首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc is hypothesized to be co-released with glutamate at synapses of the central nervous system. Zinc binds to NR1/NR2A N-methyl-d-aspartate (NMDA) receptors with high affinity and inhibits NMDAR function in a voltage-independent manner. The serine protease plasmin can cleave a number of substrates, including protease-activated receptors, and may play an important role in several disorders of the central nervous system, including ischemia and spinal cord injury. Here, we demonstrate that plasmin can cleave the native NR2A amino-terminal domain (NR2AATD), removing the functional high affinity Zn2+ binding site. Plasmin also cleaves recombinant NR2AATD at lysine 317 (Lys317), thereby producing a ∼40-kDa fragment, consistent with plasmin-induced NR2A cleavage fragments observed in rat brain membrane preparations. A homology model of the NR2AATD predicts that Lys317 is near the surface of the protein and is accessible to plasmin. Recombinant expression of NR2A with an amino-terminal deletion at Lys317 is functional and Zn2+ insensitive. Whole cell voltage-clamp recordings show that Zn2+ inhibition of agonist-evoked NMDA receptor currents of NR1/NR2A-transfected HEK 293 cells and cultured cortical neurons is significantly reduced by plasmin treatment. Mutating the plasmin cleavage site Lys317 on NR2A to alanine blocks the effect of plasmin on Zn2+ inhibition. The relief of Zn2+ inhibition by plasmin occurs in PAR1-/- cortical neurons and thus is independent of interaction with protease-activated receptors. These results suggest that plasmin can directly interact with NMDA receptors, and plasmin may increase NMDA receptor responses through disruption or removal of the amino-terminal domain and relief of Zn2+ inhibition.N-Methyl-d-aspartate (NMDA)2 receptors are one of three types of ionotropic glutamate receptors that play critical roles in excitatory neurotransmission, synaptic plasticity, and neuronal death (13). NMDA receptors are comprised of glycine-binding NR1 subunits in combination with at least one type of glutamate-binding NR2 subunit (1, 4). Each subunit contains three transmembrane domains, one cytoplasmic re-entrant membrane loop, one bi-lobed domain that forms the ligand binding site, and one bi-lobed amino-terminal domain (ATD), thought to share structural homology to periplasmic amino acid-binding proteins (46). Activation of NMDA receptors requires combined stimulation by glutamate and the co-agonist glycine in addition to membrane depolarization to overcome voltage-dependent Mg2+ block of the ion channel (7). The activity of NMDA receptors is negatively modulated by a variety of extracellular ions, including Mg2+, polyamines, protons, and Zn2+ ions, which can exert tonic inhibition under physiological conditions (1, 4). Several extracellular modulators such as Zn2+ and ifenprodil are thought to act at the ATD of the NMDA receptor (814).Zinc is a transition metal that plays key roles in both catalytic and structural capacities in all mammalian cells (15). Zinc is required for normal growth and survival of cells. In addition, neuronal death in hypoxia-ischemia and epilepsy has been associated with Zn2+ (1618). Abnormal metabolism of zinc may contribute to induction of cytotoxicity in neurodegenerative diseases, such as Alzheimer''s disease, Parkinson''s disease, and amyotrophic lateral sclerosis (19). Zinc is co-released with glutamate at excitatory presynaptic terminals and inhibits native NMDA receptor activation (20, 21). Zn2+ inhibits NMDA receptor function through a dual mechanism, which includes voltage-dependent block and voltage-independent inhibition (2224). Voltage-independent Zn2+ inhibition at low nanomolar concentrations (IC50, 20 nm) is observed for NR2A-containing NMDA receptors (2528). Evidence has accumulated that the amino-terminal domain of the NR2A subunit controls high-affinity Zn2+ inhibition of NMDA receptors, and several histidine residues in this region may constitute part of an NR2A-specific Zn2+ binding site (8, 9, 11, 12). For the NR2A subunit, several lines of evidence suggest that Zn2+ acts by enhancing proton inhibition (8, 11, 29, 30).Serine proteases present in the circulation, mast cells, and elsewhere signal directly to cells by cleaving protease-activated receptors (PARs), members of a subfamily of G-protein-coupled receptors. Cleavage exposes a tethered ligand domain that binds to and activates the cleaved receptors (31, 32). Protease receptor activation has been studied extensively in relation to coagulation and thrombolysis (33). In addition to their circulation in the bloodstream, some serine proteases and PARs are expressed in the central nervous system, and have been suggested to play roles in physiological conditions (e.g. long-term potentiation or memory) and pathophysiological states such as glial scarring, edema, seizure, and neuronal death (31, 3436).Functional interactions between proteases and NMDA receptors have previously been suggested. Earlier studies reported that the blood-derived serine protease thrombin potentiates NMDA receptor response more than 2-fold through activation of PAR1 (37). Plasmin, another serine protease, similarly potentiates NMDA receptor response (38). Tissue-plasminogen activator (tPA), which catalyzes the conversion of the zymogen precursor plasminogen to plasmin and results in PAR1 activation, also interacts with and cleaves the ATD of the NR1 subunit of the NMDA receptor (39, 40). This raises the possibility that plasmin may also interact directly with the NMDA receptor subunits to modulate receptor response. We therefore investigated the ability of plasmin to cleave the NR2A NMDA receptor subunit. We found that nanomolar concentrations of plasmin can cleave within the ATD, a region that mediates tonic voltage-independent Zn2+ inhibition of NR2A-containing NMDA receptors. We hypothesized that plasmin cleavage reduces the Zn2+-mediated inhibition of NMDA receptors by removing the Zn2+ binding domain. In the present study, we have demonstrated that Zn2+ inhibition of agonist-evoked NMDA currents is decreased significantly by plasmin treatment in recombinant NR1/NR2A-transfected HEK 293 cells and cultured cortical neurons. These concentrations of plasmin may be pathophysiologically relevant in situations in which the blood-brain barrier is compromised, which could allow blood-derived plasmin to enter brain parenchyma at concentrations in excess of these that can cleave NR2A. Thus, ability of plasmin to potentiate NMDA function through the relief of the Zn2+ inhibition could exacerbate the harmful actions of NMDA receptor overactivation in pathological situations. In addition, if newly cleaved NR2AATD enters the bloodstream during ischemic injury, it could serve as a biomarker of central nervous system injury.  相似文献   

2.
Anaphase-promoting complex or cyclosome (APC/C) is an unusual E3 ubiquitin ligase and an essential protein that controls mitotic progression. APC/C includes at least 13 subunits, but no structure has been determined for any tetratricopeptide repeat (TPR)-containing subunit (Apc3 and -6-8) in the TPR subcomplex of APC/C. Apc7 is a TPR-containing subunit that exists only in vertebrate APC/C. Here we report the crystal structure of quad mutant of nApc7 (N-terminal fragment, residues 1-147) of human Apc7 at a resolution of 2.5 Å. The structure of nApc7 adopts a TPR-like motif and has a unique dimerization interface, although the protein does not contain the conserved TPR sequence. Based on the structure of nApc7, in addition to previous experimental findings, we proposed a putative homodimeric structure for full-length Apc7. This model suggests that TPR-containing subunits self-associate and bind to adaptors and substrates via an IR peptide in TPR-containing subunits of APC/C.Anaphase-promoting complex/cyclosome (APC/C)2 is an E3 ubiquitin ligase that controls mitotic progression (1). APC/C is an ∼1.7-MDa protein complex that is composed of at least 13 subunits, and it contains a cullin homolog (Apc2), a ring-H2 finger domain (Apc11), and a tetratricopeptide repeat (TPR)-containing subunit (TPR subunit; Apc3 and -6-8) (2). Most TPR subunits are essential and evolutionarily conserved in eukaryotes (3).APC/C requires two adaptors that contain a C-terminal WD40 domain, Cdc20 and Cdh1, to recruit and select various substrates at different stages of the cell cycle. Moreover, both adaptors and specific APC/C subunits contribute to substrate recognition (4).APC/C specifically ubiquitinates cell cycle regulatory proteins that contain destruction (D) or KEN box motifs (5-7), which target them for destruction by the 26 S proteosome (8). During the cell cycle, APC/C mediates the metaphase-anaphase transition by ubiquitinating and degrading securin, a separase inhibitor, which participates in the degradation of chromatic cohesion complexes and ubiquitinates B-type cyclin, thereby accelerating transition from the late mitotic phase to G1 (9). In addition to its primary role in cell cycle regulation, APC/C participates in postmitotic processes, such as regulation of synaptic size and axon growth (10, 11).To assess the mechanism that underlies cell cycle regulation by APC/C and the various roles of its subunits, we need to understand how APC/C is organized into higher order structures and the manner in which the subunits assemble. Although little is known regarding the crystal structures of APC/C components, three-dimensional models of APC/C have recently been obtained by cryo-negative staining EM in human, Xenopus laevis, Saccharomyces cerevisiae, and Schizosaccharomyces pombe (12-15). Several studies have indicated that APC/C assumes an asymmetric triangular shape that is composed of an outer shell and a cavity that extends through its center (12, 14). Furthermore, APC/C includes a catalytic subcomplex (Doc1/Apc10, Apc11, and Apc2), a structural complex (Apc1, Apc4, and Apc5), and a TPR subcomplex (TPR-containing subunits and nonessential subunits) (16).A TPR unit consists of a 34-residue repeat motif that adopts a helix-turn-helix conformation, which is associated with protein-protein interactions (17). Multiple copies of TPR-containing subunits are organized into the TPR subcomplex within APC/C, and this subcomplex is functionally important for the recruitment of adaptors and substrates (18). In fact, adaptors (Cdc20 and Cdh1) and Doc1/Apc10 bind to the C-terminal domain of the TPR-containing subunits Apc3 and Apc7 via the IR peptide tail sequence (7, 16, 19). It is unknown, however, how TPR-containing subunits form homo- and heterosubunit complexes, although studies have demonstrated that TPR-containing subunits self-associate in vivo and in vitro (15) and that they interact with other TPR-containing subunits (20).Apc7 is found only in vertebrate APC/C and is estimated to contain 9-15 TPR motifs, similar to other TPR-containing subunits (9). Apc7 is considered to be a molecular descendant of the same ancestral protein that gave rise to Apc3. Furthermore, the N-terminal domain of Apc7 has been reported to contain cell cycle-regulated phosphorylation sites (21), and the C-terminal TPR domain of Apc7 interacts with Cdh1 and Cdc20 (19). In Drosophila APC/C, the homolog of vertebrate Apc7 participates in synergistic genetic interactions with other TPR-containing subunits (22).The function of Apc7 within vertebrate APC/C, however, is poorly understood. Moreover, although the C-terminal regions of Apc3 and Apc7 include a tandem of nine TPR motifs, the N-terminal domains of human Apc3 and Apc7 share little homology with the canonical TPR sequence. Therefore, the N-terminal domain of human Apc7 is expected to have a significant function in vertebrate APC/C.In this study, we determined the crystal structure of the N-terminal fragment of human Apc7 (residues 1-147, denoted nApc7), and the homodimeric self-association of nApc7 structure led us to insights into mechanisms of vertebrate APC/C.  相似文献   

3.
Mitochondrial dysregulation is strongly implicated in Parkinson disease. Mutations in PTEN-induced kinase 1 (PINK1) are associated with familial parkinsonism and neuropsychiatric disorders. Although overexpressed PINK1 is neuroprotective, less is known about neuronal responses to loss of PINK1 function. We found that stable knockdown of PINK1 induced mitochondrial fragmentation and autophagy in SH-SY5Y cells, which was reversed by the reintroduction of an RNA interference (RNAi)-resistant plasmid for PINK1. Moreover, stable or transient overexpression of wild-type PINK1 increased mitochondrial interconnectivity and suppressed toxin-induced autophagy/mitophagy. Mitochondrial oxidant production played an essential role in triggering mitochondrial fragmentation and autophagy in PINK1 shRNA lines. Autophagy/mitophagy served a protective role in limiting cell death, and overexpressing Parkin further enhanced this protective mitophagic response. The dominant negative Drp1 mutant inhibited both fission and mitophagy in PINK1-deficient cells. Interestingly, RNAi knockdown of autophagy proteins Atg7 and LC3/Atg8 also decreased mitochondrial fragmentation without affecting oxidative stress, suggesting active involvement of autophagy in morphologic remodeling of mitochondria for clearance. To summarize, loss of PINK1 function elicits oxidative stress and mitochondrial turnover coordinated by the autophagic and fission/fusion machineries. Furthermore, PINK1 and Parkin may cooperate through different mechanisms to maintain mitochondrial homeostasis.Parkinson disease is an age-related neurodegenerative disease that affects ∼1% of the population worldwide. The causes of sporadic cases are unknown, although mitochondrial or oxidative toxins such as 1-methyl-4-phenylpyridinium, 6-hydroxydopamine (6-OHDA),3 and rotenone reproduce features of the disease in animal and cell culture models (1). Abnormalities in mitochondrial respiration and increased oxidative stress are observed in cells and tissues from parkinsonian patients (2, 3), which also exhibit increased mitochondrial autophagy (4). Furthermore, mutations in parkinsonian genes affect oxidative stress response pathways and mitochondrial homeostasis (5). Thus, disruption of mitochondrial homeostasis represents a major factor implicated in the pathogenesis of sporadic and inherited parkinsonian disorders (PD).The PARK6 locus involved in autosomal recessive and early-onset PD encodes for PTEN-induced kinase 1 (PINK1) (6, 7). PINK1 is a cytosolic and mitochondrially localized 581-amino acid serine/threonine kinase that possesses an N-terminal mitochondrial targeting sequence (6, 8). The primary sequence also includes a putative transmembrane domain important for orientation of the PINK1 domain (8), a conserved kinase domain homologous to calcium calmodulin kinases, and a C-terminal domain that regulates autophosphorylation activity (9, 10). Overexpression of wild-type PINK1, but not its PD-associated mutants, protects against several toxic insults in neuronal cells (6, 11, 12). Mitochondrial targeting is necessary for some (13) but not all of the neuroprotective effects of PINK1 (14), implicating involvement of cytoplasmic targets that modulate mitochondrial pathobiology (8). PINK1 catalytic activity is necessary for its neuroprotective role, because a kinase-deficient K219M substitution in the ATP binding pocket of PINK1 abrogates its ability to protect neurons (14). Although PINK1 mutations do not seem to impair mitochondrial targeting, PD-associated mutations differentially destabilize the protein, resulting in loss of neuroprotective activities (13, 15).Recent studies indicate that PINK1 and Parkin interact genetically (3, 16-18) to prevent oxidative stress (19, 20) and regulate mitochondrial morphology (21). Primary cells derived from PINK1 mutant patients exhibit mitochondrial fragmentation with disorganized cristae, recapitulated by RNA interference studies in HeLa cells (3).Mitochondria are degraded by macroautophagy, a process involving sequestration of cytoplasmic cargo into membranous autophagic vacuoles (AVs) for delivery to lysosomes (22, 23). Interestingly, mitochondrial fission accompanies autophagic neurodegeneration elicited by the PD neurotoxin 6-OHDA (24, 25). Moreover, mitochondrial fragmentation and increased autophagy are observed in neurodegenerative diseases including Alzheimer and Parkinson diseases (4, 26-28). Although inclusion of mitochondria in autophagosomes was once believed to be a random process, as observed during starvation, studies involving hypoxia, mitochondrial damage, apoptotic stimuli, or limiting amounts of aerobic substrates in facultative anaerobes support the concept of selective mitochondrial autophagy (mitophagy) (29, 30). In particular, mitochondrially localized kinases may play an important role in models involving oxidative mitochondrial injury (25, 31, 32).Autophagy is involved in the clearance of protein aggregates (33-35) and normal regulation of axonal-synaptic morphology (36). Chronic disruption of lysosomal function results in accumulation of subtly impaired mitochondria with decreased calcium buffering capacity (37), implicating an important role for autophagy in mitochondrial homeostasis (37, 38). Recently, Parkin, which complements the effects of PINK1 deficiency on mitochondrial morphology (3), was found to promote autophagy of depolarized mitochondria (39). Conversely, Beclin 1-independent autophagy/mitophagy contributes to cell death elicited by the PD toxins 1-methyl-4-phenylpyridinium and 6-OHDA (25, 28, 31, 32), causing neurite retraction in cells expressing a PD-linked mutation in leucine-rich repeat kinase 2 (40). Whereas properly regulated autophagy plays a homeostatic and neuroprotective role, excessive or incomplete autophagy creates a condition of “autophagic stress” that can contribute to neurodegeneration (28).As mitochondrial fragmentation (3) and increased mitochondrial autophagy (4) have been described in human cells or tissues of PD patients, we investigated whether or not the engineered loss of PINK1 function could recapitulate these observations in human neuronal cells (SH-SY5Y). Stable knockdown of endogenous PINK1 gave rise to mitochondrial fragmentation and increased autophagy and mitophagy, whereas stable or transient overexpression of PINK1 had the opposite effect. Autophagy/mitophagy was dependent upon increased mitochondrial oxidant production and activation of fission. The data indicate that PINK1 is important for the maintenance of mitochondrial networks, suggesting that coordinated regulation of mitochondrial dynamics and autophagy limits cell death associated with loss of PINK1 function.  相似文献   

4.
Bacillus cereus and other Gram-positive bacteria elaborate pili via a sortase D-catalyzed transpeptidation mechanism from major and minor pilin precursor substrates. After cleavage of the LPXTG sorting signal of the major pilin, BcpA, sortase D forms an amide bond between the C-terminal threonine and the amino group of lysine within the YPKN motif of another BcpA subunit. Pilus assembly terminates upon sortase A cleavage of the BcpA sorting signal, resulting in a covalent bond between BcpA and the cell wall cross-bridge. Here, we show that the IPNTG sorting signal of BcpB, the minor pilin, is cleaved by sortase D but not by sortase A. The C-terminal threonine of BcpB is amide-linked to the YPKN motif of BcpA, thereby positioning BcpB at the tip of pili. Thus, unique attributes of the sorting signals of minor pilins provide Gram-positive bacteria with a universal mechanism ordering assembly of pili.Sortases catalyze transpeptidation reactions to assemble proteins in the envelope of Gram-positive bacteria (1). Secreted proteins require a C-terminal sorting signal for sortase recognition such that sortase cleaves the substrate at a short peptide motif and forms a thioester-linked intermediate to its active site cysteine (24). Nucleophilic attack by an amino group within the bacterial envelope resolves the thioester intermediate, generating an amide bond tethering surface proteins at their C terminus onto Gram-positive bacteria (5). Four classes of sortases can be distinguished on the basis of sequence homology and substrate recognition (6, 7). Sortase A cleaves secreted protein at LPXTG sorting signals and recognizes the amino group of lipid II peptidoglycan precursors as a nucleophile (8, 9). Sortase B cleaves protein substrates at NPQTN sorting signals (10). This enzyme immobilizes proteins within fully assembled cell walls, utilizing the cell wall cross-bridge as a nucleophile (11). Sortase C cuts LPNTA sorting signals and anchors proteins to the peptidoglycan cross-bridges in sporulating bacteria (12, 13). Finally, sortase D catalyzes transpeptidation reactions in the assembly of pili (14, 15). Sortase D recognizes the amino group of lysine residues within the YPKN motif of pilin subunits as nucleophiles (16). The resultant sortase D-catalyzed amide bond links adjacent pilin subunits to grow the pilus fiber (16, 17).Pili of Gram-positive bacteria comprised either two or three different pilin subunits synthesized as cytoplasmic precursors with N-terminal signal peptides and C-terminal sorting signals (P1 precursors) (14, 18). After translocation across the plasma membrane, P2 precursor species arise from removal of the signal peptide from P1 precursors by a signal peptidase (16). Bacillus cereus pili are composed of two subunits; that is, the major pilin, BcpA, and the minor pilin, BcpB (15). In contrast to BcpA, which is deposited throughout the pilus, BcpB is found at fiber tip (15). Sortase D cleaves the BcpA LPXTG motif sorting signal between the threonine and glycine residues to form an amide bond to the ε-amino group of the lysine within the YPKN motif of adjacent BcpA subunits (16). However, sortase A also cleaves BcpA precursors, which are subsequently linked to the side chain amino group of meso-diaminopimelic acid within lipid II (19). The latter reaction serves to terminate fiber elongation, immobilizing BcpA pili in the cell wall envelope (19).The conservation of sortase D, the YPKN motif, and C-terminal sorting signal in major pilin subunits suggest a universal pilus assembly mechanism among Gram-positive bacteria (14, 20). However, the molecular mechanism whereby bacilli deposit BcpB, the minor pilin, at the tip of BcpA pili is not known. Although the BcpB precursor harbors an N-terminal signal peptide and a C-terminal IPNTG sorting signal, it lacks the YPKN pilin motif of the major subunit (15). Furthermore, the substrate properties of the BcpB IPNTG sorting signal for the four classes of sortases expressed by bacilli has yet to be established.  相似文献   

5.
Cyclic di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger that is involved in the regulation of cell surface-associated traits and the persistence of infections. Omnipresent GGDEF and EAL domains, which occur in various combinations with regulatory domains, catalyze c-di-GMP synthesis and degradation, respectively. The crystal structure of full-length YkuI from Bacillus subtilis, composed of an EAL domain and a C-terminal PAS-like domain, has been determined in its native form and in complex with c-di-GMP and Ca2+. The EAL domain exhibits a triose-phosphate isomerase-barrel fold with one antiparallel β-strand. The complex with c-di-GMP-Ca2+ defines the active site of the putative phosphodiesterase located at the C-terminal end of the β-barrel. The EAL motif is part of the active site with Glu-33 of the motif being involved in cation coordination. The structure of the complex allows the proposal of a phosphodiesterase mechanism, in which the divalent cation and the general base Glu-209 activate a catalytic water molecule for nucleophilic in-line attack on the phosphorus. The C-terminal domain closely resembles the PAS-fold. Its pocket-like structure could accommodate a yet unknown ligand. YkuI forms a tight dimer via EAL-EAL and trans EAL-PAS-like domain association. The possible regulatory significance of the EAL-EAL interface and a mechanism for signal transduction between sensory and catalytic domains of c-di-GMP-specific phosphodiesterases are discussed.The dinucleotide cyclic di-GMP (c-di-GMP) was discovered about 20 years ago when it was found to regulate the activity of cellulase synthase in Acetobacter xylinum (1). However, its prominent role as a global second messenger has been realized only upon the recent recognition of the omnipresence of genes coding for domains that catalyze c-di-GMP biosynthesis and degradation in eubacteria (2). GGDEF domains catalyze the condensation of two GTP molecules to the cyclic 2-fold symmetric dinucleotide (diguanylate cyclase activity (3-6)), whereas EAL domains are involved in its degradation to yield the linear dinucleotide pGpG (phosphodiesterase (PDE)4 A activity) (3, 7-9). Recently, also HD-GYP domains have been implicated in c-di-GMP-specific PDE activity (10). All the domains have been named according to their sequence signature motifs. They are typically found in combinations with various other, mostly sensory or regulatory, domains. It is thought that the balance between antagonistic diguanylate cyclase and PDE-A activities determines the cellular level of c-di-GMP and, thus, affects a variety of physiological processes in bacteria.It has been shown that, in general, c-di-GMP regulates cell surface-associated traits and community behavior such as biofilm formation (for reviews see Refs. 11-12), and its relevance to the virulence of pathogenic bacteria has been demonstrated (11, 13, 14). In particular, the dinucleotide has been proposed to orchestrate the switch between acute and persistent phase of infection.The best characterized diguanylate cyclase is PleD from Caulobacter crescentus with a Rec-Rec-GGDEF domain architecture (Rec indicates response regulator receiver domain). The structure of its GGDEF domain revealed a single GTP-binding site and suggested that dimerization is the prerequisite for enzymatic activity (4). This has been corroborated recently by crystallography showing directly that modification of the first Rec domain, mimicking phosphorylation by the cognate kinase, induces formation of a tightly packed dimer (15). Additionally, an upper limit of c-di-GMP levels in the cell seems to be ensured by potent allosteric product inhibition of the PleD cyclase (4, 15, 16). Recently, the crystal structure of another diguanylate cyclase, WspR from Pseudomonas aeruginosa with a Rec-GGDEF domain architecture, has been determined (17), which showed a tetrameric quaternary structure and active and feedback inhibition sites that are very similar to those in PleD.For EAL domains, it has been demonstrated that genetic knock-out results in phenotypes that are in line with the paradigm that an elevated cellular c-di-GMP concentration corresponds to a sessile and a low concentration to a motile bacterial life style (13, 18, 19). Only recently, EAL-mediated PDE-A activity has been measured in vitro (7-9, 20-22).The Bacillus subtilis YkuI protein was targeted for structure determination by the Midwest Center for Structural Genomics as a member of the large sequence family that contains EAL (Pfam number PF00563) domains. Here we report the crystal structure of YkuI showing the fold of the N-terminal EAL domain and the C-terminal PAS-like domain. Co-crystallization with c-di-GMP revealed the substrate binding mode and allows the proposal of a catalytic mechanism. The PAS-like domain most probably has regulatory function, which is discussed. Recently, another EAL structure has been deposited in the Protein Data Bank by the Midwest Center for Structural Genomics, the EAL domain of a GGDEF-EAL protein from Thiobacillus denitrificans (tdEAL; PDB code 2r6o). Comparison of the two structures suggests a possible regulatory mechanism.  相似文献   

6.
Formin-homology (FH) 2 domains from formin proteins associate processively with the barbed ends of actin filaments through many rounds of actin subunit addition before dissociating completely. Interaction of the actin monomer-binding protein profilin with the FH1 domain speeds processive barbed end elongation by FH2 domains. In this study, we examined the energetic requirements for fast processive elongation. In contrast to previous proposals, direct microscopic observations of single molecules of the formin Bni1p from Saccharomyces cerevisiae labeled with quantum dots showed that profilin is not required for formin-mediated processive elongation of growing barbed ends. ATP-actin subunits polymerized by Bni1p and profilin release the γ-phosphate of ATP on average >2.5 min after becoming incorporated into filaments. Therefore, the release of γ-phosphate from actin does not drive processive elongation. We compared experimentally observed rates of processive elongation by a number of different FH2 domains to kinetic computer simulations and found that actin subunit addition alone likely provides the energy for fast processive elongation of filaments mediated by FH1FH2-formin and profilin. We also studied the role of FH2 structure in processive elongation. We found that the flexible linker joining the two halves of the FH2 dimer has a strong influence on dissociation of formins from barbed ends but only a weak effect on elongation rates. Because formins are most vulnerable to dissociation during translocation along the growing barbed end, we propose that the flexible linker influences the lifetime of this translocative state.Formins are multidomain proteins that assemble unbranched actin filament structures for diverse processes in eukaryotic cells (reviewed in Ref. 1). Formins stimulate nucleation of actin filaments and, in the presence of the actin monomer-binding protein profilin, speed elongation of the barbed ends of filaments (2-6). The ability of formins to influence elongation depends on the ability of single formin molecules to remain bound to a growing barbed end through multiple rounds of actin subunit addition (7, 8). To stay associated during subunit addition, a formin molecule must translocate processively on the barbed end as each actin subunit is added (1, 9-12). This processive elongation of a barbed end by a formin is terminated when the formin dissociates stochastically from the growing end during translocation (4, 10).The formin-homology (FH)2 1 and 2 domains are the best conserved domains of formin proteins (2, 13, 14). The FH2 domain is the signature domain of formins, and in many cases, is sufficient for both nucleation and processive elongation of barbed ends (2-4, 7, 15). Head-to-tail homodimers of FH2 domains (12, 16) encircle the barbed ends of actin filaments (9). In vitro, association of barbed ends with FH2 domains slows elongation by limiting addition of free actin monomers. This “gating” behavior is usually explained by a rapid equilibrium of the FH2-associated end between an open state competent for actin monomer association and a closed state that blocks monomer binding (4, 9, 17).Proline-rich FH1 domains located N-terminal to FH2 domains are required for profilin to stimulate formin-mediated elongation. Individual tracks of polyproline in FH1 domains bind 1:1 complexes of profilin-actin and transfer the actin directly to the FH2-associated barbed end to increase processive elongation rates (4-6, 8, 10, 17).Rates of elongation and dissociation from growing barbed ends differ widely for FH1FH2 fragments from different formin homologs (4). We understand few aspects of FH1FH2 domains that influence gating, elongation or dissociation. In this study, we examined the source of energy for formin-mediated processive elongation, and the influence of FH2 structure on elongation and dissociation from growing ends. In contrast to previous proposals (6, 18), we found that fast processive elongation mediated by FH1FH2-formins is not driven by energy from the release of the γ-phosphate from ATP-actin filaments. Instead, the data show that the binding of an actin subunit to the barbed end provides the energy for processive elongation. We found that in similar polymerizing conditions, different natural FH2 domains dissociate from growing barbed ends at substantially different rates. We further observed that the length of the flexible linker between the subunits of a FH2 dimer influences dissociation much more than elongation.  相似文献   

7.
8.
9.
10.
11.
Intersectin-short (intersectin-s) is a multimodule scaffolding protein functioning in constitutive and regulated forms of endocytosis in non-neuronal cells and in synaptic vesicle (SV) recycling at the neuromuscular junction of Drosophila and Caenorhabditis elegans. In vertebrates, alternative splicing generates a second isoform, intersectin-long (intersectin-l), that contains additional modular domains providing a guanine nucleotide exchange factor activity for Cdc42. In mammals, intersectin-s is expressed in multiple tissues and cells, including glia, but excluded from neurons, whereas intersectin-l is a neuron-specific isoform. Thus, intersectin-I may regulate multiple forms of endocytosis in mammalian neurons, including SV endocytosis. We now report, however, that intersectin-l is localized to somatodendritic regions of cultured hippocampal neurons, with some juxtanuclear accumulation, but is excluded from synaptophysin-labeled axon terminals. Consistently, intersectin-l knockdown (KD) does not affect SV recycling. Instead intersectin-l co-localizes with clathrin heavy chain and adaptor protein 2 in the somatodendritic region of neurons, and its KD reduces the rate of transferrin endocytosis. The protein also co-localizes with F-actin at dendritic spines, and intersectin-l KD disrupts spine maturation during development. Our data indicate that intersectin-l is indeed an important regulator of constitutive endocytosis and neuronal development but that it is not a prominent player in the regulated endocytosis of SVs.Clathrin-mediated endocytosis (CME)4 is a major mechanism by which cells take up nutrients, control the surface levels of multiple proteins, including ion channels and transporters, and regulate the coupling of signaling receptors to downstream signaling cascades (1-5). In neurons, CME takes on additional specialized roles; it is an important process regulating synaptic vesicle (SV) availability through endocytosis and recycling of SV membranes (6, 7), it shapes synaptic plasticity (8-10), and it is crucial in maintaining synaptic membranes and membrane structure (11).Numerous endocytic accessory proteins participate in CME, interacting with each other and with core components of the endocytic machinery such as clathrin heavy chain (CHC) and adaptor protein-2 (AP-2) through specific modules and peptide motifs (12). One such module is the Eps15 homology domain that binds to proteins bearing NPF motifs (13, 14). Another is the Src homology 3 (SH3) domain, which binds to proline-rich domains in protein partners (15). Intersectin is a multimodule scaffolding protein that interacts with a wide range of proteins, including several involved in CME (16). Intersectin has two N-terminal Eps15 homology domains that are responsible for binding to epsin, SCAMP1, and numb (17-19), a central coil-coiled domain that interacts with Eps15 and SNAP-23 and -25 (17, 20, 21), and five SH3 domains in its C-terminal region that interact with multiple proline-rich domain proteins, including synaptojanin, dynamin, N-WASP, CdGAP, and mSOS (16, 22-25). The rich binding capability of intersectin has linked it to various functions from CME (17, 26, 27) and signaling (22, 28, 29) to mitogenesis (30, 31) and regulation of the actin cytoskeleton (23).Intersectin functions in SV recycling at the neuromuscular junction of Drosophila and C. elegans where it acts as a scaffold, regulating the synaptic levels of endocytic accessory proteins (21, 32-34). In vertebrates, the intersectin gene is subject to alternative splicing, and a longer isoform (intersectin-l) is generated that is expressed exclusively in neurons (26, 28, 35, 36). This isoform has all the binding modules of its short (intersectin-s) counterpart but also has additional domains: a DH and a PH domain that provide guanine nucleotide exchange factor (GEF) activity specific for Cdc42 (23, 37) and a C2 domain at the C terminus. Through its GEF activity and binding to actin regulatory proteins, including N-WASP, intersectin-l has been implicated in actin regulation and the development of dendritic spines (19, 23, 24). In addition, because the rest of the binding modules are shared between intersectin-s and -l, it is generally thought that the two intersectin isoforms have the same endocytic functions. In particular, given the well defined role for the invertebrate orthologs of intersectin-s in SV endocytosis, it is thought that intersectin-l performs this role in mammalian neurons, which lack intersectin-s. Defining the complement of intersectin functional activities in mammalian neurons is particularly relevant given that the protein is involved in the pathophysiology of Down syndrome (DS). Specifically, the intersectin gene is localized on chromosome 21q22.2 and is overexpressed in DS brains (38). Interestingly, alterations in endosomal pathways are a hallmark of DS neurons and neurons from the partial trisomy 16 mouse, Ts65Dn, a model for DS (39, 40). Thus, an endocytic trafficking defect may contribute to the DS disease process.Here, the functional roles of intersectin-l were studied in cultured hippocampal neurons. We find that intersectin-l is localized to the somatodendritic regions of neurons, where it co-localizes with CHC and AP-2 and regulates the uptake of transferrin. Intersectin-l also co-localizes with actin at dendritic spines and disrupting intersectin-l function alters dendritic spine development. In contrast, intersectin-l is absent from presynaptic terminals and has little or no role in SV recycling.  相似文献   

12.
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-tumor agent. However, many HCC cells show resistance to TRAIL-induced apoptosis. In this study, we showed that bortezomib, a proteasome inhibitor, overcame TRAIL resistance in HCC cells, including Huh-7, Hep3B, and Sk-Hep1. The combination of bortezomib and TRAIL restored the sensitivity of HCC cells to TRAIL-induced apoptosis. Comparing the molecular change in HCC cells treated with these agents, we found that down-regulation of phospho-Akt (P-Akt) played a key role in mediating TRAIL sensitization of bortezomib. The first evidence was that bortezomib down-regulated P-Akt in a dose- and time-dependent manner in TRAIL-treated HCC cells. Second, LY294002, a PI3K inhibitor, also sensitized resistant HCC cells to TRAIL-induced apoptosis. Third, knocking down Akt1 by small interference RNA also enhanced TRAIL-induced apoptosis in Huh-7 cells. Finally, ectopic expression of mutant Akt (constitutive active) in HCC cells abolished TRAIL sensitization effect of bortezomib. Moreover, okadaic acid, a protein phosphatase 2A (PP2A) inhibitor, reversed down-regulation of P-Akt in bortezomib-treated cells, and PP2A knockdown by small interference RNA also reduced apoptosis induced by the combination of TRAIL and bortezomib, indicating that PP2A may be important in mediating the effect of bortezomib on TRAIL sensitization. Together, bortezomib overcame TRAIL resistance at clinically achievable concentrations in hepatocellular carcinoma cells, and this effect is mediated at least partly via inhibition of the PI3K/Akt pathway.Hepatocellular carcinoma (HCC)2 is currently the fifth most common solid tumor worldwide and the fourth leading cause of cancer-related death. To date, surgery is still the only curative treatment but is only feasible in a small portion of patients (1). Drug treatment is the major therapy for patients with advanced stage disease. Unfortunately, the response rate to traditional chemotherapy for HCC patients is unsatisfactory (1). Novel pharmacological therapy is urgently needed for patients with advanced HCC. In this regard, the approval of sorafenib might open a new era of molecularly targeted therapy in the treatment of HCC patients.Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a type II transmembrane protein and a member of the TNF family, is a promising anti-tumor agent under clinical investigation (2). TRAIL functions by engaging its receptors expressed on the surface of target cells. Five receptors specific for TRAIL have been identified, including DR4/TRAIL-R1, DR5/TRAIL-R2, DcR1, DcR2, and osteoprotegerin. Among TRAIL receptors, only DR4 and DR5 contain an effective death domain that is essential to formation of death-inducing signaling complex (DISC), a critical step for TRAIL-induced apoptosis. Notably, the trimerization of the death domains recruits an adaptor molecule, Fas-associated protein with death domain (FADD), which subsequently recruits and activates caspase-8. In type I cells, activation of caspase-8 is sufficient to activate caspase-3 to induce apoptosis; however, in another type of cells (type II), the intrinsic mitochondrial pathway is essential for apoptosis characterized by cleavage of Bid and release of cytochrome c from mitochondria, which subsequently activates caspase-9 and caspase-3 (3).Although TRAIL induces apoptosis in malignant cells but sparing normal cells, some tumor cells are resistant to TRAIL-induced apoptosis. Mechanisms responsible for the resistance include receptors and intracellular resistance. Although the cell surface expression of DR4 or DR5 is absolutely required for TRAIL-induced apoptosis, tumor cells expressing these death receptors are not always sensitive to TRAIL due to intracellular mechanisms. For example, the cellular FLICE-inhibitory protein (c-FLIP), a homologue to caspase-8 but without protease activity, has been linked to TRAIL resistance in several studies (4, 5). In addition, inactivation of Bax, a proapoptotic Bcl-2 family protein, resulted in resistance to TRAIL in MMR-deficient tumors (6, 7), and reintroduction of Bax into Bax-deficient cells restored TRAIL sensitivity (8), indicating that the Bcl-2 family plays a critical role in intracellular mechanisms for resistance of TRAIL.Bortezomib, a proteasome inhibitor approved clinically for multiple myeloma and mantle cell lymphoma, has been investigated intensively for many types of cancer (9). Accumulating studies indicate that the combination of bortezomib and TRAIL overcomes the resistance to TRAIL in various types of cancer, including acute myeloid leukemia (4), lymphoma (1013), prostate (1417), colon (15, 18, 19), bladder (14, 16), renal cell carcinoma (20), thyroid (21), ovary (22), non-small cell lung (23, 24), sarcoma (25), and HCC (26, 27). Molecular targets responsible for the sensitizing effect of bortezomib on TRAIL-induced cell death include DR4 (14, 27), DR5 (14, 20, 2223, 28), c-FLIP (4, 11, 2123, 29), NF-κB (12, 24, 30), p21 (16, 21, 25), and p27 (25). In addition, Bcl-2 family also plays a role in the combinational effect of bortezomib and TRAIL, including Bcl-2 (10, 21), Bax (13, 22), Bak (27), Bcl-xL (21), Bik (18), and Bim (15).Recently, we have reported that Akt signaling is a major molecular determinant in bortezomib-induced apoptosis in HCC cells (31). In this study, we demonstrated that bortezomib overcame TRAIL resistance in HCC cells through inhibition of the PI3K/Akt pathway.  相似文献   

13.
The carboxyl-terminal cholinesterase-like (ChEL) domain of thyroglobulin (Tg) has been identified as critically important in Tg export from the endoplasmic reticulum. In a number of human kindreds suffering from congenital hypothyroidism, and in the cog congenital goiter mouse and rdw rat dwarf models, thyroid hormone synthesis is inhibited because of mutations in the ChEL domain that block protein export from the endoplasmic reticulum. We hypothesize that Tg forms homodimers through noncovalent interactions involving two predicted α-helices in each ChEL domain that are homologous to the dimerization helices of acetylcholinesterase. This has been explored through selective epitope tagging of dimerization partners and by inserting an extra, unpaired Cys residue to create an opportunity for intermolecular disulfide pairing. We show that the ChEL domain is necessary and sufficient for Tg dimerization; specifically, the isolated ChEL domain can dimerize with full-length Tg or with itself. Insertion of an N-linked glycan into the putative upstream dimerization helix inhibits homodimerization of the isolated ChEL domain. However, interestingly, co-expression of upstream Tg domains, either in cis or in trans, overrides the dimerization defect of such a mutant. Thus, although the ChEL domain provides a nidus for Tg dimerization, interactions of upstream Tg regions with the ChEL domain actively stabilizes the Tg dimer complex for intracellular transport.The synthesis of thyroid hormone in the thyroid gland requires secretion of thyroglobulin (Tg)2 to the apical luminal cavity of thyroid follicles (1). Once secreted, Tg is iodinated via the activity of thyroid peroxidase (2). A coupling reaction involving a quinol-ether linkage especially engages di-iodinated tyrosyl residues 5 and 130 to form thyroxine within the amino-terminal portion of the Tg polypeptide (3, 4). Preferential iodination of Tg hormonogenic sites is dependent not on the specificity of the peroxidase (5) but upon the native structure of Tg (6, 7). To date, no other thyroidal proteins have been shown to effectively substitute in this role for Tg.The first 80% of the primary structure of Tg (full-length murine Tg: 2,746 amino acids) involves three regions called I-II-III comprised of disulfide-rich repeat domains held together by intradomain disulfide bonds (8, 9). The final 581 amino acids of Tg are strongly homologous to acetylcholinesterase (1012). Rate-limiting steps in the overall process of Tg secretion involve its structural maturation within the endoplasmic reticulum (ER) (13). Interactions between regions I-II-III and the cholinesterase-like (ChEL) domain have recently been suggested to be important in this process, with ChEL functioning as an intramolecular chaperone and escort for I-II-III (14). In addition, Tg conformational maturation culminates in Tg homodimerization (15, 16) with progression to a cylindrical, and ultimately, a compact ovoid structure (1719).In human congenital hypothyroidism with deficient Tg, the ChEL domain is a commonly affected site of mutation, including the recently described A2215D (20, 21), R2223H (22), G2300D, R2317Q (23), G2355V, G2356R, and the skipping of exon 45 (which normally encodes 36 amino acids), as well as the Q2638stop mutant (24) (in addition to polymorphisms including P2213L, W2482R, and R2511Q that may be associated with thyroid overgrowth (25)). As best as is currently known, all of the congenital hypothyroidism-inducing Tg mutants are defective for intracellular transport (26). A homozygous G2300R mutation (equivalent to residue 2,298 of mouse Tg) in the ChEL domain is responsible for congenital hypothyroidism in rdw rats (27, 28), whereas we identified the Tg-L2263P point mutation as the cause of hypothyroidism in the cog mouse (29). Such mutations perturb intradomain structure (30), and interestingly, block homodimerization (31). Acquisition of quaternary structure has long been thought to be required for efficient export from the ER (32) as exemplified by authentic acetylcholinesterase (33, 34) in which dimerization enhances protein stability and export (35).Tg comprised only of regions I-II-III (truncated to lack the ChEL domain) is blocked within the ER (30), whereas a secretory version of the isolated ChEL domain of Tg devoid of I-II-III undergoes rapid and efficient intracellular transport and secretion (14). A striking homology positions two predicted α-helices of the ChEL domain to the identical relative positions of the dimerization helices in acetylcholinesterase. This raises the possibility that ChEL may serve as a homodimerization domain for Tg, providing a critical function in maturation for Tg transport to the site of thyroid hormone synthesis (1).In this study, we provide unequivocal evidence for homodimerization of the ChEL domain and “hetero”-dimerization of that domain with full-length Tg, and we provide significant evidence that the predicted ChEL dimerization helices provide a nidus for Tg assembly. On the other hand, our data also suggest that upstream Tg regions known to interact with ChEL (14) actively stabilize the Tg dimer complex. Together, I-II-III and ChEL provide unique contributions to the process of intracellular transport of Tg through the secretory pathway.  相似文献   

14.
15.
16.
Rheb G-protein plays critical roles in the TSC/Rheb/mTOR signaling pathway by activating mTORC1. The activation of mTORC1 by Rheb can be faithfully reproduced in vitro by using mTORC1 immunoprecipitated by the use of anti-raptor antibody from mammalian cells starved for nutrients. The low in vitro kinase activity against 4E-BP1 of this mTORC1 preparation is dramatically increased by the addition of recombinant Rheb. On the other hand, the addition of Rheb does not activate mTORC2 immunoprecipitated from mammalian cells by the use of anti-rictor antibody. The activation of mTORC1 is specific to Rheb, because other G-proteins such as KRas, RalA/B, and Cdc42 did not activate mTORC1. Both Rheb1 and Rheb2 activate mTORC1. In addition, the activation is dependent on the presence of bound GTP. We also find that the effector domain of Rheb is required for the mTORC1 activation. FKBP38, a recently proposed mediator of Rheb action, appears not to be involved in the Rheb-dependent activation of mTORC1 in vitro, because the preparation of mTORC1 that is devoid of FKBP38 is still activated by Rheb. The addition of Rheb results in a significant increase of binding of the substrate protein 4E-BP1 to mTORC1. PRAS40, a TOR signaling (TOS) motif-containing protein that competes with the binding of 4EBP1 to mTORC1, inhibits Rheb-induced activation of mTORC1. A preparation of mTORC1 that is devoid of raptor is not activated by Rheb. Rheb does not induce autophosphorylation of mTOR. These results suggest that Rheb induces alteration in the binding of 4E-BP1 with mTORC1 to regulate mTORC1 activation.Rheb defines a unique member of the Ras superfamily G-proteins (1). We have shown that Rheb proteins are conserved and are found from yeast to human (2). Although yeast and fruit fly have one Rheb, mouse and human have two Rheb proteins termed Rheb1 (or simply Rheb) and Rheb2 (RhebL1) (2). Structurally, these proteins contain G1-G5 boxes, short stretches of amino acids that define the function of the Ras superfamily G-proteins including guanine nucleotide binding (1, 3, 4). Rheb proteins have a conserved arginine at residue 15 that corresponds to residue 12 of Ras (1). The effector domain required for the binding with downstream effectors encompasses the G2 box and its adjacent sequences (1, 5). Structural analysis by x-ray crystallography further shows that the effector domain is exposed to solvent, is located close to the phosphates of GTP especially at residues 35–38, and undergoes conformational change during GTP/GDP exchange (6). In addition, all Rheb proteins end with the CAAX (C is cysteine, A is an aliphatic amino acid, and X is the C-terminal amino acid) motif that signals farnesylation. In fact, we as well as others have shown that these proteins are farnesylated (79).Rheb plays critical roles in the TSC/Rheb/mTOR signaling, a signaling pathway that plays central roles in regulating protein synthesis and growth in response to nutrient, energy, and growth conditions (1014). Rheb is down-regulated by a TSC1·TSC2 complex that acts as a GTPase-activating protein for Rheb (1519). Recent studies established that the GAP domain of TSC2 defines the functional domain for the down-regulation of Rheb (20). Mutations in the Tsc1 or Tsc2 gene lead to tuberous sclerosis whose symptoms include the appearance of benign tumors called hamartomas at different parts of the body as well as neurological symptoms (21, 22). Overexpression of Rheb results in constitutive activation of mTOR even in the absence of nutrients (15, 16). Two mTOR complexes, mTORC1 and mTORC2, have been identified (23, 24). Whereas mTORC1 is involved in protein synthesis activation mediated by S6K and 4EBP1, mTORC2 is involved in the phosphorylation of Akt in response to insulin. It has been suggested that Rheb is involved in the activation of mTORC1 but not mTORC2 (25).Although Rheb is clearly involved in the activation of mTOR, the mechanism of activation has not been established. We as well as others have suggested a model that involves the interaction of Rheb with the TOR complex (2628). Rheb activation of mTOR kinase activity using immunoprecipitated mTORC1 was reported (29). Rheb has been shown to interact with mTOR (27, 30), and this may involve direct interaction of Rheb with the kinase domain of mTOR (27). However, this Rheb/mTOR interaction is a weak interaction and is not dependent on the presence of GTP bound to Rheb (27, 28). Recently, a different model proposing that FKBP38 (FK506-binding protein 38) mediates the activation of mTORC1 by Rheb was proposed (31, 32). In this model, FKBP38 binds mTOR and negatively regulates mTOR activity, and this negative regulation is blocked by the binding of Rheb to FKBP38. However, recent reports dispute this idea (33).To further characterize Rheb activation of mTOR, we have utilized an in vitro system that reproduces activation of mTORC1 by the addition of recombinant Rheb. We used mTORC1 immunoprecipitated from nutrient-starved cells using anti-raptor antibody and have shown that its kinase activity against 4E-BP1 is dramatically increased by the addition of recombinant Rheb. Importantly, the activation of mTORC1 is specific to Rheb and is dependent on the presence of bound GTP as well as an intact effector domain. FKBP38 is not detected in our preparation and further investigation suggests that FKBP38 is not an essential component for the activation of mTORC1 by Rheb. Our study revealed that Rheb enhances the binding of a substrate 4E-BP1 with mTORC1 rather than increasing the kinase activity of mTOR.  相似文献   

17.
Rapid protein kinase D (PKD) activation and phosphorylation via protein kinase C (PKC) have been extensively documented in many cell types cells stimulated by multiple stimuli. In contrast, little is known about the role and mechanism(s) of a recently identified sustained phase of PKD activation in response to G protein-coupled receptor agonists. To elucidate the role of biphasic PKD activation, we used Swiss 3T3 cells because PKD expression in these cells potently enhanced duration of ERK activation and DNA synthesis in response to Gq-coupled receptor agonists. Cell treatment with the preferential PKC inhibitors GF109203X or Gö6983 profoundly inhibited PKD activation induced by bombesin stimulation for <15 min but did not prevent PKD catalytic activation induced by bombesin stimulation for longer times (>60 min). The existence of sequential PKC-dependent and PKC-independent PKD activation was demonstrated in 3T3 cells stimulated with various concentrations of bombesin (0.3–10 nm) or with vasopressin, a different Gq-coupled receptor agonist. To gain insight into the mechanisms involved, we determined the phosphorylation state of the activation loop residues Ser744 and Ser748. Transphosphorylation targeted Ser744, whereas autophosphorylation was the predominant mechanism for Ser748 in cells stimulated with Gq-coupled receptor agonists. We next determined which phase of PKD activation is responsible for promoting enhanced ERK activation and DNA synthesis in response to Gq-coupled receptor agonists. We show, for the first time, that the PKC-independent phase of PKD activation mediates prolonged ERK signaling and progression to DNA synthesis in response to bombesin or vasopressin through a pathway that requires epidermal growth factor receptor-tyrosine kinase activity. Thus, our results identify a novel mechanism of Gq-coupled receptor-induced mitogenesis mediated by sustained PKD activation through a PKC-independent pathway.The understanding of the mechanisms that control cell proliferation requires the identification of the molecular pathways that govern the transition of quiescent cells into the S phase of the cell cycle. In this context the activation and phosphorylation of protein kinase D (PKD),4 the founding member of a new protein kinase family within the Ca2+/calmodulin-dependent protein kinase (CAMK) group and separate from the previously identified PKCs (for review, see Ref. 1), are attracting intense attention. In unstimulated cells, PKD is in a state of low catalytic (kinase) activity maintained by autoinhibition mediated by the N-terminal domain, a region containing a repeat of cysteinerich zinc finger-like motifs and a pleckstrin homology (PH) domain (14). Physiological activation of PKD within cells occurs via a phosphorylation-dependent mechanism first identified in our laboratory (57). In response to cellular stimuli (1), including phorbol esters, growth factors (e.g. PDGF), and G protein-coupled receptor (GPCR) agonists (6, 816) that signal through Gq, G12, Gi, and Rho (11, 1519), PKD is converted into a form with high catalytic activity, as shown by in vitro kinase assays performed in the absence of lipid co-activators (5, 20).During these studies multiple lines of evidence indicated that PKC activity is necessary for rapid PKD activation within intact cells. For example, rapid PKD activation was selectively and potently blocked by cell treatment with preferential PKC inhibitors (e.g. GF109203X or Gö6983) that do not directly inhibit PKD catalytic activity (5, 20), implying that PKD activation in intact cells is mediated directly or indirectly through PKCs. Many reports demonstrated the operation of a rapid PKC/PKD signaling cascade induced by multiple GPCR agonists and other receptor ligands in a range of cell types (for review, see Ref. 1). Our previous studies identified Ser744 and Ser748 in the PKD activation loop (also referred as activation segment or T-loop) as phosphorylation sites critical for PKC-mediated PKD activation (1, 4, 7, 17, 21). Collectively, these findings demonstrated the existence of a rapidly activated PKC-PKD protein kinase cascade(s). In a recent study we found that the rapid PKC-dependent PKD activation was followed by a late, PKC-independent phase of catalytic activation and phosphorylation induced by stimulation of the bombesin Gq-coupled receptor ectopically expressed in COS-7 cells (22). This study raised the possibility that PKD mediates rapid biological responses downstream of PKCs, whereas, in striking contrast, PKD could mediate long term responses through PKC-independent pathways. Despite its potential importance for defining the role of PKC and PKD in signal transduction, this hypothesis has not been tested in any cell type.Accumulating evidence demonstrates that PKD plays an important role in several cellular processes and activities, including signal transduction (14, 2325), chromatin organization (26), Golgi function (27, 28), gene expression (2931), immune regulation (26), and cell survival, adhesion, motility, differentiation, DNA synthesis, and proliferation (for review, see Ref. 1). In Swiss 3T3 fibroblasts, a cell line used extensively as a model system to elucidate mechanisms of mitogenic signaling (3234), PKD expression potently enhances ERK activation, DNA synthesis, and cell proliferation induced by Gq-coupled receptor agonists (8, 14). Here, we used this model system to elucidate the role and mechanism(s) of biphasic PKD activation. First, we show that the Gq-coupled receptor agonists bombesin and vasopressin, in contrast to phorbol esters, specifically induce PKD activation through early PKC-dependent and late PKC-independent mechanisms in Swiss 3T3 cells. Subsequently, we demonstrate for the first time that the PKC-independent phase of PKD activation is responsible for promoting ERK signaling and progression to DNA synthesis through an epidermal growth factor receptor (EGFR)-dependent pathway. Thus, our results identify a novel mechanism of Gq-coupled receptor-induced mitogenesis mediated by sustained PKD activation through a PKC-independent pathway.  相似文献   

18.
We report here a biochemical and structural characterization of domain 2 of the nonstructural 5A protein (NS5A) from the JFH1 Hepatitis C virus strain and its interactions with cyclophilins A and B (CypA and CypB). Gel filtration chromatography, circular dichroism spectroscopy, and finally NMR spectroscopy all indicate the natively unfolded nature of this NS5A-D2 domain. Because mutations in this domain have been linked to cyclosporin A resistance, we used NMR spectroscopy to investigate potential interactions between NS5A-D2 and cellular CypA and CypB. We observed a direct molecular interaction between NS5A-D2 and both cyclophilins. The interaction surface on the cyclophilins corresponds to their active site, whereas on NS5A-D2, it proved to be distributed over the many proline residues of the domain. NMR heteronuclear exchange spectroscopy yielded direct evidence that many proline residues in NS5A-D2 form a valid substrate for the enzymatic peptidyl-prolyl cis/trans isomerase (PPIase) activity of CypA and CypB.Hepatitis C virus (HCV)4 is a small, positive strand, RNA-enveloped virus belonging to the Flaviviridae family and the genus Hepacivirus. With 120–180 million chronically infected individuals worldwide, hepatitis C virus infection represents a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (1). The HCV viral genome (∼9.6 kb) codes for a unique polyprotein of ∼3000 amino acids (recently reviewed in Refs. 24). Following processing via viral and cellular proteases, this polyprotein gives rise to at least 10 viral proteins, divided into structural (core, E1, and E2 envelope glycoproteins) and nonstructural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, NS5B). Nonstructural proteins are involved in polyprotein processing and viral replication. The set composed of NS3, NS4A, NS4B, NS5A, and NS5B constitutes the minimal protein component required for viral replication (5).Cyclophilins are cellular proteins that have been identified first as CsA-binding proteins (6). As FK506-binding proteins (FKBP) and parvulins, cyclophilins are peptidyl-prolyl cis/trans isomerases (PPIase) that catalyze the cis/trans isomerization of the peptide linkage preceding a proline (6, 7). Several subtypes of cyclophilins are present in mammalian cells (8). They share a high sequence homology and a well conserved three-dimensional structure but display significant differences in their primary cellular localization and in abundance (9). CypA, the most abundant of the cyclophilins, is primarily cytoplasmic, whereas CypB is directed to the endoplasmic reticulum lumen or the secretory pathway. CypD, on the other hand, is the mitochondrial cyclophilin. Cyclophilins are involved in numerous physiological processes such as protein folding, immune response, and apoptosis and also in the replication cycle of viruses including vaccinia virus, vesicular stomatitis virus, severe acute respiratory syndrome (SARS)-coronavirus, and human immunodeficiency virus (HIV) (for review see Ref. 10). For HIV, CypA has been shown to interact with the capsid domain of the HIV Gag precursor polyprotein (11). CypA thereby competes with capsid domain/TRIM5 interaction, resulting in a loss of the antiviral protective effect of the cellular restriction factor TRIM5α (12, 13). Moreover, it has been shown that CypA catalyzes the cis/trans isomerization of Gly221-Pro222 in the capsid domain and that it has functional consequences for HIV replication efficiency (1416). For HCV, Watashi et al. (17) have described a molecular and functional interaction between NS5B, the viral RNA-dependent RNA polymerase (RdRp), and cyclophilin B (CypB). CypB may be a key regulator in HCV replication by modulating the affinity of NS5B for RNA. This regulation is abolished in the presence of cyclosporin A (CsA), an inhibitor of cyclophilins (6). These results provided for the first time a molecular mechanism for the early-on observed anti-HCV activity of CsA (1820). Although this initial report suggests that only CypB would be involved in the HCV replication process (17), a growing number of studies have recently pointed out a role for other cyclophilins (2125).In vitro selection of CsA-resistant HCV mutants indicated the importance of two HCV nonstructural proteins, NS5B and NS5A (26), with a preponderant effect for mutations in the C-terminal half of NS5A. NS5A is a large phosphoprotein (49 kDa), indispensable for HCV replication and particle assembly (2729), but for which the exact function(s) in the HCV replication cycle remain to be elucidated. This nonstructural protein is anchored to the cytoplasmic leaflet of the endoplasmic reticulum membrane via an N-terminal amphipathic α-helix (residues 1–27) (30, 31). Its cytoplasmic sequence can be divided into three domains: D1 (residues 27–213), D2 (residues 250–342), and D3 (residues 356–447), all connected by low complexity sequences (32). D1, a zinc-binding domain, adopts a dimeric claw-shaped structure, which is proposed to interact with RNA (33, 34). NS5A-D2 is essential for HCV replication, whereas NS5A-D3 is a key determinant for virus infectious particle assembly (27, 35). NS5A-D2 and -D3, for which sequence conservation among HCV genotypes is significantly lower than for D1, have been proposed to be natively unfolded domains (28, 32). Molecular and structural characterization of NS5A-D2 from HCV genotype 1a has confirmed the disordered nature of this domain (36, 37).As it is still not clear which cyclophilins are cofactors for HCV replication, and as mutations in HCV NS5A protein have been associated with CsA resistance, we decided to examine the interaction between both CypA and CypB and domain 2 of the HCV NS5A protein. We first characterized, at the molecular level, NS5A-D2 from the HCV JFH1 infectious strain (genotype 2a) and showed by NMR spectroscopy that this natively unfolded domain indeed interacts with both cyclophilin A and cyclophilin B. Our NMR chemical shift mapping experiments indicated that the interaction occurs at the level of the cyclophilin active site, whereas it lacks a precise localization on NS5A-D2. A peptide derived from the only well conserved amino acid motif in NS5A-D2 did interact with cyclophilin A but only with a 10-fold lower affinity than the full domain. We concluded from this that the many proline residues form multiple anchoring points, especially when they adopt the cis conformation. NMR exchange spectroscopy further demonstrated that NS5A-D2 is a substrate for the PPIase activities of both CypA and CypB. Both the NS5A/cyclophilin interaction and the PPIase activity of the cyclophilins on NS5A-D2 were abolished by CsA, underscoring the specificity of the interaction.  相似文献   

19.
We have investigated the possible biochemical basis for enhancements in NO production in endothelial cells that have been correlated with agonist- or shear stress-evoked phosphorylation at Ser-1179. We have found that a phosphomimetic substitution at Ser-1179 doubles maximal synthase activity, partially disinhibits cytochrome c reductase activity, and lowers the EC50(Ca2+) values for calmodulin binding and enzyme activation from the control values of 182 ± 2 and 422 ± 22 nm to 116 ± 2 and 300 ± 10 nm. These are similar to the effects of a phosphomimetic substitution at Ser-617 (Tran, Q. K., Leonard, J., Black, D. J., and Persechini, A. (2008) Biochemistry 47, 7557–7566). Although combining substitutions at Ser-617 and Ser-1179 has no additional effect on maximal synthase activity, cooperativity between the two substitutions completely disinhibits reductase activity and further reduces the EC50(Ca2+) values for calmodulin binding and enzyme activation to 77 ± 2 and 130 ± 5 nm. We have confirmed that specific Akt-catalyzed phosphorylation of Ser-617 and Ser-1179 and phosphomimetic substitutions at these positions have similar functional effects. Changes in the biochemical properties of eNOS produced by combined phosphorylation at Ser-617 and Ser-1179 are predicted to substantially increase synthase activity in cells at a typical basal free Ca2+ concentration of 50–100 nm.The nitric-oxide synthases catalyze formation of NO and l-citrulline from l-arginine and O2, with NADPH as the electron donor (1). The role of NO generated by endothelial nitricoxide synthase (eNOS)2 in the regulation of smooth muscle tone is well established and was the first of several physiological roles for this small molecule that have so far been identified (2). The nitric-oxide synthases are homodimers of 130–160-kDa subunits. Each subunit contains a reductase and oxygenase domain (1). A significant difference between the reductase domains in eNOS and nNOS and the homologous P450 reductases is the presence of inserts in these synthase isoforms that appear to maintain them in their inactive states (3, 4). A calmodulin (CaM)-binding domain is located in the linker that connects the reductase and oxygenase domains, and the endothelial and neuronal synthases both require Ca2+ and exogenous CaM for activity (5, 6). When CaM is bound, it somehow counteracts the effects of the autoinhibitory insert(s) in the reductase. The high resolution structure for the complex between (Ca2+)4-CaM and the isolated CaM-binding domain from eNOS indicates that the C-ter and N-ter lobes of CaM, which each contain a pair of Ca2+-binding sites, enfold the domain, as has been observed in several other such CaM-peptide complexes (7). Consistent with this structure, investigations of CaM-dependent activation of the neuronal synthase suggest that both CaM lobes must participate (8, 9).Bovine eNOS can be phosphorylated in endothelial cells at Ser-116, Thr-497, Ser-617, Ser-635, and Ser-1179 (1012). There are equivalent phosphorylation sites in the human enzyme (1012). Phosphorylation of the bovine enzyme at Thr-497, which is located in the CaM-binding domain, blocks CaM binding and enzyme activation (7, 11, 13, 14). Ser-116 can be basally phosphorylated in cells (10, 11, 13, 15), and dephosphorylation of this site has been correlated with increased NO production (13, 15). However, it has also been reported that a phosphomimetic substitution at this position has no effect on enzyme activity measured in vitro (13). Ser-1179 is phosphorylated in response to a variety of stimuli, and this has been reliably correlated with enhanced NO production in cells (10, 11). Indeed, NO production is elevated in transgenic endothelium expressing an eNOS mutant containing an S1179D substitution, but not in tissue expressing an S1179A mutant (16). Shear stress or insulin treatment is correlated with Akt-catalyzed phosphorylation of Ser-1179 in endothelial cells, and this is correlated with increased NO production in the absence of extracellular Ca2+ (1719). Akt-catalyzed phosphorylation or an S1179D substitution has also been correlated with increased synthase activity in cell extracts at low intracellular free [Ca2+] (17). Increased NO production has also been observed in cells expressing an eNOS mutant containing an S617D substitution, and physiological stimuli such as shear-stress, bradykinin, VEGF, and ATP appear to stimulate Akt-catalyzed phosphorylation of Ser-617 and Ser-1179 (12, 13, 20). Although S617D eNOS has been reported to have the same maximum activity in vitro as the wild type enzyme (20), in our hands an S617D substitution increases the maximal CaM-dependent synthase activity of purified mutant enzyme ∼2-fold, partially disinhibits reductase activity, and reduces the EC50(Ca2+) values for CaM binding and enzyme activation (21).In this report, we describe the effects of a phosphomimetic Asp substitution at Ser-1179 in eNOS on the Ca2+ dependence of CaM binding and CaM-dependent activation of reductase and synthase activities. We also describe the effects on these properties of combining this substitution with one at Ser-617. Finally, we demonstrate that Akt-catalyzed phosphorylation and Asp substitutions at Ser-617 and Ser-1179 have similar functional effects. Our results suggest that phosphorylation of eNOS at Ser-617 and Ser-1179 can substantially increase synthase activity in cells at a typical basal free Ca2+ concentration of 50–100 nm, while single phosphorylations at these sites produce smaller activity increases, and can do so only at higher free Ca2+ concentrations.  相似文献   

20.
Neurotransmitter release from presynaptic nerve terminals is regulated by SNARE complex-mediated synaptic vesicle fusion. Tomosyn, a negative regulator of neurotransmitter release, which is composed of N-terminal WD40 repeats, a tail domain, and a C-terminal VAMP-like domain, is known to inhibit SNARE complex formation by sequestering target SNAREs (t-SNAREs) upon interaction of its C-terminal VAMP-like domain with t-SNAREs. However, it remains unclear how the inhibitory activity of tomosyn is regulated. Here we show that the tail domain functions as a regulator of the inhibitory activity of tomosyn through intramolecular interactions. The binding of the tail domain to the C-terminal VAMP-like domain interfered with the interaction of the C-terminal VAMP-like domain with t-SNAREs, and thereby repressed the inhibitory activity of tomosyn on the SNARE complex formation. The repressed inhibitory activity of tomosyn was restored by the binding of the tail domain to the N-terminal WD40 repeats. These results indicate that the probable conformational change of tomosyn mediated by the intramolecular interactions of the tail domain controls its inhibitory activity on the SNARE complex formation, leading to a regulated inhibition of neurotransmitter release.Synaptic vesicles are transported to the presynaptic plasma membrane where Ca2+ channels are located. Depolarization induces Ca2+ influx into the cytosol of nerve terminals through the Ca2+ channels, and this Ca2+ influx initiates the fusion of the vesicles with the plasma membrane, finally leading to exocytosis of neurotransmitters (1). Soluble N-ethylmaleimide-sensitive fusion protein attachment protein (SNAP)2 receptors (SNAREs) are essential for synaptic vesicle exocytosis (2-5). Synaptic vesicles are endowed with vesicle-associated membrane protein 2 (VAMP-2) as a vesicular SNARE, whereas the presynaptic plasma membrane is endowed with syntaxin-1 and SNAP-25 as target SNAREs. VAMP-2 interacts with SNAP-25 and syntaxin-1 to form a stable SNARE complex (6-9). The formation of the SNARE complex then brings synaptic vesicles and the plasma membrane into close apposition, and provides the energy that drives the mixing of the two lipid bilayers (3-5, 9).Tomosyn is a syntaxin-1-binding protein that we originally identified (10). Tomosyn contains N-terminal WD40 repeats, a tail domain, and a C-terminal domain homologous to VAMP-2. The C-terminal VAMP-like domain (VLD) of tomosyn acts as a SNARE domain that competes with VAMP-2. Indeed, a structural study of the VLD revealed that the VLD, syntaxin-1, and SNAP-25 assemble into a SNARE complex-like structure (referred to as tomosyn complex hereafter) (11). Tomosyn inhibits SNARE complex formation by sequestering t-SNAREs through the tomosyn complex formation, and thereby inhibits SNARE-dependent neurotransmitter release. The large N-terminal region of tomosyn shares similarity to the Drosophila tumor suppressor lethal giant larvae (Lgl), the mammalian homologues M-Lgl1 and M-Lgl2, and yeast proteins Sro7p and Sro77p (12, 13). Consistent with the function of tomosyn, Lgl family members play an important role in polarized exocytosis by regulating SNARE function on the plasma membrane in yeast and epithelial cells (12, 13). However, only tomosyn, Sro7, and Sro77 have the tail domains and the VLDs, suggesting that their structural regulation is evolutionally conserved. Recently, the crystal structure of Sro7 was solved and revealed that the tail domain of Sro7 binds its WD40 repeats (14). Sec9, a yeast counterpart of SNAP-25, also binds the WD40 repeats of Sro7. This binding inhibits the SNARE complex formation and exocytosis by sequestering Sec9. In addition, binding of the tail domain to the WD40 repeats causes a conformational change of Sro7 and prevents the interaction of the WD40 repeats with Sec9, leading to regulation of the inhibitory activity of Sro7 on the SNARE complex formation (14). However, the solved structure of Sro7 lacks its VLD. Therefore, involvement of the activity of the VLD in the conformational change of Sro7 remains elusive.Genetic studies in Caenorhabditis elegans showed that TOM-1, an ortholog of vertebrate tomosyn, inhibits the priming of synaptic vesicles, and that this priming is modulated by the balance between TOM-1 and UNC-13 (15, 16). Tomosyn was also shown to be involved in inhibition of the exocytosis of dense core granules in adrenal chromaffin cells and PC12 cells (17, 18). Thus, evidence is accumulating that tomosyn acts as a negative regulator for formation of the SNARE complex, thereby inhibiting various vesicle fusion events. However, the precise molecular mechanism regulating the inhibitory action of tomosyn has yet to be elucidated.In the present study, we show that the tail domain of tomosyn binds both the WD40 repeats and the VLD and functions as a regulator for the inhibitory activity of tomosyn on the SNARE complex formation. Our results indicate that the probable conformational change of tomosyn mediated by the intramolecular interactions of the tail domain serves for controlling the inhibitory activity of the VLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号