共查询到20条相似文献,搜索用时 0 毫秒
1.
Loretta Ma Fumin Dong Maryam Zaid Ashok Kumar Xiaohui Zha 《The Journal of biological chemistry》2012,287(48):40502-40512
Nonresolving inflammatory response from macrophages is a major characteristic of atherosclerosis. Macrophage ABCA1 has been previously shown to suppress the secretion of proinflammatory cytokine. In the present study, we demonstrate that ABCA1 also promotes the secretion of IL-10, an anti-inflammatory cytokine critical for inflammation resolution. ABCA1+/+ bone marrow-derived macrophages secrete more IL-10 but less proinflammatory cytokines than ABCA1−/− bone marrow-derived macrophages, similar to alternatively activated (M2) macrophages. We present evidence that ABCA1 activates PKA and that this elevated PKA activity contributes to M2-like inflammatory response from ABCA1+/+ bone marrow-derived macrophages. Furthermore, cholesterol lowering by statins, methyl-β-cyclodextrin, or filipin also activates PKA and, consequently, transforms macrophages toward M2-like phenotype. Conversely, cholesterol enrichment suppresses PKA activity and promotes M1-like inflammatory response. As the primary function of ABCA1 is cholesterol removal, our results suggest that ABCA1 activates PKA by regulating cholesterol. Indeed, forced cholesterol enrichment in ABCA1-expressing macrophages suppresses PKA activation and elicits M1-like response. Collectively, these findings reveal a novel protective process by ABCA1-activated PKA in macrophages. They also suggest cholesterol lowering in extra-hepatic tissues by statins as an anti-inflammation strategy. 相似文献
2.
Ka Lung Cheung Jong Hun Lee Limin Shu Jung-Hwan Kim David B. Sacks Ah-Ng Tony Kong 《The Journal of biological chemistry》2013,288(31):22378-22386
Nrf2 plays a critical role in the regulation of cellular oxidative stress. MEK-ERK activation has been shown to be one of the major pathways resulting in the activation of Nrf2 and induction of Nrf2 downstream targets, including phase II detoxifying/antioxidant genes in response to oxidative stress and xenobiotics. In this study, IQGAP1 (IQ motif-containing GTPase-activating protein 1), a new Nrf2 interaction partner that we have published previously, was found to modulate MEK-ERK-mediated Nrf2 activation and induction of phase II detoxifying/antioxidant genes. Nrf2 binds directly to the IQ domain (amino acids 699–905) of IQGAP1. Knockdown of IQGAP1 significantly attenuated phenethyl isothiocyanate- or MEK-mediated activation of the MEK-ERK-Nrf2 pathway. Knockdown of IQGAP1 also attenuated MEK-mediated increased stability of Nrf2, which in turn was associated with a decrease in the nuclear translocation of Nrf2 and a decrease in the expression of phase II detoxifying/antioxidant genes. In the aggregate, these results suggest that IQGAP1 may play an important role in the MEK-ERK-Nrf2 signaling pathway. 相似文献
3.
Pamuditha N. Silva Svetlana M. Altamentova Dawn M. Kilkenny Jonathan V. Rocheleau 《The Journal of biological chemistry》2013,288(24):17859-17870
FGFRL1 is a newly identified member of the fibroblast growth factor receptor (FGFR) family expressed in adult pancreas. Unlike canonical FGFRs that initiate signaling via tyrosine kinase domains, the short intracellular sequence of FGFRL1 consists of a putative Src homology domain-2 (SH2)-binding motif adjacent to a histidine-rich C terminus. As a consequence of nonexistent kinase domains, FGFRL1 has been postulated to act as a decoy receptor to inhibit canonical FGFR ligand-induced signaling. In pancreatic islet beta-cells, canonical FGFR1 signaling affects metabolism and insulin processing. This study determined beta-cell expression of FGFRL1 as well as consequent effects on FGFR1 signaling and biological responses. We confirmed FGFRL1 expression at the plasma membrane and within distinct intracellular granules of both primary beta-cells and βTC3 cells. Fluorescent protein-tagged FGFRL1 (RL1) induced a significant ligand-independent increase in MAPK signaling. Removal of the histidine-rich domain (RL1-ΔHis) or entire intracellular sequence (RL1-ΔC) resulted in greater retention at the plasma membrane and significantly reduced ligand-independent ERK1/2 responses. The SHP-1 phosphatase was identified as an RL1-binding substrate. Point mutation of the SH2-binding motif reduced the ability of FGFRL1 to bind SHP-1 and activate ERK1/2 but did not affect receptor localization to insulin secretory granules. Finally, overexpression of RL1 increased cellular insulin content and matrix adhesion. Overall, these data suggest that FGFRL1 does not function as a decoy receptor in beta-cells, but rather it enhances ERK1/2 signaling through association of SHP-1 with the receptor''s intracellular SH2-binding motif. 相似文献
4.
Anna M. Weihs Christiane Fuchs Andreas H. Teuschl Joachim Hartinger Paul Slezak Rainer Mittermayr Heinz Redl Wolfgang G. Junger Harald H. Sitte Dominik Rünzler 《The Journal of biological chemistry》2014,289(39):27090-27104
Shock wave treatment accelerates impaired wound healing in diverse clinical situations. However, the mechanisms underlying the beneficial effects of shock waves have not yet been fully revealed. Because cell proliferation is a major requirement in the wound healing cascade, we used in vitro studies and an in vivo wound healing model to study whether shock wave treatment influences proliferation by altering major extracellular factors and signaling pathways involved in cell proliferation. We identified extracellular ATP, released in an energy- and pulse number-dependent manner, as a trigger of the biological effects of shock wave treatment. Shock wave treatment induced ATP release, increased Erk1/2 and p38 MAPK activation, and enhanced proliferation in three different cell types (C3H10T1/2 murine mesenchymal progenitor cells, primary human adipose tissue-derived stem cells, and a human Jurkat T cell line) in vitro. Purinergic signaling-induced Erk1/2 activation was found to be essential for this proliferative effect, which was further confirmed by in vivo studies in a rat wound healing model where shock wave treatment induced proliferation and increased wound healing in an Erk1/2-dependent fashion. In summary, this report demonstrates that shock wave treatment triggers release of cellular ATP, which subsequently activates purinergic receptors and finally enhances proliferation in vitro and in vivo via downstream Erk1/2 signaling. In conclusion, our findings shed further light on the molecular mechanisms by which shock wave treatment exerts its beneficial effects. These findings could help to improve the clinical use of shock wave treatment for wound healing. 相似文献
5.
Wilhelmsen K Mesa KR Lucero J Xu F Hellman J 《The Journal of biological chemistry》2012,287(32):26478-26494
Endothelial cell (EC) Toll-like receptor 2 (TLR2) activation up-regulates the expression of inflammatory mediators and of TLR2 itself and modulates important endothelial functions, including coagulation and permeability. We defined TLR2 signaling pathways in EC and tested the hypothesis that TLR2 signaling differs in EC and monocytes. We found that ERK5, heretofore unrecognized as mediating TLR2 activation in any cell type, is a central mediator of TLR2-dependent inflammatory signaling in human umbilical vein endothelial cells, primary human lung microvascular EC, and human monocytes. Additionally, we observed that, although MEK1 negatively regulates TLR2 signaling in EC, MEK1 promotes TLR2 signaling in monocytes. We also noted that activation of TLR2 led to the up-regulation of intracellularly expressed TLR2 and inflammatory mediators via NF-κB, JNK, and p38-MAPK. Finally, we found that p38-MAPK, JNK, ERK5, and NF-κB promote the attachment of human neutrophils to lung microvascular EC that were pretreated with TLR2 agonists. This study newly identifies ERK5 as a key regulator of TLR2 signaling in EC and monocytes and indicates that there are fundamental differences in TLR signaling pathways between EC and monocytes. 相似文献
6.
Hong-Zheng Meng Wei-Lin Zhang Fei Liu Mao-Wei Yang 《The Journal of biological chemistry》2015,290(47):28189-28199
The interaction between advanced glycation end products (AGEs) and receptor of AGEs (RAGE) is associated with the development and progression of diabetes-associated osteoporosis, but the mechanisms involved are still poorly understood. In this study, we found that AGE-modified bovine serum albumin (AGE-BSA) induced a biphasic effect on the viability of hFOB1.19 cells; cell proliferation was stimulated after exposure to low dose AGE-BSA, but cell apoptosis was stimulated after exposure to high dose AGE-BSA. The low dose AGE-BSA facilitates proliferation of hFOB1.19 cells by concomitantly promoting autophagy, RAGE production, and the Raf/MEK/ERK signaling pathway activation. Furthermore, we investigated the effects of AGE-BSA on the function of hFOB1.19 cells. Interestingly, the results suggest that the short term effects of low dose AGE-BSA increase osteogenic function and decrease osteoclastogenic function, which are likely mediated by autophagy and the RAGE/Raf/MEK/ERK signal pathway. In contrast, with increased treatment time, the opposite effects were observed. Collectively, AGE-BSA had a biphasic effect on the viability of hFOB1.19 cells in vitro, which was determined by the concentration of AGE-BSA and treatment time. A low concentration of AGE-BSA activated the Raf/MEK/ERK signal pathway through the interaction with RAGE, induced autophagy, and regulated the proliferation and function of hFOB1.19 cells. 相似文献
7.
8.
Andrés Norambuena Claudia Metz Lucas Vicu?a Antonia Silva Evelyn Pardo Claudia Oyanadel Loreto Massardo Alfonso González Andrea Soza 《The Journal of biological chemistry》2009,284(19):12670-12679
Galectins have been implicated in T cell homeostasis playing complementary
pro-apoptotic roles. Here we show that galectin-8 (Gal-8) is a potent
pro-apoptotic agent in Jurkat T cells inducing a complex phospholipase
D/phosphatidic acid signaling pathway that has not been reported for any
galectin before. Gal-8 increases phosphatidic signaling, which enhances the
activity of both ERK1/2 and type 4 phosphodiesterases (PDE4), with a
subsequent decrease in basal protein kinase A activity. Strikingly, rolipram
inhibition of PDE4 decreases ERK1/2 activity. Thus Gal-8-induced PDE4
activation releases a negative influence of cAMP/protein kinase A on ERK1/2.
The resulting strong ERK1/2 activation leads to expression of the death factor
Fas ligand and caspase-mediated apoptosis. Several conditions that decrease
ERK1/2 activity also decrease apoptosis, such as anti-Fas ligand blocking
antibodies. In addition, experiments with freshly isolated human peripheral
blood mononuclear cells, previously stimulated with anti-CD3 and anti-CD28,
show that Gal-8 is pro-apoptotic on activated T cells, most likely on a
subpopulation of them. Anti-Gal-8 autoantibodies from patients with systemic
lupus erythematosus block the apoptotic effect of Gal-8. These results
implicate Gal-8 as a novel T cell suppressive factor, which can be
counterbalanced by function-blocking autoantibodies in autoimmunity.Glycan-binding proteins of the galectin family have been increasingly
studied as regulators of the immune response and potential therapeutic agents
for autoimmune disorders (1).
To date, 15 galectins have been identified and classified according with the
structural organization of their distinctive monomeric or dimeric carbohydrate
recognition domain for β-galactosides
(2,
3). Galectins are secreted by
unconventional mechanisms and once outside the cells bind to and cross-link
multiple glycoconjugates both at the cell surface and at the extracellular
matrix, modulating processes as diverse as cell adhesion, migration,
proliferation, differentiation, and apoptosis
(4–10).
Several galectins have been involved in T cell homeostasis because of their
capability to kill thymocytes, activated T cells, and T cell lines
(11–16).
Pro-apoptotic galectins might contribute to shape the T cell repertoire in the
thymus by negative selection, restrict the immune response by eliminating
activated T cells at the periphery
(1), and help cancer cells to
escape the immune system by eliminating cancer-infiltrating T cells
(17). They have also a
promising therapeutic potential to eliminate abnormally activated T cells and
inflammatory cells (1). Studies
on the mostly explored galectins, Gal-1, -3, and -9
(14,
15,
18–20),
as well as in Gal-2 (13),
suggest immunosuppressive complementary roles inducing different pathways to
apoptosis. Galectin-8
(Gal-8)4 is one of the
most widely expressed galectins in human tissues
(21,
22) and cancerous cells
(23,
24). Depending on the cell
context and mode of presentation, either as soluble stimulus or extracellular
matrix, Gal-8 can promote cell adhesion, spreading, growth, and apoptosis
(6,
7,
9,
10,
22,
25). Its role has been mostly
studied in relation to tumor malignancy
(23,
24). However, there is some
evidence regarding a role for Gal-8 in T cell homeostasis and autoimmune or
inflammatory disorders. For instance, the intrathymic expression and
pro-apoptotic effect of Gal-8 upon CD4highCD8high
thymocytes suggest a role for Gal-8 in shaping the T cell repertoire
(16). Gal-8 could also
modulate the inflammatory function of neutrophils
(26), Moreover Gal-8-blocking
agents have been detected in chronic autoimmune disorders
(10,
27,
28). In rheumatoid arthritis,
Gal-8 has an anti-inflammatory action, promoting apoptosis of synovial fluid
cells, but can be counteracted by a specific rheumatoid version of CD44
(CD44vRA) (27). In systemic
lupus erythematosus (SLE), a prototypic autoimmune disease, we recently
described function-blocking autoantibodies against Gal-8
(10,
28). Thus it is important to
define the role of Gal-8 and the influence of anti-Gal-8 autoantibodies in
immune cells.In Jurkat T cells, we previously reported that Gal-8 interacts with
specific integrins, such as α1β1, α3β1, and
α5β1 but not α4β1, and as a matrix protein promotes cell
adhesion and asymmetric spreading through activation of the extracellular
signal-regulated kinases 1 and 2 (ERK1/2)
(10). These early effects
occur within 5–30 min. However, ERK1/2 signaling supports long term
processes such as T cell survival or death, depending on the moment of the
immune response. During T cell activation, ERK1/2 contributes to enhance the
expression of interleukin-2 (IL-2) required for T cell clonal expansion
(29). It also supports T cell
survival against pro-apoptotic Fas ligand (FasL) produced by themselves and by
other previously activated T cells
(30,
31). Later on, ERK1/2 is
required for activation-induced cell death, which controls the extension of
the immune response by eliminating recently activated and restimulated T cells
(32,
33). In activation-induced
cell death, ERK1/2 signaling contributes to enhance the expression of FasL and
its receptor Fas/CD95 (32,
33), which constitute a
preponderant pro-apoptotic system in T cells
(34). Here, we ask whether
Gal-8 is able to modulate the intensity of ERK1/2 signaling enough to
participate in long term processes involved in T cell homeostasis.The functional integration of ERK1/2 and PKA signaling
(35) deserves special
attention. cAMP/PKA signaling plays an immunosuppressive role in T cells
(36) and is altered in SLE
(37). Phosphodiesterases
(PDEs) that degrade cAMP release the immunosuppressive action of cAMP/PKA
during T cell activation (38,
39). PKA has been described to
control the activity of ERK1/2 either positively or negatively in different
cells and processes (35). A
little explored integration among ERK1/2 and PKA occurs via phosphatidic acid
(PA) and PDE signaling. Several stimuli activate phospholipase D (PLD) that
hydrolyzes phosphatidylcholine into PA and choline. Such PLD-generated PA
plays roles in signaling interacting with a variety of targeting proteins that
bear PA-binding domains (40).
In this way PA recruits Raf-1 to the plasma membrane
(41). It is also converted by
phosphatidic acid phosphohydrolase (PAP) activity into diacylglycerol (DAG),
which among other functions, recruits and activates the GTPase Ras
(42). Both Ras and Raf-1 are
upstream elements of the ERK1/2 activation pathway
(43). In addition, PA binds to
and activates PDEs of the type 4 subfamily (PDE4s) leading to decreased cAMP
levels and PKA down-regulation
(44). The regulation and role
of PA-mediated control of ERK1/2 and PKA remain relatively unknown in T cell
homeostasis, because it is also unknown whether galectins stimulate the PLD/PA
pathway.Here we found that Gal-8 induces apoptosis in Jurkat T cells by triggering
cross-talk between PKA and ERK1/2 pathways mediated by PLD-generated PA. Our
results for the first time show that a galectin increases the PA levels,
down-regulates the cAMP/PKA system by enhancing rolipram-sensitive PDE
activity, and induces an ERK1/2-dependent expression of the pro-apoptotic
factor FasL. The enhanced PDE activity induced by Gal-8 is required for the
activation of ERK1/2 that finally leads to apoptosis. Gal-8 also induces
apoptosis in human peripheral blood mononuclear cells (PBMC), especially after
activating T cells with anti-CD3/CD28. Therefore, Gal-8 shares with other
galectins the property of killing activated T cells contributing to the T cell
homeostasis. The pathway involves a particularly integrated signaling context,
engaging PLD/PA, cAMP/PKA, and ERK1/2, which so far has not been reported for
galectins. The pro-apoptotic function of Gal-8 also seems to be unique in its
susceptibility to inhibition by anti-Gal-8 autoantibodies. 相似文献
9.
Liang Xue Pengcheng Wang Pianpian Cao Jian-kang Zhu W. Andy Tao 《Molecular & cellular proteomics : MCP》2014,13(11):3199-3210
Kinase mediated phosphorylation signaling is extensively involved in cellular functions and human diseases, and unraveling phosphorylation networks requires the identification of substrates targeted by kinases, which has remained challenging. We report here a novel proteomic strategy to identify the specificity and direct substrates of kinases by coupling phosphoproteomics with a sensitive stable isotope labeled kinase reaction. A whole cell extract was moderately dephosphorylated and subjected to in vitro kinase reaction under the condition in which 18O-ATP is the phosphate donor. The phosphorylated proteins are then isolated and identified by mass spectrometry, in which the heavy phosphate (+85.979 Da) labeled phosphopeptides reveal the kinase specificity. The in vitro phosphorylated proteins with heavy phosphates are further overlapped with in vivo kinase-dependent phosphoproteins for the identification of direct substrates with high confidence. The strategy allowed us to identify 46 phosphorylation sites on 38 direct substrates of extracellular signal-regulated kinase 1, including multiple known substrates and novel substrates, highlighting the ability of this high throughput method for direct kinase substrate screening.Protein phosphorylation regulates almost all aspects of cell life, such as cell cycle, migration, and apoptosis (1), and deregulation of protein phosphorylation is one of the most frequent causes or consequences of human diseases including cancers, diabetes, and immune disorders (2). Up till now, however, known substrates are far from saturation for the majority of protein kinases (3); thus, mapping comprehensive kinase-substrate relationships is essential to understanding biological mechanisms and uncovering new drug targets (4).Accompanied with advances of high-speed and high-resolution mass spectrometry, the technique of kinase substrate screening using proteomic strategy is quickly evolving (5–7). Mass spectrometry has been extensively used for kinase-substrate interaction mapping (8) and global phosphorylation profiling (9). Although thousands of phosphorylation sites have been detected, complex phosphorylation cascade and crosstalk between pathways make it difficult for large-scale phosphoproteomics to reveal direct relationships between protein kinases and their substrates (10, 11). Extensive statistics, bioinformatics, and downstream biochemical assays are mandatory for the substrate verification (12, 13). Another strategy uses purified, active kinases to phosphorylate cell extracts in vitro, followed by mass spectrometric analysis to identify phosphoproteins. This approach inevitably faces the major challenge of separating real sites phosphorylated by target kinase and the phosphorylation triggered by endogenous kinases from cell lysates (14). Analog-sensitive kinase allele (15) overcomes the issue by utilizing the engineered kinase that can exclusively take a bulky-ATP analog under the reaction condition. Analog-sensitive kinase allele has been coupled with γ-thiophosphate analog ATP to facilitate the mass spectrometric analysis (16–18).We have introduced kinase assay-linked phosphoproteomics (KALIP)1 to link the in vitro substrate identification and physiological phosphorylation events together in a high throughput manner (19, 20). The strategy, however, has only been applied to identify direct substrates of tyrosine kinases. In this study, we expanded the application of KALIP to serine/threonine kinases by introducing a quantitative strategy termed Stable Isotope Labeled Kinase Assay-Linked Phosphoproteomics (siKALIP). The method was applied to identify direct substrates of extracellular signal-regulated kinase 1 (ERK1), a serine/threonine kinase acting as an essential component of the Mitogen-activated protein kinase (MAPK) signal transduction pathway (21). A defect in the MAP/ERK pathway causes uncontrolled growth, which likely leads to cancer (22) and other diseases (23–25). ERK1 can be activated by growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and nerve growth factor (NGF) (26). Upon stimulation, ERK1 phosphorylates hundreds of substrates in various cellular compartments including cytoplasm, nucleus, and membrane (27). Among 38 ERK1 direct substrates identified by siKALIP, more than one third are previously discovered by classical molecular biology approaches, highlighting high specificity and sensitivity of the strategy. The results also support the hypothesis that ERK1 plays complex roles in multiple pathways that are essential for the cell growth regulation. 相似文献
10.
Chunhua Jin Joseph C Cleveland Lihua Ao Jilin Li Qingchun Zeng David A Fullerton Xianzhong Meng 《Molecular medicine (Cambridge, Mass.)》2014,20(1):280-289
The myocardial inflammatory response contributes to cardiac functional injury associated with heart surgery obligating global ischemia/reperfusion (I/R). Toll-like receptors (TLRs) play an important role in the mechanism underlying myocardial I/R injury. The aim of this study was to examine the release of small constitutive heat shock proteins (HSPs) from human and mouse myocardium after global ischemia and examine the role of extracellular small HSP in myocardial injury. HSP27 release was assessed by enzyme-linked immunosorbent assay. Anti-HSP27 was applied to evaluate the role of extracellular HSP27 in the postischemic inflammatory response and functional injury in mouse hearts. Isolated hearts and cultured coronary vascular endothelial cells were exposed to recombinant HSP27 to determine its effect on proinflammatory signaling and production of proinflammatory mediators. HSP27 levels were markedly elevated in coronary sinus blood of patients and in coronary effluent of mouse hearts after global ischemia. Neutralizing extracellular HSP27 suppressed myocardial nuclear factor (NF)-κB activation and interleukin (IL)-6 production and improved cardiac function in mouse hearts. Perfusion of HSP27 to mouse hearts induced NF-κB activation and IL-6 production and depressed contractility. Further, recombinant HSP27 induced NF-κB phosphorylation and upregulated monocyte chemoattractant protein (MCP)-1 and intercellular adhesion molecule (ICAM)-1 production in both human and mouse coronary vascular endothelial cells. TLR2 knockout (KO) or TLR4 mutation abolished NF-κB phosphorylation and reduced MCP-1 and ICAM-1 production induced by extracellular HSP27 in endothelial cells. In conclusion, these results show that the myocardium releases HSP27 after global ischemia and that extracellular HSP27 is proinflammatory and contributes to the inflammatory mechanism of myocardial functional injury. Both TLR2 and TLR4 are involved in mediating the proinflammatory effect of extracellular HSP27. 相似文献
11.
12.
Nataliya Pidkovka Reena Rao Shaojun Mei Yan Gong Raymond C. Harris Wen-Hui Wang Jorge H. Capdevila 《The Journal of biological chemistry》2013,288(7):5223-5231
The epithelial sodium channel (ENaC) participates in the regulation of plasma sodium and volume, and gain of function mutations in the human channel cause salt-sensitive hypertension. Roles for the arachidonic acid epoxygenase metabolites, the epoxyeicosatrienoic acids (EETs), in ENaC activity have been identified; however, their mechanisms of action remain unknown. In polarized M1 cells, 14,15-EET inhibited amiloride-sensitive apical to basolateral sodium transport as effectively as epidermal growth factor (EGF). The EET effects were associated with increased threonine phosphorylation of the ENaC β and γ subunits and abolished by inhibitors of (a) mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal regulated kinases 1 and 2 (MEK/ERK1/2) and (b) EGF receptor signaling. CYP2C44 epoxygenase knockdown blunted the sodium transport effects of EGF, and its 14,15-EET metabolite rescued the knockdown phenotype. The relevance of these findings is indicated by (a) the hypertension that results in mice administered cetuximab, an inhibitor of EGF receptor binding, and (b) immunological data showing an association between the pressure effects of cetuximab and reductions in ENaCγ phosphorylation. These studies (a) identify an ERK1/2-dependent mechanism for ENaC inhibition by 14,15-EET, (b) point to ENaC as a proximal target for EET-activated ERK1/2 mitogenic kinases, (c) characterize a mechanistic commonality between EGF and epoxygenase metabolites as ENaC inhibitors, and (d) suggest a CYP2C epoxygenase-mediated pathway for the regulation of distal sodium transport. 相似文献
13.
Jia Xu Kelly Benabou Xiangdong Cui Marissa Madia Edith Tzeng Timothy Billiar Simon Watkins Ulka Sachdev 《Molecular medicine (Cambridge, Mass.)》2015,21(1):605-615
Toll-like receptors (TLRs) play an important role in regulating muscle regeneration and angiogenesis in response to ischemia. TLR2 knockout mice exhibit pronounced skeletal muscle necrosis and abnormal vessel architecture after femoral artery ligation, suggesting that TLR2 signaling is protective during ischemia. TLR4, an important receptor in inflammatory signaling, has been shown to regulate TLR2 expression in other systems. We hypothesize that a similar relationship between TLR4 and TLR2 may exist in hindlimb ischemia in which TLR4 upregulates TLR2, a mediator of angiogenesis and perfusion recovery. We examined the expression of TLR2 in unstimulated and in TLR-agonist treated endothelial cells (ECs). TLR2 expression (low in control ECs) was upregulated by lipopolysaccharide, the danger signal high mobility group box-1, and hypoxia in a TLR4-dependent manner. Endothelial tube formation on Matrigel as well as EC permeability was assessed as in vitro measures of angiogenesis. Time-lapse imaging demonstrated that ECs lacking TLR4 formed more tubes, whereas TLR2 knockdown ECs exhibited attenuated tube formation. TLR2 also mediated EC permeability, an initial step during angiogenesis, in response to high-mobility group box-1 (HMGB1) that is released by cells during hypoxic injury. In vivo, ischemia-induced upregulation of TLR2 required intact TLR4 signaling that mediated systemic inflammation, as measured by local and systemic IL-6 levels. Similar to our in vitro findings, vascular density and limb perfusion were both enhanced in the absence of TLR4 signaling, but not if TLR2 was deleted. These findings indicate that TLR2, in the absence of TLR4, improves angiogenesis and perfusion recovery in response to ischemia. 相似文献
14.
Takehiro Kaida Osamu Kozawa Takeshi Ito Kumiko Tanabe Hidenori Ito Hiroyuki Matsuno Masayuki Niwa Hideo Miyata Toshihiko Uematsu Kanefusa Kato 《Experimental cell research》1999,246(2):327
In the present study, we examined the effect of vasopressin on the induction of the low-molecular-weight heat shock proteins heat shock protein 27 (HSP27) and αB-crystallin in an aortic smooth muscle cell line, A10 cells. Vasopressin induced a time-dependent accumulation of HSP27 and αB-crystallin. The stimulatory effects of vasopressin were dose-dependent over the range 0.1 nmol/L to 0.1 μmol/L. The EC50values for vasopressin were 2 (HSP27) and 4 nmol/L (αB-crystallin). Vasopressin induced increases in the levels of the mRNAs for HSP27 and αB-crystallin. 12-O-Tetradecanoylphorbol 13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, induced an accumulation of HSP27 (EC50, 20 nmol/L) and αB-crystallin (EC50, 2 nmol/L). In contrast, 4α-phorbol 12,13-didecanoate, a non-PKC-activating phorbol ester, had no such effect. Staurosporine and calphostin C, inhibitors of PKC, significantly reduced the vasopressin-induced accumulation of HSP27 and αB-crystallin as well as that induced by TPA. BAPTA/AM and TMB-8, inhibitors of intracellular Ca2+mobilization, significantly reduced the vasopressin-induced accumulation of HSP27 and αB-crystallin. These results strongly suggest that vasopressin stimulates the induction of HSP27 and αB-crystallin via PKC activation in vascular smooth muscle cells and that this effect of vasopressin is dependent on intracellular Ca2+mobilization. 相似文献
15.
16.
The greatest challenge for the seeding of cancer in metastatic sites is integration into the ectopic microenvironment despite the lack of an orthotopic supportive environment and presence of pro-death signals concomitant with a localized “foreign-body” inflammatory response. In this metastatic location, many carcinoma cells display a reversion of the epithelial-to-mesenchymal transition that marks dissemination in the primary tumor mass. This mesenchymal to epithelial reverting transition (MErT) is thought to help seeding and colonization by protecting against cell death. We have previously shown that hepatocyte coculture induces the re-expression of E-cadherin via abrogation of autocrine EGFR signaling pathway in prostate cancer (PCa) cells and that this confers a survival advantage. Herein, we show that hepatocytes educate PCa to undergo MErT by modulating the activity of p38 and ERK1/2. Hepatocytes inhibited p38 and ERK1/2 activity in prostate cancer cells, which allowed E-cadherin re-expression. Introduction of constitutively active MEK6 and MEK1 to DU145 cells cocultured with hepatocytes abrogated E-cadherin re-expression. At least a partial phenotypic reversion can be achieved by suppression of p38 and ERK1/2 activation in DU145 cells even in the absence of hepatocytes. Interestingly, these mitogen-activated protein kinase activities were also triggered by re-expressed E-cadherin leading to p38 and ERK1/2 activity in PCa cells; these signals provide protection to PCa cells upon challenge with chemotherapy and cell death-inducing cytokines. We propose that distinct p38/ERK pathways are related to E-cadherin levels and function downstream of E-cadherin allowing, respectively, for hepatocyte-mediated MErT and tumor cell survival in the face of death signals. 相似文献
17.
Gina M. Sizemore Steven T. Sizemore Darcie D. Seachrist Ruth A. Keri 《The Journal of biological chemistry》2014,289(35):24102-24113
Breast cancer is a heterogeneous disease comprised of distinct subtypes predictive of patient outcome. Tumors of the basal-like subtype have a poor prognosis due to inherent aggressiveness and the lack of targeted therapeutics. Basal-like tumors typically lack estrogen receptor-α, progesterone receptor and HER2/ERBB2, or in other words they are triple negative (TN). Continued evaluation of basal-like breast cancer (BLBC) biology is essential to identify novel therapeutic targets. Expression of the pi subunit of the GABA(A) receptor (GABRP) is associated with the BLBC/TN subtype, and herein, we reveal its expression also correlates with metastases to the brain and poorer patient outcome. GABRP expression in breast cancer cell lines also demonstrates a significant correlation with the basal-like subtype suggesting that GABRP functions in the initiation and/or progression of basal-like tumors. To address this postulate, we stably silenced GABRP in two BLBC cell lines, HCC1187 and HCC70 cells. Decreased GABRP reduces in vitro tumorigenic potential and migration concurrent with alterations in the cytoskeleton, specifically diminished cellular protrusions and expression of the BLBC-associated cytokeratins, KRT5, KRT6B, KRT14, and KRT17. Silencing GABRP also decreases phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) in both cell lines and selective inhibition of ERK1/2 similarly decreases the basal-like cytokeratins as well as migration. Combined, these data reveal a GABRP-ERK1/2-cytokeratin axis that maintains the migratory phenotype of basal-like breast cancer. GABRP is a component of a cell surface receptor, thus, these findings suggest that targeting this new signaling axis may have therapeutic potential in BLBC. 相似文献
18.
David Chiluiza Sneha Krishna Valérie A. Schumacher Johannes Schl?ndorff 《The Journal of biological chemistry》2013,288(25):18407-18420
Gain-of-function mutations in the canonical transient receptor potential 6 (TRPC6) gene are a cause of autosomal dominant focal segmental glomerulosclerosis (FSGS). The mechanisms whereby abnormal TRPC6 activity results in proteinuria remain unknown. The ERK1/2 MAPKs are activated in glomeruli and podocytes in several proteinuric disease models. We therefore examined whether FSGS-associated mutations in TRPC6 result in activation of these kinases. In 293T cells and cultured podocytes, overexpression of gain-of-function TRPC6 mutants resulted in increased ERK1/2 phosphorylation, an effect dependent upon channel function. Pharmacologic inhibitor studies implicated several signaling mediators, including calmodulin and calcineurin, supporting the importance of TRPC6-mediated calcium influx in this process. Through medium transfer experiments, we uncovered two distinct mechanisms for ERK activation by mutant TRPC6, a cell-autonomous, EGF receptor-independent mechanism and a non-cell-autonomous mechanism involving metalloprotease-mediated release of a presumed EGF receptor ligand. The inhibitors KN-92 and H89 were able to block both pathways in mutant TRPC6 expressing cells as well as the prolonged elevation of intracellular calcium levels upon carbachol stimulation seen in these cells. However, these effects appear to be independent of their effects on calcium/calmodulin-dependent protein kinase II and PKA, respectively. Phosphorylation of Thr-70, Ser-282, and Tyr-31/285 were not necessary for ERK activation by mutant TRPC6, although a phosphomimetic TRPC6 S282E mutant was capable of ERK activation. Taken together, these results identify two pathways downstream of mutant TRPC6 leading to ERK activation that may play a role in the development of FSGS. 相似文献
19.
Guo Li Xiaoyan Deng Chun Wu Qi Zhou Linjie Chen Ying Shi Haishan Huang Naiming Zhou 《The Journal of biological chemistry》2011,286(36):31199-31212
Nicotinic acid (niacin) has been widely used as a lipid-lowering drug for several decades, and recently, orphan G protein-coupled receptor GPR109A has been identified as a receptor for niacin. Mechanistic investigations have shown that, upon niacin activation, GPR109A couples to a Gi protein and inhibits adenylate cyclase activity, leading to inhibition of liberation of free fatty acid. However, the underlying molecular mechanisms for GPR109A signaling remain largely unknown. Using CHO-K1 cells stably expressing GPR109A and A431 cells, which are a human epidermoid cell line with high levels of endogenous expression of functional GPR109A receptors, we found that activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by niacin was rapid, peaking at 5 min, and was significantly blocked by pertussis toxin. Furthermore, time course experiments with different kinase inhibitors demonstrated that GPR109A induced ERK1/2 activation via the matrix metalloproteinase/epidermal growth factor receptor transactivation pathway at both early and later time points (2–5 min); this pathway was distinct from the PKC pathway-mediated ERK1/2 phosphorylation that occurs at early time points (≤2 min) in response to niacin. Overexpression of Gβγ subunit scavengers βARK1-CT and the Gα subunit of transducin led to a significant reduction of ERK1/2 phosphorylation, suggesting a critical role for βγ subunits in GPR109A-activated ERK1/2 phosphorylation. Using arrestin-2/3-specific siRNA and an internalization-deficient GPR109A mutant, we found that arrestin-2 and arrestin-3 were not involved in GPR109A-mediated ERK1/2 activation. In conclusion, our findings demonstrate that upon binding to niacin GPR109A receptors initially activate Gi, leading to dissociation of the Gβγ subunit from activated Gi, and subsequently induce ERK1/2 activation via two distinct pathways, one PKC-dependent pathway occurring at a peak time of ≤2 min and the other matrix metalloproteinase-dependent growth factor receptor transactivation occurring at both early and later time points (2–5 min). 相似文献
20.
Kira G. Hartman Michele I. Vitolo Adam D. Pierce Jennifer M. Fox Paul Shapiro Stuart S. Martin Paul T. Wilder David J. Weber 《The Journal of biological chemistry》2014,289(18):12886-12895
S100B is a prognostic marker for malignant melanoma. Increasing S100B levels are predictive of advancing disease stage, increased recurrence, and low overall survival in malignant melanoma patients. Using S100B overexpression and shRNAS100B knockdown studies in melanoma cell lines, elevated S100B was found to enhance cell viability and modulate MAPK signaling by binding directly to the p90 ribosomal S6 kinase (RSK). S100B-RSK complex formation was shown to be Ca2+-dependent and to block ERK-dependent phosphorylation of RSK, at Thr-573, in its C-terminal kinase domain. Additionally, the overexpression of S100B sequesters RSK into the cytosol and prevents it from acting on nuclear targets. Thus, elevated S100B contributes to abnormal ERK/RSK signaling and increased cell survival in malignant melanoma. 相似文献