首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

Measurements of interaction of 7-methyl-GTP eIF4E from S. cerevisiae were performed by means of two methods: Isothermal Titration Calorimetry (ITC) and fluorescence titration. The equilibrium association constants (Kas) derived from the two methods show significantly different affinity of yeast eIF4E for the mRNA 5′ cap than those of the murine and human proteins. The observed differences in the Kas values and the enthalpy changes of the association (ΔH°) suggest some dissimilarity in the mode of binding and stabilization of cap in the complexes with eIF4E from various sources.  相似文献   

3.
Translation initiation is down-regulated in eukaryotes by phosphorylation of the α-subunit of eIF2 (eukaryotic initiation factor 2), which inhibits its guanine nucleotide exchange factor, eIF2B. The N-terminal S1 domain of phosphorylated eIF2α interacts with a subcomplex of eIF2B formed by the three regulatory subunits α/GCN3, β/GCD7, and δ/GCD2, blocking the GDP-GTP exchange activity of the catalytic ?-subunit of eIF2B. These regulatory subunits have related sequences and have sequences in common with many archaeal proteins, some of which are involved in methionine salvage and CO2 fixation. Our sequence analyses however predicted that members of one phylogenetically distinct and coherent group of these archaeal proteins [designated aIF2Bs (archaeal initiation factor 2Bs)] are functional homologs of the α, β, and δ subunits of eIF2B. Three of these proteins, from different archaea, have been shown to bind in vitro to the α-subunit of the archaeal aIF2 from the cognate archaeon. In one case, the aIF2B protein was shown further to bind to the S1 domain of the α-subunit of yeast eIF2 in vitro and to interact with eIF2Bα/GCN3 in vivo in yeast. The aIF2B-eIF2α interaction was however independent of eIF2α phosphorylation. Mass spectrometry has identified several proteins that co-purify with aIF2B from Thermococcus kodakaraensis, and these include aIF2α, a sugar-phosphate nucleotidyltransferase with sequence similarity to eIF2B?, and several large-subunit (50S) ribosomal proteins. Based on this evidence that aIF2B has functions in common with eIF2B, the crystal structure established for an aIF2B was used to construct a model of the eIF2B regulatory subcomplex. In this model, the evolutionarily conserved regions and sites of regulatory mutations in the three eIF2B subunits in yeast are juxtaposed in one continuous binding surface for phosphorylated eIF2α.  相似文献   

4.
The impact of respiratory syncytial virus (RSV) on morbidity and mortality is significant in that it causes bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and pneumonia in immunocompromised hosts. RSV activates protein kinase R (PKR), a cellular kinase relevant to limiting viral replication (Groskreutz, D. J., Monick, M. M., Powers, L. S., Yarovinsky, T. O., Look, D. C., and Hunninghake, G. W. (2006) J. Immunol. 176, 1733–1740). It is activated by autophosphorylation, likely triggered by a double-stranded RNA intermediate during replication of the virus. In most instances, ph-PKR targets the α subunit of eukaryotic translation initiation factor 2 (eIF2α) protein via phosphorylation, leading to an inhibition of translation of cellular and viral protein. However, we found that although ph-PKR increases in RSV infection, significant eIF2α phosphorylation is not observed, and inhibition of protein translation does not occur. RSV infection attenuates eIF2α phosphorylation by favoring phosphatase rather than kinase activity. Although PKR is activated, RSV sequesters PKR away from eIF2α by binding of the kinase to the RSV N protein. This occurs in conjunction with an increase in the association of the phosphatase, PP2A, with eIF2α following PKR activation. The result is limited phosphorylation of eIF2α and continued translation of cellular and viral proteins.  相似文献   

5.
The α-subunit of eukaryotic initiation factor eIF2 (eIF2α) plays an important role in the regulation of mRNA translation through modulation of the interaction of eIF2 and a second initiation factor, eIF2B. The interaction of the two proteins is regulatedin vivoby phosphorylation of eIF2α at Ser51. In the present study, rat eIF2α was expressed in Sf21 cells using the baculovirus expression system. The recombinant protein was purified to >90% homogeneity in a single immunoaffinity chromatographic step. The protein was free of endogenous eIF2α kinase activity and was rapidly phosphorylated by the eIF2α kinases HCR and PKR. A variant of eIF2α in which the phosphorylation site was changed to Ala was also expressed and purified. The variant eIF2α was not phosphorylated by either HCR or PKR, demonstrating that the kinases specifically phosphorylate the correct site in the recombinant protein even in the absence of the other two subunits of the protein. In summary, a rapid and inexpensive method for obtaining eIF2α has been developed. Use of the wildtype and variant forms of eIF2α to measure eIF2α kinase activity in cell and tissue extracts should greatly facilitate examination of the regulation of mRNA translation under a variety of conditions.  相似文献   

6.
During translation initiation in Saccharomyces cerevisiae, an Arg- and Ser-rich segment (RS1 domain) of eukaryotic translation initiation factor 4G (eIF4G) and the Lys-rich segment (K-boxes) of eIF2β bind three common partners, eIF5, eIF1, and mRNA. Here, we report that both of these segments are involved in mRNA recruitment and AUG recognition by distinct mechanisms. First, the eIF4G-RS1 interaction with the eIF5 C-terminal domain (eIF5-CTD) directly links eIF4G to the preinitiation complex (PIC) and enhances mRNA binding. Second, eIF2β-K-boxes increase mRNA binding to the 40S subunit in vitro in a manner reversed by the eIF5-CTD. Third, mutations altering eIF4G-RS1, eIF2β-K-boxes, and eIF5-CTD restore the accuracy of start codon selection impaired by an eIF2β mutation in vivo, suggesting that the mutual interactions of the eIF segments within the PIC prime the ribosome for initiation in response to start codon selection. We propose that the rearrangement of interactions involving the eIF5-CTD promotes mRNA recruitment through mRNA binding by eIF4G and eIF2β and assists the start codon-induced release of eIF1, the major antagonist of establishing tRNA(i)(Met):mRNA binding to the P site.  相似文献   

7.
UV light induces phosphorylation of the α subunit of the eukaryotic initiation factor 2 (eIF2α) and inhibits global protein synthesis. Both eIF2 kinases, protein kinase-like endoplasmic reticulum kinase (PERK) and general control of nonderepressible protein kinase 2 (GCN2), have been shown to phosphorylate eIF2α in response to UV irradiation. However, the roles of PERK and GCN2 in UV-induced eIF2α phosphorylation are controversial. The one or more upstream signaling pathways that lead to the activation of PERK or GCN2 remain unknown. In this report we provide data showing that both PERK and GCN2 contribute to UV-induced eIF2α phosphorylation in human keratinocyte (HaCaT) and mouse embryonic fibroblast cells. Reduction of expression of PERK or GCN2 by small interfering RNA decreases phosphorylation of eIF2α after UV irradiation. These data also show that nitric-oxide synthase (NOS)-mediated oxidative stress plays a role in regulation of eIF2α phosphorylation upon UV irradiation. Treating the cells with the broad NOS inhibitor NG-methyl-l-arginine, the free radical scavenger N-acetyl-l-cysteine, or the NOS substrate l-arginine partially inhibits UV-induced eIF2α phosphorylation. The results presented above led us to propose that NOS mediates UV-induced eIF2α phosphorylation by activation of both PERK and GCN2 via oxidative stress and l-arginine starvation signaling pathways.UV irradiation inhibits translation initiation through activation of kinases that phosphorylate the α-subunit of eukaryotic initiation factor 2 (eIF2α).2 Two eIF2α kinases, double strand RNA-dependent protein kinase-like ER kinase (PERK) and general control of amino acid biosynthesis kinase (GCN2), are known to phosphorylate the serine 51 of eIF2α in response to UV irradiation (14). However, the one or more upstream pathways that activate eIF2α kinase(s) upon UV irradiation are not known. In this report, we provide evidence that UV-induced nitric-oxide synthase (NOS) activation and nitric oxide (NO) production regulate both PERK and GCN2 activation upon UVB irradiation.Expression of inducible nitric-oxide synthase in a mouse macrophage cell line leads to the phosphorylation of eIF2α and inhibition of translation (5). In cultured neuronal and pancreatic cell lines, production of NO and peroxynitrite (ONOO) induces endoplasmic reticulum (ER) stress, which activates PERK and results in cell dysfunction and apoptosis (69). Cytokine-stimulated inducible nitric-oxide synthase activation in astrocytes depletes l-arginine and activates GCN2, which phosphorylates eIF2α (10). UV irradiation also activates NOS and elevates cellular NO (1113). However, the UV-induced NOS activation and NO production have never been shown to be related to the activation of eIF2α kinase(s). Now we demonstrate that UV-induced activation of NOS mediates the activation of both PERK and GCN2, which coordinately regulate the phosphorylation of eIF2α.  相似文献   

8.
9.
In recent years, biotechnology has permitted regulation of the expression of endogenous plant genes to improve agronomlcally important traits. Genetic modification of crops has benefited from emerging knowledge of new genes, especially genes that exhibit novel functions, one of which is eukaryotlc initiation factor 4E (eIF4E). eIF4E Is one of the most important translation initiation factors Involved in eukaryotic initiation. Recent research has demonstrated that virus resistance mediated by eIF4E and Its isoform elf (Iso)4E occurs in several plant-virus interactions, thus indicating a potential new role for eIF4E/elF(Iso)4E In resistance strategies against plant viruses. In this review, we briefly describe eIF4E activity In plant translation, its potential role, and functions of the eIF4E subfamily In plant-virus interactions. Other initiation factors such as elF4G could also play a role In plant resistance against viruses. Finally, the potential for developing eIF4E-mediated resistance to plant viruses in the future Is discussed. Future research should focus on elucidation of the resistance mechanism and spectrum mediated by eIF4E. Knowledge of a particu- lar plant-virus interaction will help to deepen our understanding of eIF4E and other eukaryotic Initiation factors, and their involvement in virus disease control.  相似文献   

10.
11.
The objective of this study was to investigate the possible association between the expression of transforming growth factor beta-1 (TGF-β1) and breast cancer type2 susceptibility protein (BRCA2) with clinical factors in breast cancer. TGF-β1, BRCA2, human epidermal growth factor receptor2 (HER2), estrogen receptor, and progesterone receptor protein levels were measured in 67 samples from breast cancer patients by immunohistochemistry. The expression of these proteins was correlated with various clinical factors including age, pathohistological grade and status of axillary lymph node implication. TGF-β1 and BRCA2 were expressed in breast cancer tissues and expression of HER2 and TGF-β1 was significantly correlated with BRCA2. The authors conclude that elevated expression of BRCA2 correlates with TGF-β1 and HER2 in breast cancer and these three factors act in synergy to promote cancer. Thus, detection of both TGF-β1 and BRCA2 may therefore assist in the prognosis and treatment of breast cancer.  相似文献   

12.
13.
The serine/arginine-rich (SR) proteins are one type of major actors in regulation of pre-mRNA splicing. Their functions are closely related to the intracellular spatial organization. The RS domain and phosphorylation status of SR proteins are two critical factors in determining the subcellular distribution. Mammalian Transformer-2β (Tra2β) protein, a member of SR proteins, is known to play multiple important roles in development and diseases. In the present study, we characterized the subcellular and subnuclear localization of Tra2β protein and its related mechanisms. The results demonstrated that in the brain the nuclear and cytoplasmic localization of Tra2β were correlated with its phosphorylation status. Using deletional mutation analysis, we showed that the nuclear localization of Tra2β was determined by multiple nuclear localization signals (NLSs) in the RS domains. The point-mutation analysis disclosed that phosphorylation of serine residues in the NLSs inhibited the function of NLS in directing Tra2β to the nucleus. In addition, we identified at least two nuclear speckle localization signals within the RS1 domain, but not in the RS2 domain. The nuclear speckle localization signals determined the localization of RS1 domain-contained proteins to the nuclear speckle. The function of the signals did not depend on the presence of serine residues. The results provide new insight into the mechanisms by which the subcellular and subnuclear localization of Tra2β proteins are regulated.  相似文献   

14.
15.
Eukaryotic initiation factor (eIF) 4F binding to mRNA is the first committed step in cap-dependent protein synthesis. Barley yellow dwarf virus (BYDV) employs a cap-independent mechanism of translation initiation that is mediated by a structural BYDV translation element (BTE) located in the 3′-UTR of its mRNA. eIF4F bound the BTE and a translationally inactive mutant with high affinity, thus questioning the role of eIF4F in translation of BYDV. To examine the effects of eIF4F in BYDV translation initiation, BTE mutants with widely different in vitro translation efficiencies ranging from 5 to 164% compared with WT were studied. Using fluorescence anisotropy to obtain quantitative data, we show 1) the equilibrium binding affinity (complex stability) correlated well with translation efficiency, whereas the “on” rate of binding did not; 2) other unidentified proteins or small molecules in wheat germ extract prevented eIF4F binding to mutant BTE but not WT BTE; 3) BTE mutant-eIF4F interactions were found to be both enthalpically and entropically favorable with an enthalpic contribution of 52–90% to ΔG° at 25 °C, suggesting that hydrogen bonding contributes to stability; and 4) in contrast to cap-dependent and tobacco etch virus internal ribosome entry site interaction with eIF4F, poly(A)-binding protein did not increase eIF4F binding. Further, the eIF4F bound to the 3′ BTE with higher affinity than for either m7G cap or tobacco etch virus internal ribosome entry site, suggesting that the 3′ BTE may play a role in sequestering host cell initiation factors and possibly regulating the switch from replication to translation.  相似文献   

16.
The functions of type II diacylglycerol kinase (DGK) δ and -η in the brain are still unclear. As a first step, we investigated the spatial and temporal expression of DGKδ and -η in the brains of mice. DGKδ2, but not DGKδ1, was highly expressed in layers II–VI of the cerebral cortex; CA–CA3 regions and dentate gyrus of hippocampus; mitral cell, glomerular and granule cell layers of the olfactory bulb; and the granule cell layer in the cerebellum in 1- to 32-week-old mice. DGKδ2 was expressed just after birth, and its expression levels dramatically increased from weeks 1 to 4. A substantial amount of DGKη (η1/η2) was detected in layers II–VI of the cerebral cortex, CA1 and CA2 regions and dentate gyrus of the hippocampus, mitral cell and glomerular layers of the olfactory bulb, and Purkinje cells in the cerebellum of 1- to 32-week-old mice. DGKη2 expression reached maximum levels at P5 and decreased by 4 weeks, whereas DGKη1 increased over the same time frame. These results indicate that the expression patterns of DGK isozymes differ from each other and also from other isozymes, and this suggests that DGKδ and -η play distinct and specific roles in the brain.  相似文献   

17.
Molecular genetic analyses in yeast are a powerful method to study gene regulation. Conservation of the mechanism and regulation of protein synthesis between yeast and mammalian cells makes yeast a good model system for the analysis of translation. One of the most common mechanisms of translational regulation in mammalian cells is the phosphorylation of serine-51 on the α subunit of the translation initiation factor eIF2, which causes an inhibition of general translation. In contrast, in the yeastSaccharomyces cerevisiaephosphorylation of eIF2α on serine-51 by theGCN2protein kinase mediates the translational induction ofGCN4expression. The unique structure of theGCN4mRNA makesGCN4expression especially sensitive to eIF2α phosphorylation, and the simple microbiological tests developed in yeast to analyzeGCN4expression serve as good reporters of eIF2α phosphorylation. It is relatively simple to express heterologous proteins in yeast, and it has been shown that the mammalian eIF2α kinases will functionally substitute forGCN2.Structure–function analyses of translation factors or translational regulators can also be performed by assaying for effects on general andGCN4-specific translation. Three tests can be used to study eIF2α phosphorylation and/or translational activity in yeast. First, general translation can be monitored by simple growth tests, whileGCN4expression can be analyzed using sensitive replica-plating tests. Second,GCN4translation can be quantitated by measuring expression fromGCN4–lacZreporter constructs. Finally, isoelectric focusing gels can be used to directly monitorin vivophosphorylation of eIF2α in yeast.  相似文献   

18.
Folate receptor alpha (FOLR1) has been identified as a potential prognostic and therapeutic target in a number of cancers. A correlation has been shown between intense overexpression of FOLR1 in breast tumors and poor prognosis, yet there is limited examination of the distribution of FOLR1 across clinically relevant breast cancer subtypes. To explore this further, we used RNA-seq data from multiple patient cohorts to analyze the distribution of FOLR1 mRNA across breast cancer subtypes comprised of estrogen receptor positive (ER+), human epidermal growth factor receptor positive (HER2+), and triple negative (TNBC) tumors. FOLR1 expression varied within breast tumor subtypes; triple negative/basal tumors were significantly associated with increased expression of FOLR1 mRNA, compared to ER+ and HER2+ tumors. However, subsets of high level FOLR1 expressing tumors were observed in all clinical subtypes. These observations were supported by immunohistochemical analysis of tissue microarrays, with the largest number of 3+ positive tumors and highest H-scores of any subtype represented by triple negatives, and lowest by ER+ tumors. FOLR1 expression did not correlate to common clinicopathological parameters such as tumor stage and nodal status. To delineate the importance of FOLR1 overexpression in triple negative cancers, RNA-interference was used to deplete FOLR1 in overexpressing triple negative cell breast lines. Loss of FOLR1 resulted in growth inhibition, whereas FOLR1 overexpression promoted folate uptake and growth advantage in low folate conditions. Taken together, our data suggests patients with triple negative cancers expressing high FOLR1 expression represent an important population of patients that may benefit from targeted anti-FOLR1 therapy. This may prove particularly helpful for a large number of patients who would typically be classified as triple negative and who to this point have been left without any targeted treatment options.  相似文献   

19.
[2–14C]-(2Z,4E)-γ-Ionylideneethanol and [2–14C]-(2Z,4E)-γ-ionylideneacetic acid were converted by Cercospora cruenta to [2–14C]-(2Z,4E)-1′,4′-dihydroxy-γ-ionylideneacetic acid and [2-14C]-(2Z,4E)-4′-hydroxy-γ-ionylideneacetic acid, which are intermediates of ABA biosynthesis in C. cruenta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号