Bax into Bax-deficient cells restored TRAIL sensitivity (8), indicating that the Bcl-2 family plays a critical role in intracellular mechanisms for resistance of TRAIL.Bortezomib, a proteasome inhibitor approved clinically for multiple myeloma and mantle cell lymphoma, has been investigated intensively for many types of cancer (9). Accumulating studies indicate that the combination of bortezomib and TRAIL overcomes the resistance to TRAIL in various types of cancer, including acute myeloid leukemia (4), lymphoma (1013), prostate (1417), colon (15, 18, 19), bladder (14, 16), renal cell carcinoma (20), thyroid (21), ovary (22), non-small cell lung (23, 24), sarcoma (25), and HCC (26, 27). Molecular targets responsible for the sensitizing effect of bortezomib on TRAIL-induced cell death include DR4 (14, 27), DR5 (14, 20, 2223, 28), c-FLIP (4, 11, 2123, 29), NF-κB (12, 24, 30), p21 (16, 21, 25), and p27 (25). In addition, Bcl-2 family also plays a role in the combinational effect of bortezomib and TRAIL, including Bcl-2 (10, 21), Bax (13, 22), Bak (27), Bcl-xL (21), Bik (18), and Bim (15).Recently, we have reported that Akt signaling is a major molecular determinant in bortezomib-induced apoptosis in HCC cells (31). In this study, we demonstrated that bortezomib overcame TRAIL resistance in HCC cells through inhibition of the PI3K/Akt pathway.  相似文献   

2.
3.
Mismatch repair (MMR) proteins participate in cytotoxicity induced by certain DNA damage-inducing agents, including cisplatin (cis-diamminedichloroplatinum(II), CDDP), a cancer chemotherapeutic drug utilized clinically to treat a variety of malignancies. MMR proteins have been demonstrated to bind to CDDP-DNA adducts and initiate MMR protein-dependent cell death in cells treated with CDDP; however, the molecular events underlying this death remain unclear. As MMR proteins have been suggested to be important in clinical responses to CDDP, a clear understanding of MMR protein-dependent, CDDP-induced cell death is critical. In this report, we demonstrate MMR protein-dependent relocalization of cytochrome c to the cytoplasm and cleavage of caspase-9, caspase-3, and poly(ADP-ribose) polymerase upon treatment of cells with CDDP. Chemical inhibition of caspases specifically attenuates CDDP/MMR protein-dependent cytotoxicity, suggesting that a caspase-dependent signaling mechanism is required for the execution of this cell death. p53 protein levels were up-regulated independently of MMR protein status, suggesting that p53 is not a mediator of MMR-dependent, CDDP-induced death. This work is the first indication of a required signaling mechanism in CDDP-induced, MMR protein-dependent cytotoxicity, which can be uncoupled from other CDDP response pathways, and defines a critical contribution of MMR proteins to the control of cell death.The MMR2 system of proteins plays roles in diverse cellular processes, perhaps most notably in preserving genomic integrity by recognizing and facilitating the repair of post-DNA replication base pairing errors. Recognition of these errors and recruitment of repair machinery is performed by the MutSα complex (consisting of the MMR proteins MSH2 and MSH6) or MutSβ complex (consisting of MSH2 and MSH3). Defects in MMR proteins render cells hypermutable and promote microsatellite instability, a hallmark of MMR defects. MMR protein defects are found in a wide variety of sporadic cancers, as well as in hereditary non-polyposis colorectal cancer (1).In addition to their role in DNA repair, MMR proteins also play a role in cytotoxicity induced by specific types of DNA-damaging chemotherapeutic drugs, such as CDDP, which is utilized clinically to treat a number of different cancer types. MutSα recognizes multiple types of DNA damage, including 1,2-intrastrand CDDP adducts and O6-methylguanine lesions (2). Treatment of cells with compounds that induce these types of lesions, including CDDP and methylating agents such as N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), results in MMR protein-dependent cell cycle arrest and cell death (37). This suggests that MMR proteins, in addition to their role in DNA repair, are also capable of initiating cell death in response to certain types of DNA damage.Cells treated with DNA-damaging agents frequently activate an apoptotic cell death pathway mediated by the mitochondria. This intrinsic death signaling pathway predominantly involves the coordinated activity of two groups of proteins: pro-death members of the Bcl-2 family that control the integrity of mitochondrial membranes, and members of the caspase family of cysteinyl proteases that proteolytically cleave intracellular substrates, giving rise to apoptotic morphology and destruction of the cell (8, 9). Pro-death Bcl-2 family members, such as Bax and Bak, target the outer mitochondrial membrane and cause the cytosolic release of pro-death factors residing within the mitochondria of unstressed cells (8). Predominant among these factors is cytochrome c, whose cytoplasmic localization results in the formation of a caspase-activating platform known as the apoptosome (10). This complex includes the adaptor protein Apaf-1, and when formed the apoptosome promotes the cleavage and activation of caspase-9 (11, 12). Once activated, this apical caspase proceeds to cleave and activate caspase-3, the predominant effector protease of apoptosis.A significant amount of evidence has been gathered illustrating MMR protein-dependent pro-death signaling in response to methylating agents (1316, 3). In contrast, the MMR protein-dependent cytotoxic response to CDDP is largely unknown, with only the p53-related transactivator protein p73 and the c-Abl kinase clearly implicated as potential mediators of CDDP/MMR protein-dependent cell death in human cells (17, 18). Interestingly, ATM, Chk1, Chk2, and p53, which are activated in an MMR protein-dependent manner after treatment of cells with MNNG (3, 13), are not involved in the MMR-dependent response to CDDP (7, 17). In addition, the magnitude of MMR protein-dependent cell death induced by methylating agents and CDDP differs (4). These findings suggest that unique signaling pathways may be engaged by MMR proteins depending upon the type of recognized lesion. As such, there is a requirement for further study of the molecular events underlying MMR protein-dependent cell death and cell cycle arrest for each type of recognized DNA lesion. This is particularly relevant in the case of CDDP, as evidence from a limited number of retrospective clinical studies suggests that MMR proteins play an important role in patient response to CDDP. Several studies examining immunohistochemical staining against MSH2 or MLH1 have demonstrated that levels of these proteins are reduced in ovarian and esophageal tumor samples following CDDP-based chemotherapy (19, 20). Low levels of MMR protein post-chemotherapy seem to be predictive of lower overall survival in a certain subset of tumors (esophageal cancer), but not others (ovarian and non-small cell lung cancer) (1921). Two recent studies examining MMR protein levels and microsatellite instability in germ cell tumors from patients receiving platinum-based chemotherapy have suggested a prognostic value for pre-chemotherapy MMR protein status in these tumors (22, 23). This potential clinical relevance underscores the need for a greater understanding of MMR protein-dependent mechanisms of CDDP-induced cell death.In this study, we report that CDDP induces an MMR protein-dependent decrease in cell viability and MMR protein-dependent signaling in the form of cytochrome c release to the cytoplasm and cleavage of caspase-9, caspase-3, and PARP. Chemical inhibition of caspases specifically attenuates CDDP/MMR protein-dependent loss of cell viability, indicating a requirement for caspase activation in this process and uncoupling MMR protein-dependent cytotoxic signaling from other CDDP response pathways. Additionally, the CDDP-induced, MMR protein-dependent cytotoxic response is independent of p53 signaling. Our results demonstrate for the first time an MMR protein-dependent pro-death signaling pathway in cells treated with CDDP.  相似文献   

4.
ATP-binding cassette (ABC) transporters transduce the free energy of ATP hydrolysis to power the mechanical work of substrate translocation across cell membranes. MsbA is an ABC transporter implicated in trafficking lipid A across the inner membrane of Escherichia coli. It has sequence similarity and overlapping substrate specificity with multidrug ABC transporters that export cytotoxic molecules in humans and prokaryotes. Despite rapid advances in structure determination of ABC efflux transporters, little is known regarding the location of substrate-binding sites in the transmembrane segment and the translocation pathway across the membrane. In this study, we have mapped residues proximal to the daunorubicin (DNR)-binding site in MsbA using site-specific, ATP-dependent quenching of DNR intrinsic fluorescence by spin labels. In the nucleotide-free MsbA intermediate, DNR-binding residues cluster at the cytoplasmic end of helices 3 and 6 at a site accessible from the membrane/water interface and extending into an aqueous chamber formed at the interface between the two transmembrane domains. Binding of a nonhydrolyzable ATP analog inverts the transporter to an outward-facing conformation and relieves DNR quenching by spin labels suggesting DNR exclusion from proximity to the spin labels. The simplest model consistent with our data has DNR entering near an elbow helix parallel to the water/membrane interface, partitioning into the open chamber, and then translocating toward the periplasm upon ATP binding.ATP-binding cassette (ABC)2 transporters transduce the energy of ATP hydrolysis to power the movement of a wide range of substrates across the cell membranes (1, 2). They constitute the largest family of prokaryotic transporters, import essential cell nutrients, flip lipids, and export toxic molecules (3). Forty eight human ABC transporters have been identified, including ABCB1, or P-glycoprotein, which is implicated in cross-resistance to drugs and cytotoxic molecules (4, 5). Inherited mutations in these proteins are linked to diseases such as cystic fibrosis, persistent hypoglycemia of infancy, and immune deficiency (6).The functional unit of an ABC transporter consists of four modules. Two highly conserved ABCs or nucleotide-binding domains (NBDs) bind and hydrolyze ATP to supply the active energy for transport (7). ABCs drive the mechanical work of proteins with diverse functions ranging from membrane transport to DNA repair (3, 5). Substrate specificity is determined by two transmembrane domains (TMDs) that also provide the translocation pathway across the bilayer (7). Bacterial ABC exporters are expressed as monomers, each consisting of one NBD and one TMD, that dimerize to form the active transporter (3). The number of transmembrane helices and their organization differ significantly between ABC importers and exporters reflecting the divergent structural and chemical nature of their substrates (1, 8, 9). Furthermore, ABC exporters bind substrates directly from the cytoplasm or bilayer inner leaflet and release them to the periplasm or bilayer outer leaflet (10, 11). In contrast, bacterial importers have their substrates delivered to the TMD by a dedicated high affinity substrate-binding protein (12).In Gram-negative bacteria, lipid A trafficking from its synthesis site on the inner membrane to its final destination in the outer membrane requires the ABC transporter MsbA (13). Although MsbA has not been directly shown to transport lipid A, suppression of MsbA activity leads to cytoplasmic accumulation of lipid A and inhibits bacterial growth strongly suggesting a role in translocation (14-16). In addition to this role in lipid A transport, MsbA shares sequence similarity with multidrug ABC transporters such as human ABCB1, LmrA of Lactococcus lactis, and Sav1866 of Staphylococcus aureus (16-19). ABCB1, a prototype of the ABC family, is a plasma membrane protein whose overexpression provides resistance to chemotherapeutic agents in cancer cells (1). LmrA and MsbA have overlapping substrate specificity with ABCB1 suggesting that both proteins can function as drug exporters (18, 20). Indeed, cells expressing MsbA confer resistance to erythromycin and ethidium bromide (21). MsbA can be photolabeled with the ABCB1/LmrA substrate azidopine and can transport Hoechst 33342 (H33342) across membrane vesicles in an energy-dependent manner (21).The structural mechanics of ABC exporters was revealed from comparison of the MsbA crystal structures in the apo- and nucleotide-bound states as well as from analysis by spin labeling EPR spectroscopy in liposomes (17, 19, 22, 23). The energy harnessed from ATP binding and hydrolysis drives a cycle of NBD association and dissociation that is transmitted to induce reorientation of the TMD from an inward- to outward-facing conformation (17, 19, 22). Large amplitude motion closes the cytoplasmic end of a chamber found at the interface between the two TMDs and opens it to the periplasm (23). These rearrangements lead to significant changes in chamber hydration, which may drive substrate translocation (22).Substrate binding must precede energy input, otherwise the cycle is futile, wasting the energy of ATP hydrolysis without substrate extrusion (7). Consistent with this model, ATP binding reduces ABCB1 substrate affinity, potentially through binding site occlusion (24-26). Furthermore, the TMD substrate-binding event signals the NBD to stimulate ATP hydrolysis increasing transport efficiency (1, 27, 28). However, there is a paucity of information regarding the location of substrate binding, the transport pathway, and the structural basis of substrate recognition by ABC exporters. In vitro studies of MsbA substrate specificity identify a broad range of substrates that stimulate ATPase activity (29). In addition to the putative physiological substrates lipid A and lipopolysaccharide (LPS), the ABCB1 substrates Ilmofosine, H33342, and verapamil differentially enhance ATP hydrolysis of MsbA (29, 30). Intrinsic MsbA tryptophan (Trp) fluorescence quenching by these putative substrate molecules provides further support of interaction (29).Extensive biochemical analysis of ABCB1 and LmrA provides a general model of substrate binding to ABC efflux exporters. This so-called “hydrophobic cleaner model” describes substrates binding from the inner leaflet of the bilayer and then translocating through the TMD (10, 31, 32). These studies also identified a large number of residues involved in substrate binding and selectivity (33). When these crucial residues are mapped onto the crystal structures of MsbA, a subset of homologous residues clusters to helices 3 and 6 lining the putative substrate pathway (34). Consistent with a role in substrate binding and specificity, simultaneous replacement of two serines (Ser-289 and Ser-290) in helix 6 of MsbA reduces binding and transport of ethidium and taxol, although H33342 and erythromycin interactions remain unaffected (34).The tendency of lipophilic substrates to partition into membranes confounds direct analysis of substrate interactions with ABC exporters (35, 36). Such partitioning may promote dynamic collisions with exposed Trp residues and nonspecific cross-linking in photo-affinity labeling experiments. In this study, we utilize a site-specific quenching approach to identify residues in the vicinity of the daunorubicin (DNR)-binding site (37). Although the data on DNR stimulation of ATP hydrolysis is inconclusive (20, 29, 30), the quenching of MsbA Trp fluorescence suggests a specific interaction. Spin labels were introduced along transmembrane helices 3, 4, and 6 of MsbA to assess their ATP-dependent quenching of DNR fluorescence. Residues that quench DNR cluster along the cytoplasmic end of helices 3 and 6 consistent with specific binding of DNR. Furthermore, many of these residues are not lipid-exposed but face the putative substrate chamber formed between the two TMDs. These residues are proximal to two Trps, which likely explains the previously reported quenching (29). Our results suggest DNR partitions to the membrane and then binds MsbA in a manner consistent with the hydrophobic cleaner model. Interpretation in the context of the crystal structures of MsbA identifies a putative translocation pathway through the transmembrane segment.  相似文献   

5.
6.
Intersectin-short (intersectin-s) is a multimodule scaffolding protein functioning in constitutive and regulated forms of endocytosis in non-neuronal cells and in synaptic vesicle (SV) recycling at the neuromuscular junction of Drosophila and Caenorhabditis elegans. In vertebrates, alternative splicing generates a second isoform, intersectin-long (intersectin-l), that contains additional modular domains providing a guanine nucleotide exchange factor activity for Cdc42. In mammals, intersectin-s is expressed in multiple tissues and cells, including glia, but excluded from neurons, whereas intersectin-l is a neuron-specific isoform. Thus, intersectin-I may regulate multiple forms of endocytosis in mammalian neurons, including SV endocytosis. We now report, however, that intersectin-l is localized to somatodendritic regions of cultured hippocampal neurons, with some juxtanuclear accumulation, but is excluded from synaptophysin-labeled axon terminals. Consistently, intersectin-l knockdown (KD) does not affect SV recycling. Instead intersectin-l co-localizes with clathrin heavy chain and adaptor protein 2 in the somatodendritic region of neurons, and its KD reduces the rate of transferrin endocytosis. The protein also co-localizes with F-actin at dendritic spines, and intersectin-l KD disrupts spine maturation during development. Our data indicate that intersectin-l is indeed an important regulator of constitutive endocytosis and neuronal development but that it is not a prominent player in the regulated endocytosis of SVs.Clathrin-mediated endocytosis (CME)4 is a major mechanism by which cells take up nutrients, control the surface levels of multiple proteins, including ion channels and transporters, and regulate the coupling of signaling receptors to downstream signaling cascades (1-5). In neurons, CME takes on additional specialized roles; it is an important process regulating synaptic vesicle (SV) availability through endocytosis and recycling of SV membranes (6, 7), it shapes synaptic plasticity (8-10), and it is crucial in maintaining synaptic membranes and membrane structure (11).Numerous endocytic accessory proteins participate in CME, interacting with each other and with core components of the endocytic machinery such as clathrin heavy chain (CHC) and adaptor protein-2 (AP-2) through specific modules and peptide motifs (12). One such module is the Eps15 homology domain that binds to proteins bearing NPF motifs (13, 14). Another is the Src homology 3 (SH3) domain, which binds to proline-rich domains in protein partners (15). Intersectin is a multimodule scaffolding protein that interacts with a wide range of proteins, including several involved in CME (16). Intersectin has two N-terminal Eps15 homology domains that are responsible for binding to epsin, SCAMP1, and numb (17-19), a central coil-coiled domain that interacts with Eps15 and SNAP-23 and -25 (17, 20, 21), and five SH3 domains in its C-terminal region that interact with multiple proline-rich domain proteins, including synaptojanin, dynamin, N-WASP, CdGAP, and mSOS (16, 22-25). The rich binding capability of intersectin has linked it to various functions from CME (17, 26, 27) and signaling (22, 28, 29) to mitogenesis (30, 31) and regulation of the actin cytoskeleton (23).Intersectin functions in SV recycling at the neuromuscular junction of Drosophila and C. elegans where it acts as a scaffold, regulating the synaptic levels of endocytic accessory proteins (21, 32-34). In vertebrates, the intersectin gene is subject to alternative splicing, and a longer isoform (intersectin-l) is generated that is expressed exclusively in neurons (26, 28, 35, 36). This isoform has all the binding modules of its short (intersectin-s) counterpart but also has additional domains: a DH and a PH domain that provide guanine nucleotide exchange factor (GEF) activity specific for Cdc42 (23, 37) and a C2 domain at the C terminus. Through its GEF activity and binding to actin regulatory proteins, including N-WASP, intersectin-l has been implicated in actin regulation and the development of dendritic spines (19, 23, 24). In addition, because the rest of the binding modules are shared between intersectin-s and -l, it is generally thought that the two intersectin isoforms have the same endocytic functions. In particular, given the well defined role for the invertebrate orthologs of intersectin-s in SV endocytosis, it is thought that intersectin-l performs this role in mammalian neurons, which lack intersectin-s. Defining the complement of intersectin functional activities in mammalian neurons is particularly relevant given that the protein is involved in the pathophysiology of Down syndrome (DS). Specifically, the intersectin gene is localized on chromosome 21q22.2 and is overexpressed in DS brains (38). Interestingly, alterations in endosomal pathways are a hallmark of DS neurons and neurons from the partial trisomy 16 mouse, Ts65Dn, a model for DS (39, 40). Thus, an endocytic trafficking defect may contribute to the DS disease process.Here, the functional roles of intersectin-l were studied in cultured hippocampal neurons. We find that intersectin-l is localized to the somatodendritic regions of neurons, where it co-localizes with CHC and AP-2 and regulates the uptake of transferrin. Intersectin-l also co-localizes with actin at dendritic spines and disrupting intersectin-l function alters dendritic spine development. In contrast, intersectin-l is absent from presynaptic terminals and has little or no role in SV recycling.  相似文献   

7.
8.
9.
10.
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is an intracellular enzyme that has been proposed to metabolize peptides within cells, thereby affecting antigen presentation and G protein-coupled receptor signal transduction. However, only a small number of intracellular substrates of EP24.15 have been reported previously. Here we have identified over 100 peptides in human embryonic kidney 293 (HEK293) cells that are derived from intracellular proteins; many but not all of these peptides are substrates or products of EP24.15. First, cellular peptides were extracted from HEK293 cells and incubated in vitro with purified EP24.15. Then the peptides were labeled with isotopic tags and analyzed by mass spectrometry to obtain quantitative data on the extent of cleavage. A related series of experiments tested the effect of overexpression of EP24.15 on the cellular levels of peptides in HEK293 cells. Finally, synthetic peptides that corresponded to 10 of the cellular peptides were incubated with purified EP24.15 in vitro, and the cleavage was monitored by high pressure liquid chromatography and mass spectrometry. Many of the EP24.15 substrates identified by these approaches are 9–11 amino acids in length, supporting the proposal that EP24.15 can function in the degradation of peptides that could be used for antigen presentation. However, EP24.15 also converts some peptides into products that are 8–10 amino acids, thus contributing to the formation of peptides for antigen presentation. In addition, the intracellular peptides described here are potential candidates to regulate protein interactions within cells.Intracellular protein turnover is a crucial step for cell functioning, and if this process is impaired, the elevated levels of aged proteins usually lead to the formation of intracellular insoluble aggregates that can cause severe pathologies (1). In mammalian cells, most proteins destined for degradation are initially tagged with a polyubiquitin chain in an energy-dependent process and then digested to small peptides by the 26 S proteasome, a large proteolytic complex involved in the regulation of cell division, gene expression, and other key processes (2, 3). In eukaryotes, 30–90% of newly synthesized proteins may be degraded by proteasomes within minutes of synthesis (3, 4). In addition to proteasomes, other extralysosomal proteolytic systems have been reported (5, 6). The proteasome cleaves proteins into peptides that are typically 2–20 amino acids in length (7). In most cases, these peptides are thought to be rapidly hydrolyzed into amino acids by aminopeptidases (810). However, some intracellular peptides escape complete degradation and are imported into the endoplasmic reticulum where they associate with major histocompatibility complex class I (MHC-I)3 molecules and traffic to the cell surface for presentation to the immune system (1012). Additionally, based on the fact that free peptides added to the intracellular milieu can regulate cellular functions mediated by protein interactions such as gene regulation, metabolism, cell signaling, and protein targeting (13, 14), intracellular peptides generated by proteasomes that escape degradation have been suggested to play a role in regulating protein interactions (15). Indeed, oligopeptides isolated from rat brain tissue using the catalytically inactive EP24.15 (EC 3.4.24.15) were introduced into Chinese hamster ovarian-S and HEK293 cells and were found capable of altering G protein-coupled receptor signal transduction (16). Moreover, EP24.15 overexpression itself changed both angiotensin II and isoproterenol signal transduction, suggesting a physiological function for its intracellular substrates/products (16).EP24.15 is a zinc-dependent peptidase of the metallopeptidase M3 family that contains the HEXXH motif (17). This enzyme was first described as a neuropeptide-degrading enzyme present in the soluble fraction of brain homogenates (18). Whereas EP24.15 can be secreted (19, 20), its predominant location in the cytosol and nucleus suggests that the primary function of this enzyme is not the extracellular degradation of neuropeptides and hormones (21, 22). EP24.15 was shown in vivo to participate in antigen presentation through MHC-I (2325) and in vitro to bind (26) or degrade (27) some MHC-I associated peptides. EP24.15 has also been shown in vitro to degrade peptides containing 5–17 amino acids produced after proteasome digestion of β-casein (28). EP24.15 shows substrate size restriction to peptides containing from 5 to 17 amino acids because of its catalytic center that is located in a deep channel (29). Despite the size restriction, EP24.15 has a broad substrate specificity (30), probably because a significant portion of the enzyme-binding site is lined with potentially flexible loops that allow reorganization of the active site following substrate binding (29). Recently, it has also been suggested that certain substrates may be cleaved by an open form of EP24.15 (31). This characteristic is supported by the ability of EP24.15 to accommodate different amino acid residues at subsites S4 to S3′, which even includes the uncommon post-proline cleavage (30). Such biochemical and structural features make EP24.15 a versatile enzyme to degrade structurally unrelated oligopeptides.Previously, brain peptides that bound to catalytically inactive EP24.15 were isolated and identified using mass spectrometry (22). The majority of peptides captured by the inactive enzyme were intracellular protein fragments that efficiently interacted with EP24.15; the smallest peptide isolated in these assays contained 5 and the largest 17 amino acids (15, 16, 22, 32), which is within the size range previously reported for natural and synthetic substrates of EP24.15 (18, 30, 33, 34). Interestingly, the peptides released by the proteasome are in the same size range of EP24.15 competitive inhibitors/substrates (7, 35, 36). Taken altogether, these data suggest that in the intracellular environment EP24.15 could further cleave proteasome-generated peptides unrelated to MHC-I antigen presentation (15).Although the mutated inactive enzyme “capture” assay was successful in identifying several cellular protein fragments that were substrates for EP24.15, it also found some interacting peptides that were not substrates. In this study, we used several approaches to directly screen for cellular peptides that were cleaved by EP24.15. The first approach involved the extraction of cellular peptides from the HEK293 cell line, incubation in vitro with purified EP24.15, labeling with isotopic tags, and analysis by mass spectrometry to obtain quantitative data on the extent of cleavage. The second approach examined the effect of EP24.15 overexpression on the cellular levels of peptides in the HEK293 cell line. The third set of experiments tested synthetic peptides with purified EP24.15 in vitro, and examined cleavage by high pressure liquid chromatography and mass spectrometry. Collectively, these studies have identified a large number of intracellular peptides, including those that likely represent the endogenous substrates and products of EP24.15, and this original information contributes to a better understanding of the function of this enzyme in vivo.  相似文献   

11.
12.
Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.Parkinson disease is an age-related neurodegenerative disease that affects ∼1% of the population worldwide. The causes of sporadic cases are unknown, although mitochondrial or oxidative toxins such as 1-methyl-4-phenylpyridinium, 6-hydroxydopamine (6-OHDA),3 and rotenone reproduce features of the disease in animal and cell culture models (1). Abnormalities in mitochondrial respiration and increased oxidative stress are observed in cells and tissues from parkinsonian patients (2, 3), which also exhibit increased mitochondrial autophagy (4). Furthermore, mutations in parkinsonian genes affect oxidative stress response pathways and mitochondrial homeostasis (5). Thus, disruption of mitochondrial homeostasis represents a major factor implicated in the pathogenesis of sporadic and inherited parkinsonian disorders (PD).The PARK6 locus involved in autosomal recessive and early-onset PD encodes for PTEN-induced kinase 1 (PINK1) (6, 7). PINK1 is a cytosolic and mitochondrially localized 581-amino acid serine/threonine kinase that possesses an N-terminal mitochondrial targeting sequence (6, 8). The primary sequence also includes a putative transmembrane domain important for orientation of the PINK1 domain (8), a conserved kinase domain homologous to calcium calmodulin kinases, and a C-terminal domain that regulates autophosphorylation activity (9, 10). Overexpression of wild-type PINK1, but not its PD-associated mutants, protects against several toxic insults in neuronal cells (6, 11, 12). Mitochondrial targeting is necessary for some (13) but not all of the neuroprotective effects of PINK1 (14), implicating involvement of cytoplasmic targets that modulate mitochondrial pathobiology (8). PINK1 catalytic activity is necessary for its neuroprotective role, because a kinase-deficient K219M substitution in the ATP binding pocket of PINK1 abrogates its ability to protect neurons (14). Although PINK1 mutations do not seem to impair mitochondrial targeting, PD-associated mutations differentially destabilize the protein, resulting in loss of neuroprotective activities (13, 15).Recent studies indicate that PINK1 and Parkin interact genetically (3, 16-18) to prevent oxidative stress (19, 20) and regulate mitochondrial morphology (21). Primary cells derived from PINK1 mutant patients exhibit mitochondrial fragmentation with disorganized cristae, recapitulated by RNA interference studies in HeLa cells (3).Mitochondria are degraded by macroautophagy, a process involving sequestration of cytoplasmic cargo into membranous autophagic vacuoles (AVs) for delivery to lysosomes (22, 23). Interestingly, mitochondrial fission accompanies autophagic neurodegeneration elicited by the PD neurotoxin 6-OHDA (24, 25). Moreover, mitochondrial fragmentation and increased autophagy are observed in neurodegenerative diseases including Alzheimer and Parkinson diseases (4, 26-28). Although inclusion of mitochondria in autophagosomes was once believed to be a random process, as observed during starvation, studies involving hypoxia, mitochondrial damage, apoptotic stimuli, or limiting amounts of aerobic substrates in facultative anaerobes support the concept of selective mitochondrial autophagy (mitophagy) (29, 30). In particular, mitochondrially localized kinases may play an important role in models involving oxidative mitochondrial injury (25, 31, 32).Autophagy is involved in the clearance of protein aggregates (33-35) and normal regulation of axonal-synaptic morphology (36). Chronic disruption of lysosomal function results in accumulation of subtly impaired mitochondria with decreased calcium buffering capacity (37), implicating an important role for autophagy in mitochondrial homeostasis (37, 38). Recently, Parkin, which complements the effects of PINK1 deficiency on mitochondrial morphology (3), was found to promote autophagy of depolarized mitochondria (39). Conversely, Beclin 1-independent autophagy/mitophagy contributes to cell death elicited by the PD toxins 1-methyl-4-phenylpyridinium and 6-OHDA (25, 28, 31, 32), causing neurite retraction in cells expressing a PD-linked mutation in leucine-rich repeat kinase 2 (40). Whereas properly regulated autophagy plays a homeostatic and neuroprotective role, excessive or incomplete autophagy creates a condition of “autophagic stress” that can contribute to neurodegeneration (28).As mitochondrial fragmentation (3) and increased mitochondrial autophagy (4) have been described in human cells or tissues of PD patients, we investigated whether or not the engineered loss of PINK1 function could recapitulate these observations in human neuronal cells (SH-SY5Y). Stable knockdown of endogenous PINK1 gave rise to mitochondrial fragmentation and increased autophagy and mitophagy, whereas stable or transient overexpression of PINK1 had the opposite effect. Autophagy/mitophagy was dependent upon increased mitochondrial oxidant production and activation of fission. The data indicate that PINK1 is important for the maintenance of mitochondrial networks, suggesting that coordinated regulation of mitochondrial dynamics and autophagy limits cell death associated with loss of PINK1 function.  相似文献   

13.
In archaea and eukarya, box C/D ribonucleoprotein (RNP) complexes are responsible for 2′-O-methylation of tRNAs and rRNAs. The archaeal box C/D small RNP complex requires a small RNA component (sRNA) possessing Watson-Crick complementarity to the target RNA along with three proteins: L7Ae, Nop5p, and fibrillarin. Transfer of a methyl group from S-adenosylmethionine to the target RNA is performed by fibrillarin, which by itself has no affinity for the sRNA-target duplex. Instead, it is targeted to the site of methylation through association with Nop5p, which in turn binds to the L7Ae-sRNA complex. To understand how Nop5p serves as a bridge between the targeting and catalytic functions of the box C/D small RNP complex, we have employed alanine scanning to evaluate the interaction between the Pyrococcus horikoshii Nop5p domain and an L7Ae box C/D RNA complex. From these data, we were able to construct an isolated RNA-binding domain (Nop-RBD) that folds correctly as demonstrated by x-ray crystallography and binds to the L7Ae box C/D RNA complex with near wild type affinity. These data demonstrate that the Nop-RBD is an autonomously folding and functional module important for protein assembly in a number of complexes centered on the L7Ae-kinkturn RNP.Many biological RNAs require extensive modification to attain full functionality in the cell (1). Currently there are over 100 known RNA modification types ranging from small functional group substitutions to the addition of large multi-cyclic ring structures (2). Transfer RNA, one of many functional RNAs targeted for modification (3-6), possesses the greatest modification type diversity, many of which are important for proper biological function (7). Ribosomal RNA, on the other hand, contains predominantly two types of modified nucleotides: pseudouridine and 2′-O-methylribose (8). The crystal structures of the ribosome suggest that these modifications are important for proper folding (9, 10) and structural stabilization (11) in vivo as evidenced by their strong tendency to localize to regions associated with function (8, 12, 13). These roles have been verified biochemically in a number of cases (14), whereas newly emerging functional modifications are continually being investigated.Box C/D ribonucleoprotein (RNP)3 complexes serve as RNA-guided site-specific 2′-O-methyltransferases in both archaea and eukaryotes (15, 16) where they are referred to as small RNP complexes and small nucleolar RNPs, respectively. Target RNA pairs with the sRNA guide sequence and is methylated at the 2′-hydroxyl group of the nucleotide five bases upstream of either the D or D′ box motif of the sRNA (Fig. 1, star) (17, 18). In archaea, the internal C′ and D′ motifs generally conform to a box C/D consensus sequence (19), and each sRNA contains two guide regions ∼12 nucleotides in length (20). The bipartite architecture of the RNP potentially enables the complex to methylate two distinct RNA targets (21) and has been shown to be essential for site-specific methylation (22).Open in a separate windowFIGURE 1.Organization of the archaeal box C/D complex. The protein components of this RNP are L7Ae, Nop5p, and fibrillarin, which together bind a box C/D sRNA. The regions of the Box C/D sRNA corresponding to the conserved C, D, C′, and D′ boxes are labeled. The target RNA binds the sRNA through Watson-Crick pairing and is methylated by fibrillarin at the fifth nucleotide from the D/D′ boxes (star).In addition to the sRNA, the archaeal box C/D complex requires three proteins for activity (23): the ribosomal protein L7Ae (24, 25), fibrillarin, and the Nop56/Nop58 homolog Nop5p (Fig. 1). L7Ae binds to both box C/D and the C′/D′ motifs (26), which respectively comprise kink-turn (27) or k-loop structures (28), to initiate the assembly of the RNP (29, 30). Fibrillarin performs the methyl group transfer from the cofactor S-adenosylmethionine to the target RNA (31-33). For this to occur, the active site of fibrillarin must be positioned precisely over the specific 2′-hydroxyl group to be methylated. Although fibrillarin methylates this functional group in the context of a Watson-Crick base-paired helix (guide/target), it has little to no binding affinity for double-stranded RNA or for the L7Ae-sRNA complex (22, 26, 33, 34). Nop5p serves as an intermediary protein bringing fibrillarin to the complex through its association with both the L7Ae-sRNA complex and fibrillarin (22). Along with its role as an intermediary between fibrillarin and the L7Ae-sRNA complex, Nop5p possesses other functions not yet fully understood. For example, Nop5p self-dimerizes through a coiled-coil domain (35) that in most archaea and eukaryotic homologs includes a small insertion sequence of unknown function (36, 37). However, dimerization and fibrillarin binding have been shown to be mutually exclusive in Methanocaldococcus jannaschii Nop5p, potentially because of the presence of this insertion sequence (36). Thus, whether Nop5p is a monomer or a dimer in the active RNP is still under debate.In this study, we focus our attention on the Nop5p protein to investigate its interaction with a L7Ae box C/D RNA complex because both the fibrillarin-Nop5p and the L7Ae box C/D RNA interfaces are known from crystal structures (29, 35, 38). Individual residues on the surface of a monomeric form of Nop5p (referred to as mNop5p) (22) were mutated to alanine, and the effect on binding affinity for a L7Ae box C/D motif RNA complex was assessed through the use of electrophoretic mobility shift assays. These data reveal that residues important for binding cluster within the highly conserved NOP domain (39, 40). To demonstrate that this domain is solely responsible for the affinity of Nop5p for the preassembled L7Ae box C/D RNA complex, we expressed and purified it in isolation from the full Nop5p protein. The isolated Nop-RBD domain binds to the L7Ae box C/D RNA complex with nearly wild type affinity, demonstrating that the Nop-RBD is truly an autonomously folding and functional module. Comparison of our data with the crystal structure of the homologous spliceosomal hPrp31-15.5K protein-U4 snRNA complex (41) suggests the adoption of a similar mode of binding, further supporting a crucial role for the NOP domain in RNP complex assembly.  相似文献   

14.
The carboxyl-terminal cholinesterase-like (ChEL) domain of thyroglobulin (Tg) has been identified as critically important in Tg export from the endoplasmic reticulum. In a number of human kindreds suffering from congenital hypothyroidism, and in the cog congenital goiter mouse and rdw rat dwarf models, thyroid hormone synthesis is inhibited because of mutations in the ChEL domain that block protein export from the endoplasmic reticulum. We hypothesize that Tg forms homodimers through noncovalent interactions involving two predicted α-helices in each ChEL domain that are homologous to the dimerization helices of acetylcholinesterase. This has been explored through selective epitope tagging of dimerization partners and by inserting an extra, unpaired Cys residue to create an opportunity for intermolecular disulfide pairing. We show that the ChEL domain is necessary and sufficient for Tg dimerization; specifically, the isolated ChEL domain can dimerize with full-length Tg or with itself. Insertion of an N-linked glycan into the putative upstream dimerization helix inhibits homodimerization of the isolated ChEL domain. However, interestingly, co-expression of upstream Tg domains, either in cis or in trans, overrides the dimerization defect of such a mutant. Thus, although the ChEL domain provides a nidus for Tg dimerization, interactions of upstream Tg regions with the ChEL domain actively stabilizes the Tg dimer complex for intracellular transport.The synthesis of thyroid hormone in the thyroid gland requires secretion of thyroglobulin (Tg)2 to the apical luminal cavity of thyroid follicles (1). Once secreted, Tg is iodinated via the activity of thyroid peroxidase (2). A coupling reaction involving a quinol-ether linkage especially engages di-iodinated tyrosyl residues 5 and 130 to form thyroxine within the amino-terminal portion of the Tg polypeptide (3, 4). Preferential iodination of Tg hormonogenic sites is dependent not on the specificity of the peroxidase (5) but upon the native structure of Tg (6, 7). To date, no other thyroidal proteins have been shown to effectively substitute in this role for Tg.The first 80% of the primary structure of Tg (full-length murine Tg: 2,746 amino acids) involves three regions called I-II-III comprised of disulfide-rich repeat domains held together by intradomain disulfide bonds (8, 9). The final 581 amino acids of Tg are strongly homologous to acetylcholinesterase (1012). Rate-limiting steps in the overall process of Tg secretion involve its structural maturation within the endoplasmic reticulum (ER) (13). Interactions between regions I-II-III and the cholinesterase-like (ChEL) domain have recently been suggested to be important in this process, with ChEL functioning as an intramolecular chaperone and escort for I-II-III (14). In addition, Tg conformational maturation culminates in Tg homodimerization (15, 16) with progression to a cylindrical, and ultimately, a compact ovoid structure (1719).In human congenital hypothyroidism with deficient Tg, the ChEL domain is a commonly affected site of mutation, including the recently described A2215D (20, 21), R2223H (22), G2300D, R2317Q (23), G2355V, G2356R, and the skipping of exon 45 (which normally encodes 36 amino acids), as well as the Q2638stop mutant (24) (in addition to polymorphisms including P2213L, W2482R, and R2511Q that may be associated with thyroid overgrowth (25)). As best as is currently known, all of the congenital hypothyroidism-inducing Tg mutants are defective for intracellular transport (26). A homozygous G2300R mutation (equivalent to residue 2,298 of mouse Tg) in the ChEL domain is responsible for congenital hypothyroidism in rdw rats (27, 28), whereas we identified the Tg-L2263P point mutation as the cause of hypothyroidism in the cog mouse (29). Such mutations perturb intradomain structure (30), and interestingly, block homodimerization (31). Acquisition of quaternary structure has long been thought to be required for efficient export from the ER (32) as exemplified by authentic acetylcholinesterase (33, 34) in which dimerization enhances protein stability and export (35).Tg comprised only of regions I-II-III (truncated to lack the ChEL domain) is blocked within the ER (30), whereas a secretory version of the isolated ChEL domain of Tg devoid of I-II-III undergoes rapid and efficient intracellular transport and secretion (14). A striking homology positions two predicted α-helices of the ChEL domain to the identical relative positions of the dimerization helices in acetylcholinesterase. This raises the possibility that ChEL may serve as a homodimerization domain for Tg, providing a critical function in maturation for Tg transport to the site of thyroid hormone synthesis (1).In this study, we provide unequivocal evidence for homodimerization of the ChEL domain and “hetero”-dimerization of that domain with full-length Tg, and we provide significant evidence that the predicted ChEL dimerization helices provide a nidus for Tg assembly. On the other hand, our data also suggest that upstream Tg regions known to interact with ChEL (14) actively stabilize the Tg dimer complex. Together, I-II-III and ChEL provide unique contributions to the process of intracellular transport of Tg through the secretory pathway.  相似文献   

15.
Cell membranes predominantly consist of lamellar lipid bilayers. When studied in vitro, however, many membrane lipids can exhibit non-lamellar morphologies, often with cubic symmetries. An open issue is how lipid polymorphisms influence organelle and cell shape. Here, we used controlled dimerization of artificial membrane proteins in mammalian tissue culture cells to induce an expansion of the endoplasmic reticulum (ER) with cubic symmetry. Although this observation emphasizes ER architectural plasticity, we found that the changed ER membrane became sequestered into large autophagic vacuoles, positive for the autophagy protein LC3. Autophagy may be targeting irregular membrane shapes and/or aggregated protein. We suggest that membrane morphology can be controlled in cells.The observation that simple mixtures of amphiphilic (polar) lipids and water yield a rich flora of phase structures has opened a long-standing debate as to whether such membrane polymorphisms are relevant for living organisms (17). Lipid bilayers with planar geometry, termed lamellar symmetry, dominate the membrane structure of cells. However, this architecture comprises only a fraction of the structures seen with in vitro lipid-water systems (711). The propensity to form lamellar bilayers (a property exclusive to cylindrically shaped lipids) is flanked by a continuum of lipid structures that occur in a number of exotic and probably non-physiological non-bilayer configurations (3, 12). However, certain lipids, particularly those with smaller head groups and more bulky hydrocarbon chains, can adopt bilayered non-lamellar phases called cubic phases. Here the bilayer is curved everywhere in the form of saddle shapes corresponding to an energetically favorable minimal surface of zero mean curvature (1, 7). Because a substantial number of the lipids present in biological membranes, when studied as individual pure lipids, form cubic phases (13), cubic membranes have received particular interest in cell biology.Since the application of electron microscopy (EM)3 to the study of cell ultrastructure, unusual membrane morphologies have been reported for virtually every organelle (14, 15). However, interpretation of three-dimensional structures from two-dimensional electron micrographs is not easy (16). In seminal work, Landh (17) developed the method of direct template correlative matching, a technique that unequivocally assesses the presence of cubic membranes in biological specimens (16). Cubic phases adopt mathematically well defined three-dimensional configurations whose two-dimensional analogs have been derived (4, 17). In direct template correlative matching, electron micrographs are matched to these analogs. Cubic cell membrane geometries and in vitro cubic phases of purified lipid mixtures do differ in their lattice parameters; however, such deviations are thought to relate to differences in water activity and lipid to protein ratios (10, 14, 18). Direct template correlative matching has revealed thousands of examples of cellular cubic membranes in a broad survey of electron micrographs ranging from protozoa to human cells (14, 17) and, more recently, in the mitochondria of amoeba (19) and in subcellular membrane compartments associated with severe acute respiratory syndrome virus (20). Analysis of cellular cubic membranes has also been furthered by the development of EM tomography that confirmed the presence of cubic bilayers in the mitochondrial membranes of amoeba (21, 22).Although it is now clear that cubic membranes can exist in living cells, the generation of such architecture would appear tightly regulated, as evidenced by the dominance of lamellar bilayers in biology. In this light, we examined the capability and implications of generating cubic membranes in the endoplasmic reticulum (ER) of mammalian tissue culture cells. The ER is a spatially interconnected complex consisting of two domains, the nuclear envelope and the peripheral ER (2326). The nuclear envelope surrounds the nucleus and is composed of two continuous sheets of membranes, an inner and outer nuclear membrane connected to each other at nuclear pores. The peripheral ER constitutes a network of branching trijunctional tubules that are continuous with membrane sheet regions that occur in closer proximity to the nucleus. Recently it has been suggested that the classical morphological definition of rough ER (ribosome-studded) and smooth ER (ribosome-free) may correspond to sheet-like and tubular ER domains, respectively (27). The ER has a strong potential for cubic architectures, as demonstrated by the fact that the majority of cubic cell membranes in the EM record come from ER-derived structures (14, 17). Furthermore, ER cubic symmetries are an inducible class of organized smooth ER (OSER), a definition collectively referring to ordered smooth ER membranes (=stacked cisternae on the outer nuclear membrane, also called Karmelle (2830), packed sinusoidal ER (31), concentric membrane whorls (30, 3234), and arrays of crystalloid ER (3537)). Specifically, weak homotypic interactions between membrane proteins produce both a whorled and a sinusoidal OSER phenotype (38), the latter exhibiting a cubic symmetry (16, 39).We were able to produce OSER with cubic membrane morphology via induction of homo-dimerization of artificial membrane proteins. Interestingly, the resultant cubic membrane architecture was removed from the ER system by incorporation into large autophagic vacuoles. To assess whether these cubic symmetries were favored in the absence of cellular energy, we depleted ATP. To our surprise, the cells responded by forming large domains of tubulated membrane, suggesting that a cubic symmetry was not the preferred conformation of the system. Our results suggest that whereas the endoplasmic reticulum is capable of adopting cubic symmetries, both the inherent properties of the ER system and active cellular mechanisms, such as autophagy, can tightly control their appearance.  相似文献   

16.
17.
18.
19.
Macroautophagy is a vacuolar lysosomal catabolic pathway that is stimulated during periods of nutrient starvation to preserve cell integrity. Ceramide is a bioactive sphingolipid associated with a large range of cell processes. Here we show that short-chain ceramides (C2-ceramide and C6-ceramide) and stimulation of the de novo ceramide synthesis by tamoxifen induce the dissociation of the complex formed between the autophagy protein Beclin 1 and the anti-apoptotic protein Bcl-2. This dissociation is required for macroautophagy to be induced either in response to ceramide or to starvation. Three potential phosphorylation sites, Thr69, Ser70, and Ser87, located in the non-structural N-terminal loop of Bcl-2, play major roles in the dissociation of Bcl-2 from Beclin 1. We further show that activation of c-Jun N-terminal protein kinase 1 by ceramide is required both to phosphorylate Bcl-2 and to stimulate macroautophagy. These findings reveal a new aspect of sphingolipid signaling in up-regulating a major cell process involved in cell adaptation to stress.Macroautophagy (referred to below as “autophagy”) is a vacuolar, lysosomal degradation pathway for cytoplasmic constituents that is conserved in eukaryotic cells (13). Autophagy is initiated by the formation of a multimembrane-bound autophagosome that engulfs cytoplasmic proteins and organelles. The last stage in the process results in fusion with the lysosomal compartments, where the autophagic cargo undergoes degradation. Basal autophagy is important in controlling the quality of the cytoplasm by removing damaged organelles and protein aggregates. Inhibition of basal autophagy in the brain is deleterious, and leads to neurodegeneration in mouse models (4, 5). Stimulation of autophagy during periods of nutrient starvation is a physiological response present at birth and has been shown to provide energy in various tissues of newborn pups (6). In cultured cells, starvation-induced autophagy is an autonomous cell survival mechanism, which provides nutrients to maintain a metabolic rate and level of ATP compatible with cell survival (7). In addition, starvation-induced autophagy blocks the induction of apoptosis (8). In other contexts, such as drug treatment and a hypoxic environment, autophagy has also been shown to be cytoprotective in cancer cells (9, 10). However, autophagy is also part of cell death pathways in certain situations (11). Autophagy can be a player in apoptosis-independent type-2 cell death (type-1 cell death is apoptosis), also known as autophagic cell death. This situation has been shown to occur when the apoptotic machinery is crippled in mammalian cells (12, 13). Autophagy can also be part of the apoptotic program, for instance in tumor necrosis factor-α-induced cell death when NF-κB is inhibited (14), or in human immunodeficiency virus envelope-mediated cell death in bystander naive CD4 T cells (15). Moreover autophagy has recently been shown to be required for the externalization of phosphatidylserine, the eat-me signal for phagocytic cells, at the surface of apoptotic cells (16).The complex relationship between autophagy and apoptosis reflects the intertwined regulation of these processes (17, 18). Many signaling pathways involved in the regulation of autophagy also regulate apoptosis. This intertwining has recently been shown to occur at the level of the molecular machinery of autophagy. In fact the anti-apoptotic protein Bcl-2 has been shown to inhibit starvation-induced autophagy by interacting with the autophagy protein Beclin 1 (19). Beclin 1 is one of the Atg proteins conserved from yeast to humans (it is the mammalian orthologue of yeast Atg6) and is involved in autophagosome formation (20). Beclin 1 is a platform protein that interacts with several different partners, including hVps34 (class III phosphatidylinositol 3-kinase), which is responsible for the synthesis of phosphatidylinositol 3-phosphate. The production of this lipid is important for events associated with the nucleation of the isolation membrane before it elongates and closes to form autophagosomes in response to other Atg proteins, including the Atg12 and LC32 (microtubule-associated protein light chain 3 is the mammalian orthologue of the yeast Atg8) ubiquitin-like conjugation systems (3, 21). Various partners associated with the Beclin 1 complex modulate the activity of hVps34. For instance, Bcl-2 inhibits the activity of this enzyme, whereas UVRAG, Ambra-1, and Bif-1 all up-regulate it (22, 23).In view of the intertwining between autophagy and apoptosis, it is noteworthy that Beclin 1 belongs to the BH3-only family of proteins (2426). However, and unlike most of the proteins in this family, Beclin 1 is not able to trigger apoptosis when its expression is forced in cells (27). A BH3-mimetic drug, ABT-737, is able to dissociate the Beclin 1-Bcl-2 complex, and to trigger autophagy by mirroring the effect of starvation (25).The sphingolipids constitute a family of bioactive lipids (2832) of which several members, such as ceramide and sphingosine 1-phosphate, are signaling molecules. These molecules constitute a “sphingolipid rheostat” that determines the fate of the cell, because in many settings ceramide is pro-apoptotic and sphingosine 1-phosphate mitigates this apoptotic effect (31, 32). However, ceramide is also engaged in a wide variety of other cell processes, such as the formation of exosomes (33), differentiation, cell proliferation, and senescence (34). Recently we showed that both ceramide and sphingosine 1-phosphate are able to stimulate autophagy (35, 36). It has also been shown that ceramide triggers autophagy in a large panel of mammalian cells (3739). However, elucidation of the mechanism by which ceramide stimulates autophagy is still in its infancy. We have previously demonstrated that ceramide induces autophagy in breast and colon cancer cells by inhibiting the Class I phosphatidylinositol 3-phosphate/mTOR signaling pathway, which plays a central role in inhibiting autophagy (36). Inhibition of mTOR is another hallmark of starvation-induced autophagy (17). This finding led us to investigate the effect of ceramide on the Beclin 1-Bcl-2 complex. The results presented here show that ceramide is more potent than starvation in dissociating the Beclin 1-Bcl-2 complex (see Ref. 40). This dissociation is dependent on three phosphorylation sites (Thr69, Ser70, and Ser87) located in a non-structural loop of Bcl-2. Ceramide induces the c-Jun N-terminal kinase 1-dependent phosphorylation of Bcl-2. Expression of a dominant negative form of JNK1 blocks Bcl-2 phosphorylation, and thus the induction of autophagy by ceramide. These findings help to explain how autophagy is regulated by a major lipid second messenger.  相似文献   

20.
The RAD51 protein is a central player in homologous recombinational repair. The RAD51B protein is one of five RAD51 paralogs that function in the homologous recombinational repair pathway in higher eukaryotes. In the present study, we found that the human EVL (Ena/Vasp-like) protein, which is suggested to be involved in actin-remodeling processes, unexpectedly binds to the RAD51 and RAD51B proteins and stimulates the RAD51-mediated homologous pairing and strand exchange. The EVL knockdown cells impaired RAD51 assembly onto damaged DNA after ionizing radiation or mitomycin C treatment. The EVL protein alone promotes single-stranded DNA annealing, and the recombination activities of the EVL protein are further enhanced by the RAD51B protein. The expression of the EVL protein is not ubiquitous, but it is significantly expressed in breast cancer-derived MCF7 cells. These results suggest that the EVL protein is a novel recombination factor that may be required for repairing specific DNA lesions, and that may cause tumor malignancy by its inappropriate expression.Chromosomal DNA double strand breaks (DSBs)2 are potential inducers of chromosomal aberrations and tumorigenesis, and they are accurately repaired by the homologous recombinational repair (HRR) pathway, without base substitutions, deletions, and insertions (13). In the HRR pathway (4, 5), single-stranded DNA (ssDNA) tails are produced at the DSB sites. The RAD51 protein, a eukaryotic homologue of the bacterial RecA protein, binds to the ssDNA tail and forms a helical nucleoprotein filament. The RAD51-ssDNA filament then binds to the intact double-stranded DNA (dsDNA) to form a three-component complex, containing ssDNA, dsDNA, and the RAD51 protein. In this three-component complex, the RAD51 protein promotes recombination reactions, such as homologous pairing and strand exchange (69).The RAD51 protein requires auxiliary proteins to promote the homologous pairing and strand exchange reactions efficiently in cells (1012). In humans, the RAD52, RAD54, and RAD54B proteins directly interact with the RAD51 protein (1317) and stimulate the RAD51-mediated homologous pairing and/or strand exchange reactions in vitro (1821). The human RAD51AP1 protein, which directly binds to the RAD51 protein (22), was also found to stimulate RAD51-mediated homologous pairing in vitro (23, 24). The BRCA2 protein contains ssDNA-binding, dsDNA-binding, and RAD51-binding motifs (2533), and the Ustilago maydis BRCA2 ortholog, Brh2, reportedly stimulated RAD51-mediated strand exchange (34, 35). Most of these RAD51-interacting factors are known to be required for efficient RAD51 assembly onto DSB sites in cells treated with ionizing radiation (1012).The RAD51B (RAD51L1, Rec2) protein is a member of the RAD51 paralogs, which share about 20–30% amino acid sequence similarity with the RAD51 protein (3638). RAD51B-deficient cells are hypersensitive to DSB-inducing agents, such as cisplatin, mitomycin C (MMC), and γ-rays, indicating that the RAD51B protein is involved in the HRR pathway (3944). Genetic experiments revealed that RAD51B-deficient cells exhibited impaired RAD51 assembly onto DSB sites (39, 44), suggesting that the RAD51B protein functions in the early stage of the HRR pathway. Biochemical experiments also suggested that the RAD51B protein participates in the early to late stages of the HRR pathway (4547).In the present study, we found that the human EVL (Ena/Vasp-like) protein binds to the RAD51 and RAD51B proteins in a HeLa cell extract. The EVL protein is known to be involved in cytoplasmic actin remodeling (48) and is also overexpressed in breast cancer (49). Like the RAD51B knockdown cells, the EVL knockdown cells partially impaired RAD51 foci formation after DSB induction, suggesting that the EVL protein enhances RAD51 assembly onto DSB sites. The purified EVL protein preferentially bound to ssDNA and stimulated RAD51-mediated homologous pairing and strand exchange. The EVL protein also promoted the annealing of complementary strands. These recombination reactions that were stimulated or promoted by the EVL protein were further enhanced by the RAD51B protein. These results strongly suggested that the EVL protein is a novel factor that activates RAD51-mediated recombination reactions, probably with the RAD51B protein. We anticipate that, in addition to its involvement in cytoplasmic actin dynamics, the EVL protein may be required in homologous recombination for repairing specific DNA lesions, and it may cause tumor malignancy by inappropriate recombination enhanced by EVL overexpression in certain types of tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号