首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Apolipoprotein E (apoE) is an exchangeable apolipoprotein that functions as a ligand for members of the LDL receptor family, promoting lipoprotein clearance from the circulation. Productive receptor binding requires that apoE adopt an LDL receptor-active conformation through lipid association, and studies have shown that the 22 kDa N-terminal (NT) domain (residues 1–183) of apoE is both necessary and sufficient for receptor interaction. Using intein-mediated expressed protein ligation (EPL), a semisynthetic apoE3 NT has been generated for use in structure-function studies designed to probe the nature of the lipid-associated conformation of the protein. Circular dichroism spectroscopy of EPL-generated apoE3 NT revealed a secondary structure content similar to wild-type apoE3 NT. Likewise, lipid and LDL receptor binding studies revealed that EPL-generated apoE3 NT is functional. Subsequently, EPL was used to construct an apoE3 NT enriched with 15N solely and specifically in residues 112–183. 1H-15N heteronuclear single quantum correlation spectroscopy experiments revealed that the ligation product is correctly folded in solution, adopting a conformation similar to wild-type apoE3-NT. The results indicate that segmental isotope labeling can be used to define the lipid bound conformation of the receptor binding element of apoE as well as molecular details of its interaction with the LDL receptor.  相似文献   

2.
Mipomersen, an antisense oligonucleotide that reduces hepatic production of apoB, has been shown in phase 2 studies to decrease plasma apoB, LDL cholesterol (LDL-C), and triglycerides. ApoC-III inhibits VLDL and LDL clearance, and it stimulates inflammatory responses in vascular cells. Concentrations of VLDL or LDL with apoC-III independently predict cardiovascular disease. We performed an exploratory posthoc analysis on a subset of hypercholesterolemic subjects obtained from a randomized controlled dose-ranging phase 2 study of mipomersen receiving 100, 200, or 300 mg/wk, or placebo for 13 wk (n = 8 each). ApoC-III-containing lipoproteins were isolated by immuno-affinity chromatography and ultracentrifugation. Mipomersen 200 and 300 mg/wk reduced total apoC-III from baseline by 6 mg/dl (38-42%) compared with placebo group (P < 0.01), and it reduced apoC-III in both apoB lipoproteins and HDL. Mipomersen 100, 200, and 300 mg doses reduced apoB concentration of LDL with apoC-III (27%, 38%, and 46%; P < 0.05). Mipomersen reduced apoC-III concentration in HDL. The drug had no effect on apoE concentration in total plasma and in apoB lipoproteins. In summary, antisense inhibition of apoB synthesis reduced plasma concentrations of apoC-III and apoC-III-containing lipoproteins. Lower concentrations of apoC-III and LDL with apoC-III are associated with reduced risk of coronary heart disease (CHD) in epidemiologic studies independent of traditional risk factors.  相似文献   

3.
Plasma phospholipid transfer protein (PLTP) is a multifaceted protein with diverse biological functions. It has been shown to exist in both active and inactive forms. To determine the nature of lipoproteins associated with active PLTP, plasma samples were adsorbed with anti-A-I, anti-A-II, or anti-E immunoadsorbent, and PLTP activity was measured in the resulting plasma devoid of apolipoprotein A-I (apoA-I), apoA-II, or apoE. Anti-A-I and anti-A-II immunoadsorbents removed 98 +/- 1% (n = 8) and 38 +/- 25% (n = 7) of plasma PLTP activity, respectively. In contrast, only 1 +/- 5% of plasma PLTP activity was removed by anti-E immunoadsorbent (n = 7). Dextran sulfate (DS) cellulose did not bind apoA-I, but it removed 83 +/- 5% (n = 4) of the PLTP activity in plasma. In size-exclusion chromatography, PLTP activity removed by anti-A-I or anti-A-II immunoadsorbent was associated primarily with particles of a size corresponding to HDL, whereas a substantial portion of the PLTP activity dissociated from DS cellulose was found in particles larger or smaller than HDL. These data show the following: 1) active plasma PLTP is associated primarily with apoA-I- but not apoE-containing lipoproteins; 2) active PLTP is present in HDL particles with and without apoA-II, and its distribution between these two HDL subpopulations varies widely among individuals; and 3) DS cellulose can remove active PLTP from apoA-I-containing lipoproteins, and this process creates new active PLTP-containing particles in vitro.  相似文献   

4.
Transgenic (Tg) mice that overexpress the human apolipoprotein A-V gene (APOA5) yet lack an endogenous mouse apoa5 gene (APOA5 Tg mice) were generated. Subsequently, the effect of human apoA-V expression on plasma triglyceride (TG) concentration and lipoprotein and apolipoprotein distribution was determined and compared with that in mice deficient in apoA-V (apoa5(-/-) mice). NMR analysis of plasma lipoproteins revealed that APOA5 Tg mice had a very low VLDL concentration (26.4 +/- 7.7 nmol/dl), whereas VLDL in apoa5(-/-) mice was 18- fold higher (467 +/- 152 nmol/dl). SDS-PAGE analysis of the d < 1.063 g/ml plasma fraction revealed that the apoB-100/apoB-48 ratio was 14-fold higher in APOA5 Tg versus apoa5(-/-) mice and that the apoE/total apoB ratio was 7-fold greater in APOA5 Tg versus apoa5(-/-) mice. It is anticipated that a reduction in apoB-100/apoB-48 ratio as well as that for apoE/apoB would impair the uptake of VLDL and remnants in apoa5(-/-) mice, thereby contributing to increased plasma TG levels. The concentration of apoA-V in APOA5 Tg mice was 12.5 +/- 2.9 microg/ml, which is approximately 50- to 100-fold higher than that reported for normolipidemic humans. ApoA-V was predominantly associated with HDL but was rapidly and efficiently redistributed to apoA- V-deficient VLDL upon incubation. Consistent with findings reported for human subjects, apoA-V concentration was positively correlated with TG levels in normolipidemic APOA5 Tg mice. It is conceivable that, in a situation in which apoA-V is chronically overexpressed, complex interactions among factors regulating TG homeostasis may result in a positive correlation of apoA-V with TG concentrations.  相似文献   

5.
Poduslo  S.E.  Neal  M.  Herring  K.  Shelly  J. 《Neurochemical research》1998,23(3):361-367
The E4 allele for the apolipoprotein E gene has been shown to be a significant risk factor for Alzheimer's disease. The gene is located in a conserved gene cluster on chromosome 19q12-13.2. Downstream from APOE is the gene for apolipoprotein CI. We had previously shown that the presence of a restriction site in the 5end of APOCI (the A allele) was present at increased frequency in Alzheimer's patients and could also be considered as a risk factor for the disease. We have extended these studies and find that both familial and sporadic cases of Alzheimer's disease have a higher frequency of the APOCI A allele than control spouses. In addition, male patients with the APOCI A allele and/or the APOE4 allele tend to have an earlier age of onset of the disease than female patients.  相似文献   

6.
The exchangeable apolipoproteins present in small, dense LDL (sdLDL) and large, buoyant LDL subclasses were evaluated with a quantitative proteomic approach in patients with the metabolic syndrome and with type 2 diabetes, both with subclinical atherosclerosis and the B LDL phenotype. The analyses included surface-enhanced laser adsorption/ionization, time-of-flight mass spectrometry, and subsequent identification by mass spectrometry or immunoblotting and were carried out in LDL subclasses isolated by ultracentrifugation in deuterium oxide gradients with near physiological salt concentrations. The sdLDLs of both types of patients were enriched in apolipoprotein C-III (apoC-III) and were depleted of apoC-I, apoA-I, and apoE compared with matched healthy controls with the A phenotype. The LDL complexes formed in serum from patients with diabetes with the arterial proteoglycan (PG) versican were also enriched in apoC-III. In addition, there was a significant correlation between the apoC-III content in sdLDL in patients and the apparent affinity of their LDLs for arterial versican. The unique distribution of exchangeable apolipoproteins in the sdLDLs of the patients studied, especially high apoC-III, coupled with the augmented affinity with arterial PGs, may contribute to the strong association of the dyslipidemia of insulin resistance with increased risk for cardiovascular disease.  相似文献   

7.
8.
Plasma cholesteryl ester transfer protein (CETP) has a profound effect on neutral lipid transfers between HDLs and apolipoprotein B (apoB)-containing lipoproteins when it is expressed in combination with human apoA-I in HuAI/CETP transgenic (Tg) rodents. In the present study, human apoA-I-mediated lipoprotein changes in HuAI/CETPTg rats are characterized by 3- to 5-fold increments in the apoB-containing lipoprotein-to-HDL cholesterol ratio, and in the cholesteryl ester-to-triglyceride ratio in apoB-containing lipoproteins. These changes occur despite no change in plasma CETP concentration in HuAI/CETPTg rats, as compared with CETPTg rats. A number of HDL apolipoproteins, including rat apoA-I and rat apoC-I are removed from the HDL surface as a result of human apoA-I overexpression. Rat apoC-I, which is known to constitute a potent inhibitor of CETP, accounts for approximately two-thirds of CETP inhibitory activity in HDL from wild-type rats, and the remainder is carried by other HDL-bound apolipoprotein inhibitors. It is concluded that human apoA-I overexpression modifies HDL particles in a way that suppresses their ability to inhibit CETP. An apoC-I decrease in HDL of HuAI/CETPTg rats contributes chiefly to the loss of the CETP-inhibitory potential that is normally associated with wild-type HDL.  相似文献   

9.
Endothelial lipase (EL) plays an important physiological role in modulating HDL metabolism. Data suggest that plasma contains an inhibitor of EL, and previous studies have suggested that apolipoprotein A-II (apoA-II) inhibits the activity of several enzymes involved in HDL metabolism. Therefore, we hypothesized that apoA-II may reduce the ability of EL to influence HDL metabolism. To test this hypothesis, we determined the effect of EL expression on plasma phospholipase activity and HDL metabolism in human apoA-I and human apoA-I/A-II transgenic mice. Expression of EL in vivo resulted in lower plasma phospholipase activity and significantly less reduction of HDL-cholesterol, phospholipid, and apoA-I levels in apoA-I/A-II double transgenic mice compared with apoA-I single transgenic mice. We conclude that the presence of apoA-II on HDL particles inhibits the ability of EL to influence the metabolism of HDL in vivo.  相似文献   

10.
11.
To determine if the dose of peptide administered or the plasma level was more important, doses of 0.15, 0.45, 4.5, or 45 mg/kg/day of the peptide D-4F were administered orally or subcutaneously (SQ) to apoliptotein (apo)E null mice. Plasma levels of peptide were ~1,000-fold higher when administered SQ compared with orally. Regardless of the route of administration, doses of 4.5 and 45 mg/kg significantly reduced plasma serum amyloid A (SAA) levels and the HDL inflammatory index (P < 0.0001); doses of 0.15 or 0.45 mg/kg did not. A dose of 45 mg/kg/day administered to apoE null mice on a Western diet reduced aortic atherosclerosis by ~50% (P < 0.0009) whether administered orally or SQ and also significantly reduced plasma levels of SAA (P < 0.002) and lysophosphatidic acid (P < 0.0009). Remarkably, for each dose administered, the concentration and amount of peptide in the feces was similar regardless of whether the peptide was administered orally or SQ. We conclude: i) the dose of 4F administered and not the plasma level achieved determines efficacy; ii) the intestine may be a major site of action for the peptide regardless of the route of administration.  相似文献   

12.
Microalbuminuria (MA) is an independent risk factor for atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Postprandial lipemia is also associated with excess cardiovascular risk. However, the association between MA and postprandial lipemia in diabetes has not been investigated. A total of 64 patients with T2DM, 30 with and 34 without MA, were examined. Plasma total triglycerides (TGs), triglycerides contained in chylomicrons (CM-TG), and TGs in CM-deficient plasma were measured at baseline and every 2 h for 6 h after a mixed meal. Postheparin LPL and HL activities were also determined. Plasma levels of apolipoprotein A-V (apoA-V), apoC-II, and apoC-III were measured in the fasting state and 2 h postprandially. Patients with MA had higher postprandial total TG levels than those without MA (P < 0.001); this increase been attributed mainly to CM-TG. LPL activity and fasting concentrations of the measured apolipoproteins were not different between the studied groups, whereas HL activity was higher in the patients with MA. ApoC-II and apoC-III levels did not change postprandially in either study group, whereas apoA-V increased more in the patients with MA. These data demonstrate for the first time that MA is characterized by increased postprandial lipemia in patients with T2DM and may explain in part the excess cardiovascular risk in these patients.  相似文献   

13.
The levels of plasma apolipoprotein (apo) E, an anti-atherogenic protein involved in mammalian cholesterol transport, were found to be 2-3 fold lower in mice over-expressing human apoA-I gene. ApoE is mainly associated with VLDL and HDL-size particles, but in mice the majority of the apoE is associated with the HDL particles. Over-expression of the human apoA-I in mice increases the levels of human apoA-I-rich HDL particles by displacing mouse apoA-I from HDL. This results in lowering of plasma levels of mouse apoA-I. Since plasma levels of apoE also decreased in the apoA-I transgenic mice, the mechanism of apoE lowering was investigated. Although plasma levels of apoE decreased by 2-3 fold, apoB levels remained unchanged. As expected, the plasma levels of human apoA-I were almost 5-fold higher in the apoAI-Tg mice compared to mouse apoA-I in WT mice. If the over-expression of human apoA-I caused displacement of apoE from the HDL, the levels of hepatic apoE mRNA should remain the same in WT and the apoAI-Tg mice. However, the measurements of apoE mRNA in the liver showed 3-fold decreases of apoE mRNA in apoAI-Tg mice as compared to WT mice, suggesting that the decreased apoE mRNA expression, but not the displacement of the apoE from HDL, resulted in the lowering of plasma apoE in apoAI-Tg mice. As expected, the levels of hepatic apoA-I mRNA (transgene) were 5-fold higher in the apoAI-Tg mice. ApoE synthesis measured in hepatocytes also showed lower synthesis of apoE in the apoAI-Tg mice. These studies suggest that the integration of human apoA-I transgene in mouse genome occurred at a site that affected apoE gene expression. Identification of this locus may provide further understanding of the apoE gene expression.  相似文献   

14.
The plasma levels of apo B and apo E, and the level of hepatic and intestinal mRNA coding for these apolipoproteins were investigated in weanling male rats pair-fed for 6 wk with a control or copperdeficient diet. Plasma cholesterol, triglycerides, and phospholipids were significantly increased, and plasma apo B and apo E levels were also markedly increased in copper-deficient rats as compared to control rats. Copper deficiency significantly increased triglyceride levels and decreased cholesterol levels in the liver. No major differences in the levels of hepatic and intestinal apo B and apo E mRNA occurred between control and copper-deficient rats. These data imply that hypertriglyceridemia dn hypercholesterolemia owing to the copper deficiency are not accompanied by modifications in the gene expression at the mRNA level in the liver and intestine of the apolipoproteins studied.  相似文献   

15.
Apolipoprotein A-I and A-IV are protein constituents of high-density lipoproteins although their functional difference in lipoprotein metabolism is still unclear. To compare anti-atherogenic properties between apoA-I and apoA-4, we characterized both proteins in lipid-free and lipid-bound state. In lipid-free state, apoA4 showed two distinct bands, around 78 and 67 Å on native gel electrophoresis, while apoA-I showed scattered band pattern less than 71 Å. In reconstituted HDL (rHDL) state, apoA-4 showed three major bands around 101 Å and 113 Å, while apoA-I-rHDL showed almost single band around 98 Å size. Lipid-free apoA-I showed 2.9-fold higher phospholipid binding ability than apoA-4. In lipid-free state, BS3-crosslinking revealed that apoA-4 showed less multimerization tendency upto dimer, while apoA-I showed pentamerization. In rHDL state (95:1), apoA-4 was existed as dimer as like as apoA-I. With higher phospholipid content (255:1), five apoA-I and three apoA-4 were required to the bigger rHDL formation. Regardless of particle size, apoA-I-rHDL showed superior LCAT activation ability than apoA-4-rHDL. Uptake of acetylated LDL was inhibited by apoA-I in both lipid-free and lipid-bound state, while apoA-4 inhibited it only lipid-free state. ApoA-4 showed less anti-atherogenic activity with more sensitivity to glycation. In conclusion, apoA-4 showed inferior physiological functions in lipid-bound state, compared with those of apoA-I, to induce more pro-atherosclerotic properties.  相似文献   

16.
Individuals with a heterozygous mutation at the ataxia-telangiectasia mutated gene (ATM) have been reported to be predisposed to ischemic heart disease. This report examined for the first time the effect of a heterozygous ATM mutation (ATM(+)(/-)) on plasma lipid levels and atherosclerosis intensity using ATM(+/-), ATM(+)(/+) (wild type), ATM(+)(/+)/LDLR(-)(/-) (low density lipoprotein receptor knockout), ATM(+)(/-)/LDLR(-)(/-), ATM(+)(/+)/ApoE(-)(/-) (apolipoprotein E knockout), and ATM(+)(/-)/ApoE(-)(/-) mice. Our data demonstrated that the plasma cholesterol and triglyceride levels in ATM(+)(/-) and ATM(+)(/-)/LDLR(-)(/-) mice were approximately the same as those in ATM(+)(/+) and ATM(+)(/+)/LDLR(-)(/-) control mice, respectively. In contrast, the plasma cholesterol level was significantly higher in ATM(+)(/-)/ApoE(-)(/-) mice than in ATM(+)(/+)/ApoE(-)(/-) control mice. In addition, the ATM(+)(/-)/ApoE(-)(/-) mice showed higher plasma apoB-48 levels, slower clearance for plasma apoB-48-carrying lipoproteins, and more advanced atherosclerotic lesions in the aorta compared with the ATM(+)(/+)/ApoE(-)(/-) mice. These novel results suggest that the product of ATM is involved in an apoE-independent pathway for catabolism of apoB-48-carrying remnants; therefore, superimposition of a heterozygous ATM mutation onto an ApoE deficiency background reduces the clearance of apoB-48-carrying lipoproteins from the blood circulation and promotes the formation of atherosclerosis.  相似文献   

17.
18.
Caloric restriction (CR) has been shown to attenuate age-related oxidative damage and to improve major atherosclerotic risk factors. Paraoxonase 1 (PON1), an enzyme specifically associated with HDL containing apolipoproteins A-I and J, has been reported to prevent the proatherosclerotic effects of oxidized LDL. The aim of this study was to evaluate whether modulation of PON1 activity is part of the underlying CR mechanisms that attenuate the age-associated negative effects. Experimental groups were 1 year old rats of both genders subjected to 40% CR for 1 year and two ad libitum-fed groups, also including rats of both genders, euthanized at 6 months or 2 years. Aging impaired the serum lipid profile and increased lipid peroxidation, PON1 activities, and the content of both PON1 and apolipoprotein J in HDL, which suggests an HDL subfraction redistribution to protect LDL more effectively from oxidation. The CR-associated improved lipid profile and the decreased lipid peroxide levels would lead to the decreased arylesterase activity seen in old CR animals, suggesting that PON1 modulation is not an integral part of the main antioxidant mechanisms of CR but rather that CR would determine a more youthful and less oxidative situation in which the protection of LDL would be less necessary.  相似文献   

19.
The relevance of apolipoprotein A-V (apoA-V) for human lipid homeostasis is underscored by genetic association studies and the identification of truncation-causing mutations in the APOA5 gene as a cause of type V hyperlipidemia, compatible with an LPL-activating role of apoA-V. An inverse correlation between plasma apoA-V and triglyceride (TG) levels has been surmised from animal data. Recent studies in human subjects using (semi)quantitative immunoassays, however, do not provide unambiguous support for such a relationship. Here, we used a novel, validated ELISA to measure plasma apoA-V levels in patients (n = 28) with hypertriglyceridemia (HTG; 1.8-78.7 mmol TG/l) and normolipidemic controls (n = 42). Unexpectedly, plasma apoA-V levels were markedly increased in the HTG subjects compared with controls (1,987 vs. 258 ng/ml; P < 0.001). In the HTG group, apoA-V and TG were positively correlated (r = +0.44, P = 0.02). In addition, we noted an increased level of the LPL-inhibitory protein apoC-III in the HTG group (45.8 vs. 10.6 mg/dl in controls; P < 0.001). The correlation between apoA-V and TG levels in the HTG group disappeared (partial r = +0.09, P = 0.65) when controlling for apoC-III levels. In contrast, apoC-III and TG remained positively correlated in this group when controlling for apoA-V (partial r = +0.43, P = 0.025). Our findings suggest that in HTG patients, increased TG levels are accompanied by high plasma levels of apoA-V and apoC-III, apolipoproteins with opposite modes of action. This study provides evidence for a complex interaction between apoA-V and apoC-III in patients with severe HTG.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号