共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Mark J. Truty Gwen Lomberk Martin E. Fernandez-Zapico Raul Urrutia 《The Journal of biological chemistry》2009,284(10):6291-6300
9.
Kazuyuki Kitatani Kely Sheldon Vinodh Rajagopalan Viviana Anelli Russell W. Jenkins Ying Sun Gregory A. Grabowski Lina M. Obeid Yusuf A. Hannun 《The Journal of biological chemistry》2009,284(19):12972-12978
Activation of protein kinase C (PKC) promotes the salvage pathway of
ceramide formation, and acid sphingomyelinase has been implicated, in part, in
providing substrate for this pathway (Zeidan, Y. H., and Hannun, Y. A. (2007)
J. Biol. Chem. 282, 11549–11561). In the present study, we
examined whether acid β-glucosidase 1 (GBA1), which hydrolyzes
glucosylceramide to form lysosomal ceramide, was involved in PKC-regulated
formation of ceramide from recycled sphingosine. Glucosylceramide levels
declined after treatment of MCF-7 cells with a potent PKC activator, phorbol
12-myristate 13-acetate (PMA). Silencing GBA1 by small interfering RNAs
significantly attenuated acid glucocerebrosidase activity and decreased
PMA-induced formation of ceramide by 50%. Silencing GBA1 blocked PMA-induced
degradation of glucosylceramide and generation of sphingosine, the source for
ceramide biosynthesis. Reciprocally, forced expression of GBA1 increased
ceramide levels. These observations indicate that GBA1 activation can generate
the source (sphingosine) for PMA-induced formation of ceramide through the
salvage pathway. Next, the role of PKCδ, a direct effector of PMA, in
the formation of ceramide was determined. By attenuating expression of
PKCδ, cells failed to trigger PMA-induced alterations in levels of
ceramide, sphingomyelin, and glucosylceramide. Thus, PKCδ activation is
suggested to stimulate the degradation of both sphingomyelin and
glucosylceramide leading to the salvage pathway of ceramide formation.
Collectively, GBA1 is identified as a novel source of regulated formation of
ceramide, and PKCδ is an upstream regulator of this pathway.Sphingolipids are abundant components of cellular membranes, many of which
are emerging as bioactive lipid mediators thought to play crucial roles in
cellular responses (1,
2). Ceramide, a central
sphingolipid, serves as the main precursor for various sphingolipids,
including glycosphingolipids, gangliosides, and sphingomyelin. Regulation of
formation of ceramide has been demonstrated through the action of three major
pathways: the de novo pathway
(3,
4), the sphingomyelinase
pathway (5), and the salvage
pathway
(6–8).
The latter plays an important role in constitutive sphingolipid turnover by
salvaging long-chain sphingoid bases (sphingosine and dihydrosphingosine) that
serve as sphingolipid backbones for ceramide and dihydroceramide as well as
all complex sphingolipids (Fig.
1A).Open in a separate windowFIGURE 1.The scheme of the sphingosine salvage pathway of ceramide formation and
inhibition of PMA induction of ceramide by fumonisin B1. A, the
scheme of the sphingosine salvage pathway of ceramide formation. B,
previously published data as to effects of fumonisin B1 on ceramide mass
profiles (23) are re-plotted
as a PMA induction of ceramide. In brief, MCF-7 cells were pretreated with or
without 100 μm fumonisin B1 for 2 h followed by treatment with
100 nm PMA for 1 h. Lipids were extracted, and then the levels of
ceramide species were determined by high-performance liquid
chromatography-tandem mass spectrometry. Results are expressed as sum of
increased mass of ceramide species. Dotted or open columns
represents C16-ceramide or sum of other ceramide species
(C14-ceramide, C18-ceramide, C18:1-ceramide,
C20-ceramide, C24-ceramide, and
C24:1-ceramide), respectively. The data represent mean ±
S.E. of three to five values.Metabolically, ceramide is also formed from degradation of
glycosphingolipids (Fig.
1A) usually in acidic compartments, the lysosomes and/or
late endosomes (9). The
stepwise hydrolysis of complex glycosphingolipids eventually results in the
formation of glucosylceramide, which in turn is converted to ceramide by the
action of acid β-glucosidase 1
(GBA1)2
(9,
10). Severe defects in GBA1
activity cause Gaucher disease, which is associated with aberrant accumulation
of the lipid substrates
(10–14).
On the other hand, sphingomyelin is cleaved by acid sphingomyelinase to also
form ceramide (15,
16). Either process results in
the generation of lysosomal ceramide that can then be deacylated by acid
ceramidase (17), releasing
sphingosine that may escape the lysosome
(18). The released sphingosine
may become a substrate for either sphingosine kinases or ceramide synthases,
forming sphingosine 1-phosphate or ceramide, respectively
(3,
19–21).In a related line of investigation, our studies
(20,
22,
23) have begun to implicate
protein kinase Cs (PKC) as upstream regulators of the sphingoid base salvage
pathway resulting in ceramide synthesis. Activation of PKCs by the phorbol
ester (PMA) was shown to stimulate the salvage pathway resulting in increases
in ceramide. All the induced ceramide was inhibited by pretreatment with a
ceramide synthase inhibitor, fumonisin B1, but not by myriocin, thus negating
acute activation of the de novo pathway and establishing a role for
ceramide synthesis (20,
23). Moreover, labeling
studies also implicated the salvage pathway because PMA induced turnover of
steady state-labeled sphingolipids but did not affect de novo labeled
ceramide in pulse-chase experiments.Moreover, PKCδ, among PKC isoforms, was identified as an upstream
molecule for the activation of acid sphingomyelinase in the salvage pathway
(22). Interestingly, the
PKCδ isoform induced the phosphorylation of acid sphingomyelinase at
serine 508, leading to its activation and consequent formation of ceramide.
The activation of acid sphingomyelinase appeared to contribute to ∼50% of
the salvage pathway-induced increase in ceramide
(28) (also, see
Fig. 4C). This raised
the possibility that distinct routes of ceramide metabolism may account for
the remainder of ceramide generation. In this study, we investigated
glucocerebrosidase GBA1 as a candidate for one of the other routes accounting
for PKC-regulated salvage pathway of ceramide formation.Open in a separate windowFIGURE 4.Effects of knockdown of lysosomal enzymes on the generation of ceramide
after PMA treatment. A, MCF-7 cells were transfected with 5
nm siRNAs of each of four individual sequences (SCR, GBA1-a,
GBA1-b, and GBA1-c) for 48 h and then stimulated with 100 nm PMA
for 1 h. Lipids were extracted, and then the levels of the
C16-ceramide species were determined by high-performance liquid
chromatography-tandem mass spectrometry. The data represent mean ± S.E.
of three to nine values. B, MCF-7 cells were transfected with 5
nm siRNAs of SCR or GBA1-a (GBA1) for 48 h and then stimulated with
100 nm PMA for 1 h. Lipids were extracted, and then the levels of
individual ceramide species were determined by high-performance liquid
chromatography-tandem mass spectrometry. The data represent mean ± S.E.
of three to five values. C14-Cer,
C14-ceramide; C16-Cer,
C16-ceramide; C18-Cer;
C18-ceramide; C18:1-Cer,
C18:1-ceramide; C20-Cer,
C20-ceramide; C20-Cer,
C24-ceramide; C24:1-Cer,
C24:1-ceramide. C, MCF-7 cells were transfected with 5
nm siRNAs of SCR, acid sphingomyelinase (ASM), or GBA1-a
(GBA1) for 48 h following stimulation with (PMA) or without
(Control) 100 nm PMA for 1 h. Lipids were extracted, and
then the levels of ceramide species were determined by high-performance liquid
chromatography-tandem mass spectrometry. Levels of C16-ceramide are
shown. The data represent mean ± S.E. of four to five values.
Significant changes from SCR-transfected cells treated with PMA are shown in
A–C (*, p < 0.02; **,
p < 0.05; ***, p < 0.01). 相似文献
10.
11.
12.
Yuya Sato Toshihiko Uemura Keisuke Morimitsu Ryoko Sato-Nishiuchi Ri-ichiroh Manabe Junichi Takagi Masashi Yamada Kiyotoshi Sekiguchi 《The Journal of biological chemistry》2009,284(21):14524-14536
Integrin α8β1 interacts with a variety of Arg-Gly-Asp (RGD)-containing ligands in the extracellular matrix. Here, we examined the binding activities of α8β1 integrin toward a panel of RGD-containing ligands. Integrin α8β1 bound specifically to nephronectin with an apparent dissociation constant of 0.28 ± 0.01 nm, but showed only marginal affinities for fibronectin and other RGD-containing ligands. The high-affinity binding to α8β1 integrin was fully reproduced with a recombinant nephronectin fragment derived from the RGD-containing central “linker” segment. A series of deletion mutants of the recombinant fragment identified the LFEIFEIER sequence on the C-terminal side of the RGD motif as an auxiliary site required for high-affinity binding to α8β1 integrin. Alanine scanning mutagenesis within the LFEIFEIER sequence defined the EIE sequence as a critical motif ensuring the high-affinity integrin-ligand interaction. Although a synthetic LFEIFEIER peptide failed to inhibit the binding of α8β1 integrin to nephronectin, a longer peptide containing both the RGD motif and the LFEIFEIER sequence was strongly inhibitory, and was ∼2,000-fold more potent than a peptide containing only the RGD motif. Furthermore, trans-complementation assays using recombinant fragments containing either the RGD motif or LFEIFEIER sequence revealed a clear synergism in the binding to α8β1 integrin. Taken together, these results indicate that the specific high-affinity binding of nephronectin to α8β1 integrin is achieved by bipartite interaction of the integrin with the RGD motif and LFEIFEIER sequence, with the latter serving as a synergy site that greatly potentiates the RGD-driven integrin-ligand interaction but has only marginal activity to secure the interaction by itself.Integrins are a family of adhesion receptors that interact with a variety of extracellular ligands, typically cell-adhesive proteins in the extracellular matrix (ECM).2 They play mandatory roles in embryonic development and the maintenance of tissue architectures by providing essential links between cells and the ECM (1). Integrins are composed of two non-covalently associated subunits, termed α and β. In mammals, 18 α and 8 β subunits have been identified, and combinations of these subunits give rise to at least 24 distinct integrin heterodimers. Based on their ligand-binding specificities, ECM-binding integrins are classified into three groups, namely laminin-, collagen- and RGD-binding integrins (2, 3), of which the RGD-binding integrins have been most extensively investigated. The RGD-binding integrins include α5β1, α8β1, αIIbβ3, and αV-containing integrins, and have been shown to interact with a variety of ECM ligands, such as fibronectin and vitronectin, with distinct binding specificities.The α8 integrin subunit was originally identified in chick nerves (4). Integrin α8β1 is expressed in the metanephric mesenchyme and plays a crucial role in epithelial-mesenchymal interactions during the early stages of kidney morphogenesis. Disruption of the α8 gene in mice was found to be associated with severe defects in kidney morphogenesis (5) and stereocilia development (6). To date, α8β1 integrin has been shown to bind to fibronectin, vitronectin, osteopontin, latency-associated peptide of transforming growth factor-β1, tenascin-W, and nephronectin (also named POEM) (7–13), among which nephronectin is believed to be an α8β1 integrin ligand involved in kidney development (10).Nephronectin is one of the basement membrane proteins whose expression and localization patterns are restricted in a tissue-specific and developmentally regulated manner (10, 11). Nephronectin consists of five epidermal growth factor-like repeats, a linker segment containing the RGD cell-adhesive motif (designated RGD-linker) and a meprin-A5 protein-receptor protein-tyrosine phosphatase μ (MAM) domain (see Fig. 3A). Although the physiological functions of nephronectin remain only poorly understood, it is thought to play a role in epithelial-mesenchymal interactions through binding to α8β1 integrin, thereby transmitting signals from the epithelium to the mesenchyme across the basement membrane (10). Recently, mice deficient in nephronectin expression were produced by homologous recombination (14). These nephronectin-deficient mice frequently displayed kidney agenesis, a phenotype reminiscent of α8 integrin knock-out mice (14), despite the fact that other RGD-containing ligands, including fibronectin and osteopontin, were expressed in the embryonic kidneys (9, 15). The failure of the other RGD-containing ligands to compensate for the deficiency of nephronectin in the developing kidneys suggests that nephronectin is an indispensable α8β1 ligand that plays a mandatory role in epithelial-mesenchymal interactions during kidney development.Open in a separate windowFIGURE 3.Binding activities of α8β1 integrin to nephronectin and its fragments. A, schematic diagrams of full-length nephronectin (NN) and its fragments. RGD-linker and RGD-linker (GST), the central RGD-containing linker segments expressed in mammalian and bacterial expression systems, respectively; PRGDV, a short RGD-containing peptide modeled after nephronectin and expressed as a GST fusion protein (see Fig. 4A for the peptide sequence). The arrowheads indicate the positions of the RGD motif. B, purified recombinant proteins were analyzed by SDS-PAGE in 7–15% gradient (left and center panels) and 12% (right panels) gels, followed by Coomassie Brilliant Blue (CBB) staining, immunoblotting with an anti-FLAG mAb, or lectin blotting with PNA. The quantities of proteins loaded were: 0.5 μg (for Coomassie Brilliant Blue staining) and 0.1 μg (for blotting with anti-FLAG and PNA) in the left and center panels;1 μg in the right panel. C, recombinant proteins (10 nm) were coated on microtiter plates and assessed for their binding activities toward α8β1 integrin (10 nm) in the presence of 1 mm Mn2+. The backgrounds were subtracted as described in the legend to Fig. 2. The results represent the mean ± S.D. of triplicate determinations. D, titration curves of α8β1 integrin bound to full-length nephronectin (NN, closed squares), the RGD-linker segments expressed in 293F cells (RGD-linker, closed triangles) and E. coli (RGD-linker (GST), open triangles), the MAM domain (MAM, closed diamonds), and the PRGDV peptide expressed as a GST fusion protein in E. coli (PRGDV (GST), open circles). The assays were performed as described in the legend to Fig. 2B. The results represent the means of duplicate determinations.Although ligand recognition by RGD-binding integrins is primarily determined by the RGD motif in the ligands, it is the residues outside the RGD motif that define the binding specificities and affinities toward individual integrins (16, 17). For example, α5β1 integrin specifically binds to fibronectin among the many RGD-containing ligands, and requires not only the RGD motif in the 10th type III repeat but also the so-called “synergy site” within the preceding 9th type III repeat for fibronectin recognition (18). Recently, DiCara et al. (19) demonstrated that the high-affinity binding of αVβ6 integrin to its natural ligands, e.g. foot-and-mouth disease virus, requires the RGD motif immediately followed by a Leu-Xaa-Xaa-Leu/Ile sequence, which forms a helix to align the two conserved hydrophobic residues along the length of the helix. Given the presence of many naturally occurring RGD-containing ligands, it is conceivable that the specificities of the RGD-binding integrins are dictated by the sequences flanking the RGD motif or those in neighboring domains that come into close proximity with the RGD motif in the intact ligand proteins. However, the preferences of α8β1 integrin for RGD-containing ligands and how it secures its high-affinity binding toward its preferred ligands remain unknown.In the present study, we investigated the binding specificities of α8β1 integrin toward a panel of RGD-containing cell-adhesive proteins. Our data reveal that nephronectin is a preferred ligand for α8β1 integrin, and that a LFEIFEIER sequence on the C-terminal side of its RGD motif serves as a synergy site to ensure the specific high-affinity binding of nephronectin to α8β1 integrin. 相似文献
13.
14.
Toru Yoshihara Kazushi Sugihara Yasuhiko Kizuka Shogo Oka Masahide Asano 《The Journal of biological chemistry》2009,284(18):12550-12561
The glycosylation of glycoproteins and glycolipids is important for central
nervous system development and function. Although the roles of several
carbohydrate epitopes in the central nervous system, including polysialic
acid, the human natural killer-1 (HNK-1) carbohydrate, α2,3-sialic acid,
and oligomannosides, have been investigated, those of the glycan backbone
structures, such as Galβ1-4GlcNAc and Galβ1-3GlcNAc, are not fully
examined. Here we report the generation of mice deficient in
β4-galactosyltransferase-II (β4GalT-II). This galactosyltransferase
transfers Gal from UDP-Gal to a nonreducing terminal GlcNAc to synthesize the
Gal β1-4GlcNAc structure, and it is strongly expressed in the central
nervous system. In behavioral tests, the β4GalT-II-/- mice
showed normal spontaneous activity in a novel environment, but impaired
spatial learning/memory and motor coordination/learning. Immunohistochemistry
showed that the amount of HNK-1 carbohydrate was markedly decreased in the
brain of β4GalT-II-/- mice, whereas the expression of
polysialic acid was not affected. Furthermore, mice deficient in
glucuronyltransferase (GlcAT-P), which is responsible for the biosynthesis of
the HNK-1 carbohydrate, also showed impaired spatial learning/memory as
described in our previous report, although their motor coordination/learning
was normal as shown in this study. Histological examination showed abnormal
alignment and reduced number of Purkinje cells in the cerebellum of
β4GalT-II-/- mice. These results suggest that the
Galβ1-4GlcNAc structure in the HNK-1 carbohydrate is mainly synthesized
by β4GalT-II and that the glycans synthesized by β4GalT-II have
essential roles in higher brain functions, including some that are
HNK-1-dependent and some that are not.The glycosylation of glycoproteins, proteoglycans, and glycolipids is
important for their biological activities, stability, transport, and clearance
from circulation, and cell-surface glycans participate in cell-cell and
cell-extracellular matrix interactions. In the central nervous system, several
specific carbohydrate epitopes, including polysialic acid
(PSA),3 the
human natural killer-1 (HNK-1) carbohydrate, α2,3-sialic acid, and
oligomannosides play indispensable roles in neuronal generation, cell
migration, axonal outgrowth, and synaptic plasticity
(1). Functional analyses of the
glycan backbone structures, like lactosamine core (Galβ1-4GlcNAc),
neolactosamine core (Galβ1-3GlcNAc), and polylactosamine
(Galβ1-4GlcNAcβ1-3) have been carried out using gene-deficient mice
in β4-galactosyltransferase-I (β4GalT-I)
(2,
3), β4GalT-V
(4),
β3-N-acetylglucosaminyl-transferase-II (β3GnT-II)
(5), β3GnT-III
(Core1-β3GnT) (6),
β3GnT-V (7), and Core2GnT
(8). However, the roles of
these glycan backbone structures in the nervous system have not been examined
except the olfactory sensory system
(9).β4GalTs synthesize the Galβ1-4GlcNAc structure via the
β4-galactosylation of glycoproteins and glycolipids; the β4GalTs
transfer galactose (Gal) from UDP-Gal to a nonreducing terminal
N-acetylglucosamine (GlcNAc) of N- and O-glycans
with a β-1,4-linkage. The β4GalT family has seven members
(β4GalT-I to VII), of which at least five have similar
Galβ1-4GlcNAc-synthesizing activities
(10,
11). Each β4GalT has a
tissue-specific expression pattern and substrate specificity with overlapping,
suggesting each β4GalT has its own biological role as well as redundant
functions. β4GalT-I and β4GalT-II share the highest identity (52% at
the amino acid level) among the β4GalTs
(12), suggesting these two
galactosyltransferases can compensate for each other. β4GalT-I is
strongly and ubiquitously expressed in various non-neural tissues, whereas
β4GalT-II is strongly expressed in neural tissues
(13,
14). Indeed, the β4GalT
activity in the brain of β4GalT-I-deficient (β4GalT-I-/-)
mice remains as high as 65% of that of wild-type mice, and the expression
levels of PSA and the HNK-1 carbohydrate in the brain of these mice are normal
(15). These results suggest
β4GalTs other than β4GalT-I, like β4GalT-II, are important in
the nervous system.Among the β4GalT family members, only β4GalT-I-/- mice
have been examined extensively; this was done by us and another group. We
reported that glycans synthesized by β4GalT-I play various roles in
epithelial cell growth and differentiation, inflammatory responses, skin wound
healing, and IgA nephropathy development
(2,
16-18).
Another group reported that glycans synthesized by β4GalT-I are involved
in anterior pituitary hormone function and in fertilization
(3,
19). However, no other nervous
system deficits have been reported in these mice, and the role of the
β4-galactosylation of glycoproteins and glycolipids in the nervous system
has not been fully examined.In this study, we generated β4GalT-II-/- mice and examined
them for behavioral abnormalities and biochemical and histological changes in
the central nervous system. β4GalT-II-/- mice were impaired in
spatial learning/memory and motor coordination/learning. The amount of HNK-1
carbohydrate was markedly decreased in the β4GalT-II-/- brain,
but PSA expression was not affected. These results suggest that the
Galβ1-4GlcNAc structure in the HNK-1 carbohydrate is mainly synthesized
by β4GalT-II and that glycans synthesized by β4GalT-II have
essential roles in higher brain functions, including ones that are HNK-1
carbohydrate-dependent and ones that are independent of HNK-1. 相似文献
15.
Taurai Chiku Dominique Padovani Weidong Zhu Sangita Singh Victor Vitvitsky Ruma Banerjee 《The Journal of biological chemistry》2009,284(17):11601-11612
16.
17.
18.
19.