首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Human brain hexokinase (hexokinase I) was produced in Escherichia coli from a synthetic gene under control of the bacteriophage T7 promoter. The expressed coding region derives from a human cDNA clone thought to specify hexokinase I based on amino acid sequence identity between the predicted translation product and hexokinase I from rat brain. The open reading frame from this cDNA was fused to the promoter and 5' flanking region of T7 gene 10, and expressed in E. coli by induction of T7 RNA polymerase. Induced cells contained a hexokinase activity and an abundant protein of apparent molecular weight 100,000, neither of which was present in cells lacking T7 RNA polymerase. Enzyme purified to near homogeneity consisted of a 100,000 Da protein, the size predicted from the nucleotide sequence of the expressed cDNA. The purified enzyme had Michaelis constants of 32 microM and 0.3 mM for glucose and ATP, respectively, and bound to rat liver mitochondria in the presence of MgCl2. Enzymatic activity was inhibited by glucose-6-P and this inhibition was relieved by inorganic phosphate. Deinhibition by phosphate is a property specific to brain hexokinase.  相似文献   

3.
The oxidized form of vitamin C (dehydroascorbic acid, DHA) completely and irreversibly inactivates recombinant human hexokinase type I, in a pseudo-first order fashion. The inactivation reaction occurs without saturation, indicating that DHA does not form a reversible complex with hexokinase. Further characterization of this response revealed that the inactivation does not require oxygen and that dithiothreitol, while able to prevent the DHA-mediated loss of enzyme activity, failed to restore the activity of the DHA-inhibited enzyme. Inactivation was not associated with cleavage of the peptide chain or cross-linking. The decay in enzymatic activity was however both dependent on deprotonation of a residue with an alkaline pKa and associated with covalent binding of DHA to the protein. In addition, inactivation of hexokinase decreased or increased, respectively, in the presence of the substrates glucose or MgATP. Finally, amino acid analysis of the DHA-modified hexokinase revealed a decrease of cysteine residues.Taken together, the above results are consistent with the possibility that covalent binding of the reagent with a thiol group of cysteine is a critical event for the DHA-mediated loss of hexokinase activity.  相似文献   

4.
Glucose 6-phosphate as well as several other hexose mono- and diphosphates were found by kinetic studies to be competitive inhibitors of human hexokinase I (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) versus MgATP. Limited proteolysis by trypsin does not destroy the hexokinase activity but produces as well-defined peptide map when the digested enzyme is electrophoresed in the presence of sodium dodecyl sulfate. MgATP at subsaturating concentration protects hexokinase from trypsin digestion, while phosphorylated sugars, Mg2+, glucose and inorganic phosphate have no effect. Addition of glucose 6-phosphate to the MgATP-hexokinase complex at a concentration 100-times higher than its Ki was not able to reverse the MgATP-induced conformation of hexokinase, suggesting that the binding of glucose 6-phosphate and MgATP are not mutually exclusive. Similar evidence was also obtained by studies of the induced modifications of ultraviolet spectra of hexokinase by the binding of MgATP, glucose 6-phosphate and both compounds. Among a library of monoclonal antibodies produced against rat brain hexokinase I and that recognize human placenta hexokinase I, one (4A6) was found to be able to modify the Ki of glucose 6-phosphate (from 25 to 140 microM) for human hexokinase I. The same antibody also weakens the inhibition by all the other hexoses phosphate studied without affecting the apparent Km for MgATP (from 0.6 to 0.75 mM) or for glucose. These data support the view for the binding of glucose 6-phosphate at a regulatory site on the enzyme.  相似文献   

5.
A partial cDNA sequence coding for the human extracellular matrix protein undulin has been completed. The completed sequence provides conclusive evidence for the suggested identity of undulin and collagen type XIV. Two differently sized polyproteins of 1780 and 1796 amino acids, with an overall amino acid sequence identity of 75% compared to chicken CXIV, emerge from variant 3′ sequence ends encoding the C-terminal non-collagenous (NC) NC1 domain of human collagen type XIV.  相似文献   

6.
7.
Full-length hexokinase (HK; ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1), a truncate form of the enzyme lacking the first 11 amino acids (HK-11aa) and the 50 kDa C-terminal half (mini-HK) containing the catalytic domain, were overexpressed and purified to homogeneity to investigate the influence of the N-terminal region of human hexokinase type I (HK) on its regulatory properties. All forms of the enzyme are catalytically active with the HK-11aa being the most active. All the forms of HK showed the same affinity for glucose and MgATP and were also inhibited by glucose 6-phosphate (Glc 6-P) competitively vs. MgATP with similar Kis (28.5-37 M). Glucose 1,6-bisphosphate (Glc 1,6-P2) was also a strong inhibitor of all HKs without significant differences among the different truncate forms of the enzyme (Kis 49.5-59 M). At low concentrations (0-3 mM), Pi was able to reverse the sugar phosphate inhibition of the full-length HK and HK-11aa but not of the mini-HK. In contrast, at high concentrations Pi was an inhibitor of all the hexokinases investigated. These findings confirm that Pi has a low affinity binding site on the C-terminal of HK while counteracts glucose 6-phosphate inhibition by binding to or requiring the N-terminal half of the enzyme. The first 11 N-terminal amino acids influence the specific activity of HK but are unable to affect the kinetic properties investigated.  相似文献   

8.
M P Bernard  M Kolbe  D Weil  M L Chu 《Biochemistry》1985,24(11):2698-2704
We report the isolation and characterization of four overlapping cDNA clones coding for human cellular fibronectin which continuously cover more than 3 kilobases in length. The nucleotide sequence of these cDNAs has been determined, thus elucidating the amino acid sequence of the C-terminal 794 residues of human fibronectin, which cover the edge of cellular-, heparin-, and fibrin-binding domains of this protein. Comparisons of the nucleotide sequences and the deduced amino acid sequences with those of rat [Schwarzbauer, J. E., Tamkun, J. W., Lemischka, I. R., & Hynes, R. O. (1983) Cell (Cambridge, Mass.) 35, 421] indicate a high degree of conservation at both nucleotide and amino acid levels. Comparison with previously published data on amino acid sequences of bovine fibronectin made it possible to identify structurally important features of the protein during the evolution of human, calf, and rat. The deduced human amino acid sequences contain five type III and three type I repeats of internal homologies. The interspecies conservation in amino acids is more pronounced in regions containing the internal repeats and within each functional domain. The implications of these interspecies conservation and divergence are discussed.  相似文献   

9.
Molecular cloning and characterization of Brugia malayi hexokinase   总被引:1,自引:0,他引:1  
5' EST from filarial gene database has been subjected to 3' rapid amplification of cDNA ends (RACE), semi-nested PCR and PCR to obtain full-length cDNA of Brugia malayi. Full-length hexokinase gene was obtained from cDNA using gene specific primers. The elicited PCR product was cloned, sequenced and expressed as an active enzyme in Escherichia coli. Sequence analysis of B. malayi hexokinase (BmHk) revealed 59% identity with nematode Caenorhabditis elegans but low similarity with all other available hexokinases including human. BmHk, an apparent tetramer with subunit molecular mass of 72 kDa, was able to phosphorylate glucose, fructose, mannose, maltose and galactose. The Km values for glucose, fructose and ATP were found to be 0.035+/-0.005, 75+/-0.3 and 1.09+/-0.5 mM respectively. BmHk was strongly inhibited by ADP, glucosamine, N-acetyl glucosamine and mannoheptulose. The recombinant enzyme was found to be activated by glucose-6-phosphate. ADP exhibited noncompetitive inhibition with the substrate glucose (Ki=0.55 mM) while, mixed type of inhibition was observed with inorganic pyrophosphate (PPi) when ATP was used as substrate (Ki=9.92 microM). The enzyme activity is highly dependent on maintenance of free sulfhydryl groups. CD analysis indicated that BmHk is composed of 37% alpha-helices and 26% beta-sheets. The observed differences in kinetic properties of BmHk as compared to host enzyme may facilitate designing of specific inhibitors against BmHk.  相似文献   

10.
Molecular cloning of DNA complementary to bovine growth hormone mRNA   总被引:13,自引:0,他引:13  
We have cloned DNA complementary to mRNA coding for bovine growth hormone (bGH). Double-stranded DNA complementary to bovine pituitary mRNA was inserted into the Pst I site of plasmid pBR322 by the dC x dG tailing technique and amplified in E. coli x 1776. A recombinant plasmid containing bGH cDNA ws identified by hybridization to cloned rat growth hormone cDNA. It contains the entire coding and 3'-untranslated regions and 31 bases in the 5'-untranslated region. Nucleotide sequence analysis determined the sequence of the 26-amino acid signal peptide and confirmed the published amino acid sequence of the secreted hormone at all but 2 residues. Codon usage is nonrandom, with 81.7% of the codons ending in G or C. The nucleotide sequence of bGH mRNA is 83.9% homologous with rat GH mRNA and 76.5% homologous with human GH mRNA, while the respective amino acid sequence homologies are 83.5% and 66.8%.  相似文献   

11.
王桂玲  黄东阳 《遗传学报》2004,31(4):403-410
从牛的肝脏中快速抽提总RNA,根据GenBank已发表NADP(H)-依赖的视黄醇脱氢酶基因(NRDR)的cDNA序列,设计并合成特异引物,利用cDNA末端快速扩增(RACE)方法和反转录-聚合酶链式反应(RT-PCR),得到牛肝内的NRDR cDNA的全长序列。经测序证实,牛肝NRDR的全长cDNA序列为1266bp,其开放读码框架在24~806bp,编码260个氨基酸(GenBank登录号:AF487454)。根据NRDR基因推导出的氨基酸序列与人、鼠、兔有高度同源性,并含有SDR超家族成员的两个高度保守的模序,在其C-端含有过氧化物酶体的靶向序列为SHL。结果表明,牛的NRDR应属于过氧化物酶体内SDR超家族成员并在维甲酸合成的限速步骤起作用的酶,也为维甲酸合成的传统通路提供一个补充。  相似文献   

12.
ABSTRACT

Inhibition by its product, glucose, is a kinetic property of hexokinase type III. In this paper, we report the overexpression in Escherichia coli of human hexokinase type III. The recombinant enzyme was genetically fused with a hexahistidine peptide at the C-terminal end. This modification confers to the product the ability to bind the Ni2+ ion immobilised into agarose by nitrilotriacetic acid (NTA) groups. The purification was performed by one-step column chromatography using ammonium sulphate as stabilising agent.

Recombinant hexokinase type III appears as a single band of approximately 100 kDa on a SDS-PAGE gel and shows specific activity of 16 U/mg. Its kinetic parameters are comparable to those of the native enzyme, including the fact that it can be inhibited by glucose. The comparison of these results with the properties of the overexpressed carboxyl-domain led us to suppose that the inhibition site for glucose required the presence of the N-terminal domain.  相似文献   

13.
The first representative of a group of mammalian, low molecular weight phosphotyrosyl protein phosphatases was cloned, sequenced and expressed in Escherichia coli. Using a 61-mer oligonucleotide probe based on the amino acid sequence of the purified enzyme, several overlapping cDNA clones were isolated from a bovine heart cDNA library. A full-length clone was obtained consisting of a 27-bp 5' noncoding region, an open reading frame encoding the expected 157 amino acid protein, and an extensive 3' nontranslated sequence. The identification of the clone as full length was consistent with results obtained in mRNA blotting experiments using poly(A)+ mRNA from bovine heart. The coding sequence was placed downstream of a bacteriophage T7 promoter, and protein was expressed in E. coli. The expressed enzyme was soluble, and catalytically active and was readily isolated and purified. The recombinant protein had the expected Mr of 18,000 (estimated by SDS-PAGE), and it showed cross-reactivity with antisera that had been raised against both the bovine heart and the human placenta enzymes. The amino acid sequence of the N-terminal region of the expressed protein showed that methionine had been removed, resulting in a sequence identical to that of the enzyme isolated from the bovine tissue, with the exception that the N-terminal alanine of the protein from tissue is acetylated. A kinetically competent phosphoenzyme intermediate was trapped from a phosphatase-catalyzed reaction. Using 31P NMR, the covalent intermediate was identified as a cysteinyl phosphate. By analogy with the nomenclature used for serine esterases, these enzymes may be called cysteine phosphatases.  相似文献   

14.
Hexokinase I, the pacemaker of glycolysis in brain tissue, is composed of two structurally similar halves connected by an alpha-helix. The enzyme dimerizes at elevated protein concentrations in solution and in crystal structures; however, almost all published data reflect the properties of a hexokinase I monomer in solution. Crystal structures of mutant forms of recombinant human hexokinase I, presented here, reveal the enzyme monomer for the first time. The mutant hexokinases bind both glucose 6-phosphate and glucose with high affinity to their N and C-terminal halves, and ADP, also with high affinity, to a site near the N terminus of the polypeptide chain. Exposure of the monomer crystals to ADP in the complete absence of glucose 6-phosphate reveals a second binding site for adenine nucleotides at the putative active site (C-half), with conformational changes extending 15 A to the contact interface between the N and C-halves. The structures reveal distinct conformational states for the C-half and a rigid-body rotation of the N-half, as possible elements of a structure-based mechanism for allosteric regulation of catalysis.  相似文献   

15.
In order to produce a recombinant rhamnogalacturonase from the basidiomycete Irpex lacteus using a molecular approach, PCR primers were designed based on a sequence alignment of four known ascomycete rhamnogalacturonases. Using 5' and 3' rapid amplification of cDNA ends (RACE) experiments, a 1,437-bp full-length cDNA containing an open reading frame of 1,329 bp was isolated. The corresponding putative protein sequence is of 443 amino acids and contains a secretion signal sequence of 22 amino acids. The theoretical mass of this protein is 44.6 kDa with a theoretical isoelectric point of 6.2. The amino acid sequence shared not only significant identities with ascomycete and basidiomycete putative rhamnogalacturonases but also complete similarity with peptides obtained from a recently purified rhamnogalacturonase from I. lacteus. The recombinant protein was successfully expressed in active form in Pichia pastoris. SDS-PAGE assay demonstrated that the recombinant enzyme was secreted in the culture medium and had a molar mass of 56 kDa. This recombinant rhamnogalacturonan hydrolase exhibited a pH optimum between 4.5 and 5 and a temperature optimum between 40°C and 50°C, which correspond to that of the native rhamnogalacturonase from I. lacteus. The study of its specificity through reaction products analysis showed that it was highly tolerant to the presence of acetyl groups on its substrate, even more than the native enzyme.  相似文献   

16.
17.
We have isolated a near full-length cDNA encoding human leukotriene A4 hydrolase, which synthesizes a potent chemotactic and spasmogenic compound, leukotriene B4. A human spleen cDNA library was screened with a 48-mer oligonucleotide probe, synthesized according to the partial amino acid sequence of the human leukocyte enzyme. The nucleotide sequence of the cDNA had an open reading frame of 1,833 base pairs, which contained regions coding for the N-terminal amino acid sequence, the amino acid sequence for the probe design, and several other peptide sequences of the enzyme. The complete primary structure of the enzyme composed of 610 amino acid residues (molecular weight, 69,153) was deduced from the cDNA.  相似文献   

18.
The conversion of glucose into glucose 6-phosphate (Glc 6-P)1 traps glucose in a chemical state in which it cannot leave the cell and hence commits glucose to metabolism. In human tissues there are at least three hexokinase isoenzymes responsible for hexose phosphorylation. These enzymes are constituted by a single polypeptide chain with a molecular weight of approximately 100 kDa. Among these isoenzymes, hexokinase type I is the most widely expressed in mammalian tissues and shows reversion of Glc 6-P inhibition by physiological levels of inorganic phosphate. In this work the hexokinase I from human brain was overexpressed in Escherichia coli, as a hexahistidine-tagged protein with the tag extending the C-terminal end. An average of 900 U per liter of culture was obtained. The expressed protein was one-step purified by metal chelate affinity chromatography performed in NTA-agarose column charged with Ni(2+) ions. In order to stabilize the enzymatic activity 0.5 M ammonium sulfate was added to elution buffer. The specific activity of purified hexokinase I was 67.8 U/mg. The recombinant enzyme shows kinetic properties in agreement with those described for the native enzyme, and thus it can be used for biophysical and biochemical investigation.  相似文献   

19.
In this study we report the isolation and characterization of three overlapping cDNA clones for the type I beta isozyme of cGMP-dependent protein kinase (cGK) from human placenta libraries. The composite sequence was 3740 nucleotides long and contained 58 nucleotides from the 5'-noncoding region, an open reading frame of 2061 bases including the stop codon, and a 3'-noncoding region of 1621 nucleotides. The predicted full-length human type I beta cGK protein contained 686 amino acids including the initiator methionine, and had an estimated molecular mass of 77,803 Da. On comparison to the published amino acid sequence of bovine lung I alpha, human placenta I beta cGK differed by only two amino acids in the carboxyl-terminal region (amino acids 105-686). In contrast, the amino-terminal region of the two proteins was markedly different (only 36% similarity), and human I beta cGK was 16 amino acids longer. In a specific region in the amino-terminus (amino acids 63-75), 12 out of 13 amino acids of the human I beta cGK were identical to the partial amino acid sequence recently published for a new I beta isoform of cGK from bovine aorta. Northern blot analysis demonstrated a human I beta cGK mRNA, 7 kb in size, in human uterus and weakly in placenta. An mRNA of 7 kb was also observed in rat cerebellum, cerebrum, lung, kidney, and adrenal, whereas an mRNA doublet of 7.5 and 6.5 kb were observed in rat heart. Comparison of Northern and Western blot analyses demonstrated that the mRNA and protein for cerebellar cGK increased during the development of rats from 5 to 30 days old, whereas the 6.5 kb mRNA in rat heart declined.  相似文献   

20.
While studying the cellular localization and activity of enzymes involved in heparan sulfate biosynthesis, we discovered that the published sequence for the glucuronic acid C5-epimerase responsible for the interconversion of d-glucuronic acid and l-iduronic acid residues encodes a truncated protein. Genome analysis and 5'-rapid amplification of cDNA ends was used to clone the full-length cDNA from a mouse mastocytoma cell line. The extended cDNA encodes for an additional 174 amino acids at the amino terminus of the protein. The murine sequence is 95% identical to the human epimerase identified from genomic sequences and fits with the general size and structure of the gene from Drosophila melanogaster and Caenorhabditis elegans. Full-length epimerase is predicted to have a type II transmembrane topology with a 17-amino acid transmembrane domain and an 11-amino acid cytoplasmic tail. An assay with increased sensitivity was devised that detects enzyme activity in extracts prepared from cultured cells and in recombinant proteins. Unlike other enzymes involved in glycosaminoglycan biosynthesis, the addition of a c-myc tag or green fluorescent protein to the highly conserved COOH-terminal portion of the protein inhibits its activity. The amino-terminally truncated epimerase does not localize to any cellular compartment, whereas the full-length enzyme is in the Golgi, where heparan sulfate synthesis is thought to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号