共查询到20条相似文献,搜索用时 15 毫秒
1.
Ras and Rap proteins are closely related small GTPases. Whereas Ras is
known for its role in cell proliferation and survival, Rap1 is predominantly
involved in cell adhesion and cell junction formation. Ras and Rap are
regulated by different sets of guanine nucleotide exchange factors and
GTPase-activating proteins, determining one level of specificity. In addition,
although the effector domains are highly similar, Rap and Ras interact with
largely different sets of effectors, providing a second level of specificity.
In this review, we discuss the regulatory proteins and effectors of Ras and
Rap, with a focus on those of Rap.Ras-like small G-proteins are ubiquitously expressed, conserved molecular
switches that couple extracellular signals to various cellular responses.
Different signals can activate
GEFs2 that induce the
small G-protein to switch from the inactive, GDP-bound state to the active,
GTP-bound state. This induces a conformational change that allows downstream
effector proteins to bind specifically to and be activated by the GTP-bound
protein to mediate diverse biological responses. Small G-proteins are returned
to the GDP-bound state by hydrolyzing GTP with the help of GAPs. Ras (Ha-Ras,
Ki-Ras, and N-Ras) and Rap proteins (Rap1A, Rap1B, Rap2A, Rap2B, and Rap2C)
have similar effector-binding regions that interact predominantly with RA
domains or the structurally similar RBDs present in a variety of different
proteins. Both protein families operate in different signaling networks. For
instance, Ras is central in a network controlling cell proliferation and cell
survival, whereas Rap1 predominantly controls cell adhesion, cell junction
formation, cell secretion, and cell polarity. These different functions are
reflected in a largely different set of GEFs and GAPs. Also the downstream
effector proteins operate in a selective manner in either one of the
networks. 相似文献
2.
3.
4.
In mammals, Bone Morphogenetic Protein (BMP) pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle. 相似文献
5.
6.
7.
8.
9.
Tomohiro Hosoya Fumihiko Sakai Maya Yamashita Takuya Shiozaki Tsutomu Endo Ken Ukibe Hiroshi Uenishi Yukio Kadooka Tomohiro Moriya Hisako Nakagawa Yosuke Nakayama Tadaaki Miyazaki 《PloS one》2014,9(9)
Lactobacillus helveticus SBT2171 (LH2171) is a lactic acid bacterium with high protease activity and used in starter cultures in the manufacture of cheese. We recently reported that consumption of cheese manufactured using LH2171 alleviated symptoms of dextran sodium sulfate (DSS)-induced colitis in mice. In this study, we have examined whether LH2171 itself exerts an inhibitory effect on the excessive proliferation of lymphocytes. We found that LH2171 inhibited the proliferation of LPS-stimulated mouse T and B cells, and the human lymphoma cell lines, Jurkat and BJAB. Cell cycle analysis showed an accumulation of LH2171-treated BJAB cells in the G2/M phase. Further, phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun was reduced by LH2171 in BJAB cells. Subsequently, expression of cell division cycle 2 (CDC2), regulated by the JNK signaling pathway and essential for G2/M phase progression, was inhibited by LH2171. It was also demonstrated that intraperitoneal administration of LH2171 strongly alleviated symptoms of collagen-induced arthritis (CIA) in mice. These findings suggest that LH2171 inhibits the proliferation of lymphocytes through a suppression of the JNK signaling pathway and exerts an immunosuppressive effect in vivo. 相似文献
10.
John M. Kyriakis 《The Journal of biological chemistry》2009,284(17):10993-10994
11.
12.
Ho-Sup Lee Chinten James Lim Wilma Puzon-McLaughlin Sanford J. Shattil Mark H. Ginsberg 《The Journal of biological chemistry》2009,284(8):5119-5127
Rap1 small GTPases interact with Rap1-GTP-interacting adaptor molecule
(RIAM), a member of the MRL (Mig-10/RIAM/Lamellipodin) protein family, to
promote talin-dependent integrin activation. Here, we show that MRL proteins
function as scaffolds that connect the membrane targeting sequences in Ras
GTPases to talin, thereby recruiting talin to the plasma membrane and
activating integrins. The MRL proteins bound directly to talin via short,
N-terminal sequences predicted to form amphipathic helices. RIAM-induced
integrin activation required both its capacity to bind to Rap1 and to talin.
Moreover, we constructed a minimized 50-residue Rap-RIAM module containing the
talin binding site of RIAM joined to the membrane-targeting sequence of Rap1A.
This minimized Rap-RIAM module was sufficient to target talin to the plasma
membrane and to mediate integrin activation, even in the absence of Rap1
activity. We identified a short talin binding sequence in Lamellipodin (Lpd),
another MRL protein; talin binding Lpd sequence joined to a Rap1
membrane-targeting sequence is sufficient to recruit talin and activate
integrins. These data establish the mechanism whereby MRL proteins interact
with both talin and Ras GTPases to activate integrins.Increased affinity (“activation”) of cellular integrins is
central to physiological events such as cell migration, assembly of the
extracellular matrix, the immune response, and hemostasis
(1). Each integrin comprises a
type I transmembrane α and β subunit, each of which has a large
extracellular domain, a single transmembrane domain, and a cytoplasmic domain
(tail). Talin binds to most integrin β cytoplasmic domains and the
binding of talin to the integrin β tail initiates integrin activation
(2–4).
A small, PTB-like domain of talin mediates activation via a two-site
interaction with integrin β tails
(5), and this PTB domain is
functionally masked in the intact talin molecule
(6). A central question in
integrin biology is how the talin-integrin interaction is regulated to control
integrin activation; recent work has implicated Ras GTPases as critical
signaling modules in this process
(7).Ras proteins are small monomeric GTPases that cycle between the GTP-bound
active form and the GDP-bound inactive form. Guanine nucleotide exchange
factors (GEFs) promote Ras activity by exchanging bound GDP for GTP, whereas
GTPase-activating proteins
(GAPs)3 enhance the
hydrolysis of Ras-bound GTP to GDP (for review, see Ref.
8). The Ras subfamily members
Rap1A and Rap1B stimulate integrin activation
(9,
10). For example, expression
of constitutively active Rap1 activates integrin αMβ2 in
macrophage, and inhibition of Rap1 abrogated integrin activation induced by
inflammatory agonists
(11–13).
Murine T-cells expressing constitutively active Rap1 manifest enhanced
integrin dependent cell adhesion
(14). In platelets, Rap1 is
rapidly activated by platelet agonists
(15,
16). A knock-out of Rap1B
(17) or of the Rap1GEF,
RasGRP2 (18), resulted in
impairment of αIIbβ3-dependent platelet aggregation, highlighting
the importance of Rap1 in platelet aggregation in vivo. Thus, Rap1
GTPases play important roles in the activation of several integrins in
multiple biological contexts.Several Rap1 effectors have been implicated in integrin activation
(19–21).
Rap1-GTP-interacting adaptor molecule (RIAM) is a Rap1 effector that is a
member of the MRL (Mig-10/RIAM/Lamellipodin) family of adaptor proteins
(20). RIAM contains Ras
association (RA) and pleckstrin homology (PH) domains and proline-rich
regions, which are defining features of the MRL protein family. In Jurkat
cells, RIAM overexpression induces β1 and β2 integrin-mediated cell
adhesion, and RIAM knockdown abolishes Rap1-dependent cell adhesion
(20), indicating RIAM is a
downstream regulator of Rap1-dependent signaling. RIAM regulates actin
dynamics as RIAM expression induces cell spreading; conversely, its depletion
reduces cellular F-actin content
(20). Whereas RIAM is greatly
enriched in hematopoietic cells, Lamellipodin (Lpd) is a paralogue present in
fibroblasts and other somatic cells
(22).Recently we used forward, reverse, and synthetic genetics to engineer and
order an integrin activation pathway in Chinese hamster ovary cells expressing
a prototype activable integrin, platelet αIIbβ3. We found that Rap1
induced formation of an “integrin activation complex” containing
RIAM and talin (23). Here, we
have established the mechanism whereby Ras GTPases cooperate with MRL family
proteins, RIAM and Lpd, to regulate integrin activation. We find that MRL
proteins function as scaffolds that connect the membrane targeting sequences
in Ras GTPases to talin, thereby recruiting talin to integrins at the plasma
membrane. 相似文献
13.
14.
Regulation of Ras signaling by the cell cycle. 总被引:6,自引:0,他引:6
It is well known that upregulation of Ras activity can promote cell-cycle progression. Now recent studies indicate that a reciprocal relationship also exists; that is, the consequences of Ras signaling are dependent upon cell-cycle position. In quiescent cells stimulated with growth factors, one Ras effector, phosphatidylinositol-3-kinase, is activated twice as cells transition from G(0) into G(1) phase, and then later in G(1) phase. It is only during the later stages of G(1) phase that PI3K activity promotes entry into S-phase. In cycling cells, Ras activity is enhanced throughout the cell cycle, but is able to stimulate cyclin D1 elevation only during G(2) phase. 相似文献
15.
17.
18.
Regulation of Epidermal Growth Factor Receptor Signaling by
Endocytosis and Intracellular Trafficking 总被引:13,自引:0,他引:13 下载免费PDF全文
Ligand activation of the epidermal growth factor receptor (EGFR) leads to its rapid internalization and eventual delivery to lysosomes. This process is thought to be a mechanism to attenuate signaling, but signals could potentially be generated after endocytosis. To directly evaluate EGFR signaling during receptor trafficking, we developed a technique to rapidly and selectively isolate internalized EGFR and associated molecules with the use of reversibly biotinylated anti-EGFR antibodies. In addition, we developed antibodies specific to tyrosine-phosphorylated EGFR. With the use of a combination of fluorescence imaging and affinity precipitation approaches, we evaluated the state of EGFR activation and substrate association during trafficking in epithelial cells. We found that after internalization, EGFR remained active in the early endosomes. However, receptors were inactivated before degradation, apparently due to ligand removal from endosomes. Adapter molecules, such as Shc, were associated with EGFR both at the cell surface and within endosomes. Some molecules, such as Grb2, were primarily found associated with surface EGFR, whereas others, such as Eps8, were found only with intracellular receptors. During the inactivation phase, c-Cbl became EGFR associated, consistent with its postulated role in receptor attenuation. We conclude that the association of the EGFR with different proteins is compartment specific. In addition, ligand loss is the proximal cause of EGFR inactivation. Thus, regulated trafficking could potentially influence the pattern as well as the duration of signal transduction. 相似文献
19.
20.
Ras GTPases have been a subject of intense investigation since the early 1980s, when single point mutations in Ras were shown to cause deregulated cell growth control. Subsequently, Ras was identified as the most prevalent oncogene found in human cancer. Ras proteins regulate a host of pathways involved in cell growth, differentiation, and apoptosis by cycling between inactive GDP-bound and active GTP-bound states. Regulation of Ras activity is controlled by cellular factors that alter guanine nucleotide cycling. Oncogenic mutations prevent protein regulatory factors from down-regulating Ras activity, thereby maintaining Ras in a chronically activated state. The central dogma in the field is that protein modulatory factors are the primary regulators of Ras activity. Since the mid-1990s, however, evidence has accumulated that small molecule reactive nitrogen species (RNS) can also influence Ras guanine nucleotide cycling. Herein, we review the basic chemistry behind RNS formation and discuss the mechanism through which various RNS enhance nucleotide exchange in Ras proteins. In addition, we present studies that demonstrate the physiological relevance of RNS-mediated Ras activation within the context of immune system function, brain function, and cancer development. We also highlight future directions and experimental methods that may enhance our ability to detect RNS-mediated activation in cell cultures and in vivo. The development of such methods may ultimately pave new directions for detecting and elucidating how Ras proteins are regulated by redox species, as well as for targeting redox-activated Ras in cancer and other disease states. 相似文献