首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eleven species of Amazon parrots (genus Amazona) are known to occur in Brazil, and nest poaching and illegal traffic pose serious conservation threats to these species. When the illegal owners realize these animals are incompatible with their expectations and lifestyle, or when the police arrests traders and owners, these trafficked animals are often considered unfit for release and sent to local zoos and captive breeders. A retrospective survey of animal and necropsy records from 1986 to 2007 was used to evaluate the impacts of animal traffic on the population composition and mortality patterns of Amazon parrots at the Quinzinho de Barros Municipal Zoological Park, Sorocaba, Brazil. Data were obtained for 374 Amazon parrots of ten Brazilian species, and there was evidence that the studied population could be split into two major groups: a majority belonging to the Amazona aestiva species and a minority belonging to the remaining species. In comparison, the animals of the first group were more frequently admitted from traffic‐related origins (98 vs. 75%), had a shorter lifespan (median 301 days vs. 848 days) and a higher mortality within the first year postadmission (54 vs. 37%), were less likely to receive expensive treatments, and were more frequently housed off‐exhibit. On an average, parrots were found to have a short postadmission lifespan (median 356 days), with 92.5% of the birds dying within their first five years in captivity. The paper discusses the difficult dilemmas these incoming traffic‐related animals pose to zoo management and official anti‐traffic policies. Zoo Biol 29:600–614, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
We analyzed the population genetic structure and demographic history of 20 Lymantria dispar populations from Far East Asia using microsatellite loci and mitochondrial genes. In the microsatellite analysis, the genetic distances based on pairwise FST values ranged from 0.0087 to 0.1171. A NeighborNet network based on pairwise FST genetic distances showed that the 20 regional populations were divided into five groups. Bayesian clustering analysis (K = 3) demonstrated the same groupings. The populations in the Korean Peninsula and adjacent regions, in particular, showed a mixed genetic pattern. In the mitochondrial genetic analysis based on 98 haplotypes, the median‐joining network exhibited a star shape that was focused on three high‐frequency haplotypes (Haplotype 1: central Korea and adjacent regions, Group 1; Haplotype 37: southern Korea, Group 2; and Haplotype 90: Hokkaido area, Group 3) connected by low‐frequency haplotypes. The mismatch distribution dividing the three groups was unimodal. In the neutral test, Tajima's D and Fu's FS tests were negative. We can thus infer that the Far East Asian populations of L. dispar underwent a sudden population expansion. Based on the age expansion parameter, the expansion time was inferred to be approximately 53,652 years before present (ybp) for Group 1, approximately 65,043 ybp for Group 2, and approximately 76,086 ybp for Group 3. We propose that the mixed genetic pattern of the inland populations of Far East Asia is due to these expansions and that the inland populations of the region should be treated as valid subspecies that are distinguishable from other subspecies by genetic traits.  相似文献   

3.
Integrating information from species occurrence data, environmental variables and molecular markers can provide valuable insights about the processes of population persistence and differentiation. In this study, we present the most comprehensive overview of the evolutionary history of the North African salamander Salamandra algira (Caudata, Salamandridae) to date, including analyses of climatic and topographical variables, and sequences of two mitochondrial and two nuclear DNA fragments, with a special focus on Algerian populations, under‐represented in previous studies. Coalescent‐based phylogenetic analyses of mtDNA data recover four well‐supported population groups corresponding to described subspecies, with a western clade including populations in north‐western Morocco (with two subclades corresponding to the subspecies tingitana and splendens), and an eastern clade including populations from north‐eastern Morocco (subspecies spelaea) and Algeria (subspecies algira). Inferred split times between major clades date back to the Miocene, with additional splits within each major clade in the Plio‐Pleistocene. Present climatic (aridity) and topographical factors account for geographical discontinuities across population groups and help identify potential areas of secondary contact between clades corresponding to the subspecies tingitana and splendens in the Rif mountains in Morocco. Niche analysis indicates the absence of phylogenetic signal in the use of environmental space in this species.  相似文献   

4.
Traditional subspecies classifications may suggest phylogenetic relationships that are discordant with evolutionary history and mislead evolutionary inference. To more accurately describe evolutionary relationships and inform conservation efforts, we investigated the genetic relationships and demographic histories of Buteo lineatus subspecies in eastern and western North America using 21 nuclear microsatellite loci and 375-base pairs of mitochondrial control region sequence. Frequency based analyses of mitochondrial sequence data support significant population distinction between eastern (B. l. lineatus/alleni/texanus) and western (B. l. elegans) subspecies of B. lineatus. This distinction was further supported by frequency and Bayesian analyses of the microsatellite data. We found evidence of differing demographic histories between regions; among eastern sites, mitochondrial data suggested that rapid population expansion occurred following the end of the last glacial maximum, with B. l. texanus population expansion preceding that of B. l. lineatus/alleni. No evidence of post-glacial population expansion was detected among western samples (B. l. elegans). Rather, microsatellite data suggest that the western population has experienced a recent bottleneck, presumably associated with extensive anthropogenic habitat loss during the 19th and 20th centuries. Our data indicate that eastern and western populations of B. lineatus are genetically distinct lineages, have experienced very different demographic histories, and suggest management as separate conservation units may be warranted.  相似文献   

5.
The tapeworm species Spirometra erinaceieuropaei was documented mainly in Asia and Europe. In recent years, plerocercoid larvae (spargana) of this parasite have been found in different hosts in north‐eastern Poland. The evolutionary history and way of S. erinaceieuropaei spreading across Eurasia have been not described yet. However, this phenomenon could be closely related to the evolutionary history and migration routes of studied tapeworm host species. We investigated the genetic variability and divergence pattern among S. erinaceieuropaei populations in intermediate and paratenic hosts from north‐eastern Poland based on complete mitochondrial sequences of cytochrome b (cytb) and cytochrome c oxidase subunit I (cox1) genes. Analysis of 319 consolidated sequences of these two genes showed no genetic structure across study area. Comparison of sequences from Poland and China showed distinct separation of S. erinaceieuropaei populations from these two regions. They split from their common ancestor approximately 28.6 million years ago. Demographic expansion of Polish population of S. erinaceieuropaei started from glacial refugia approximately 12.5 thousand years ago, and recent population expansion has been observed in the tapeworm population from north‐eastern Poland.  相似文献   

6.
Iberian gypsum outcrops are highly fragmented and ecologically challenging environments for plant colonization. As gypsophytes occur exclusively in such habitats, they are ideal models for the study of both the effects of habitat fragmentation and selection on population genetic diversity and structure. In this study, we used amplified fragment length polymorphism (AFLP) and plastid DNA sequences to investigate the phylogeographical history of the Iberian plant Gypsophila struthium (Caryophyllaceae), a widespread endemic restricted to Iberian gypsum outcrops. Gypsophila struthium consists of two subspecies that differ in the architecture of their inflorescence and have mostly allopatric ranges. Gypsophila struthium subsp. struthium occurs in central, eastern and south‐eastern Iberia, whereas G. struthium subsp. hispanica occurs in northern and eastern areas. AFLPs revealed low but significant genetic differentiation between the subspecies, probably as a result of a recent diversification during the Pliocene–Pleistocene. In the geographical contact zone between the taxa, the Bayesian analyses revealed populations with mixed ancestries and genetic clusters predominantly of one or the other subspecies, indicating incomplete reproductive barriers between them. Plastid DNA haplotypes revealed strong geographical structure and testified to processes of isolation by distance and continuous range expansion for some haplotype clades. The Bayesian analyses of the population structure of AFLP data and nested clade phylogeographical analysis (NCPA) of plastid haplotypes revealed that the putative ancestral range corresponded to central and eastern populations of G. struthium subsp. struthium, with those lineages contributing through more recent expansion to increased genetic diversity and structure of the south‐eastern and eastern ranges of this subspecies and to the diversification of G. struthium subsp. hispanica in northern and eastern gypsum outcrops. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 654–675.  相似文献   

7.
A phylogeographic analysis of the control region of mitochondrial DNA was done in 346 individuals of the red‐legged partridge Alectoris rufa (Linnaeus 1758), sampled throughout the species distribution range. The analysis indicated that there is no distinct intraspecific phylogeographical structure, in contrast to earlier studies with lower number of samples. The results are not in accord with the expected distribution of three A. rufa subspecies based on morphological characters (A. r. rufa, A. r. intercedens and A. r. hispanica). The results do not provide statistical support for the five groups (or management units) proposed in some earlier papers because the variation within populations is greater than that found among populations. The absence of a population structure might be a consequence of management activity, consisting of release into the field of individuals bred in farms with no control of their genetic identity and geographic origin. Only the north‐west Iberian populations show a weak population structure, suggesting that A. r. hispanica may have suffered less human influence.  相似文献   

8.
Lemurs are among the world's most threatened mammals. The critically endangered black‐and‐white ruffed lemur (Varecia variegata), in particular, has recently experienced rapid population declines due to habitat loss, ecological sensitivities to habitat degradation, and extensive human hunting pressure. Despite this, a recent study indicates that ruffed lemurs retain among the highest levels of genetic diversity for primates. Identifying how this diversity is apportioned and whether gene flow is maintained among remnant populations will help to diagnose and target conservation priorities. We sampled 209 individuals from 19 sites throughout the remaining V. variegata range. We used 10 polymorphic microsatellite loci and ~550 bp of mtDNA sequence data to evaluate genetic structure and population dynamics, including dispersal patterns and recent population declines. Bayesian cluster analyses identified two distinct genetic clusters, which optimally partitioned data into populations occurring on either side of the Mangoro River. Localities north of the Mangoro were characterized by greater genetic diversity, greater gene flow (lower genetic differentiation) and higher mtDNA haplotype and nucleotide diversity than those in the south. Despite this, genetic differentiation across all sites was high, as indicated by high average FST (0.247) and ΦST (0.544), and followed a pattern of isolation‐by‐distance. We use these results to suggest future conservation strategies that include an effort to maintain genetic diversity in the north and restore connectivity in the south. We also note the discordance between patterns of genetic differentiation and current subspecies taxonomy, and encourage a re‐evaluation of conservation management units moving forward.  相似文献   

9.
Two subspecies of cynomolgus macaques (Macaca fascicularis) are alleged to co‐exist in the Philippines, M. f. philippensis in the north and M. f. fascicularis in the south. However, genetic differences between the cynomolgus macaques in the two regions have never been studied to document the propriety of their subspecies status. We genotyped samples of cynomolgus macaques from Batangas in southwestern Luzon and Zamboanga in southwestern Mindanao for 15 short tandem repeat (STR) loci and sequenced an 835 bp fragment of the mtDNA of these animals. The STR genotypes were compared with those of cynomolgus macaques from southern Sumatra, Singapore, Mauritius and Cambodia, and the mtDNA sequences of both Philippine populations were compared with those of cynomolgus macaques from southern Sumatra, Indonesia and Sarawak, Malaysia. We conducted STRUCTURE and PCA analyses based on the STRs and constructed a median joining network based on the mtDNA sequences. The Philippine population from Batangas exhibited much less genetic diversity and greater genetic divergence from all other populations, including the Philippine population from Zamboanga. Sequences from both Batangas and Zamboanga were most closely related to two different mtDNA haplotypes from Sarawak from which they are apparently derived. Those from Zamboanga were more recently derived than those from Batangas, consistent with their later arrival in the Philippines. However, clustering analyses do not support a sufficient genetic distinction of cynomolgus macaques from Batangas from other regional populations assigned to subspecies M. f. fascicularis to warrant the subspecies distinction M. f. philippensis. Am J Phys Anthropol 155:136–148, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Two parrot species, Amazona amazonica and A. aestiva, submitted to cytogenetic analysis presented a diploid chromosome number of 2n=70 (20M+50m). With the C-banding pattern, the cells of female speciments showed an almost totally heterochromatic W chromosome. No chromosome differences were observed in the two species studied.  相似文献   

11.
Unlike other migratory hummingbirds in North America, the broad‐tailed hummingbird (Selasphorus platycercus) exhibits both long‐distance migratory behaviour in the USA and sedentary behaviour in Mexico and Guatemala. We examined the evolution of migration linked to its northward expansion using a multiperspective approach. We analysed variation in morphology, mitochondrial and nuclear DNA, estimated migration rates between migratory and sedentary populations, compared divergence times with the occurrence of Quaternary climate events and constructed species distribution models to predict where migratory and sedentary populations resided during the Last Glacial Maximum (LGM) and Last Interglacial (LIG) events. Our results are consistent with a recent northward population expansion driven by migration from southern sedentary populations. Phylogeographical analyses and population genetics methods revealed that migratory populations in the USA and sedentary populations in Mexico of the platycercus subspecies form one admixed population, and that sedentary populations from southern Mexico and Guatemala (guatemalae) undertook independent evolutionary trajectories. Species distribution modelling revealed that the species is a niche tracker and that the climate conditions associated with modern obligate migrants in the USA were not present during the LIG, which provides indirect evidence for recent migratory behaviour in broad‐tailed hummingbirds on the temporal scale of glacial cycles. The finding that platycercus hummingbirds form one genetic population and that suitable habitat for migratory populations was observed in eastern Mexico during the LIG also suggests that the conservation of overwintering sites is crucial for obligate migratory populations currently facing climate change effects.  相似文献   

12.
We conducted a phylogeographical and niche modelling study of the tree Ficus bonijesulapensis, endemic to Brazilian seasonally dry tropical forests (SDTFs), in order to evaluate the effects of Quaternary climatic fluctuations on population dynamics. The trnQ–5′rps16 region of plastid DNA was sequenced from 15 populations. Three phylogeographical groups were identified by the median‐joining algorithm network and spatial analysis of molecular variance (SAMOVA) (FCT = 0.591): a central‐west, a central‐east and a scattered group. The central groups had higher total haplotype and nucleotide diversities than the scattered group. Ecological niche modelling suggested that, since the Last Interglacial (130 kyr bp ), the central and north regions have been relatively stable, whereas the southern region of the species distribution has been less stable. The phylogeographical groups showed concordance with the floristic units described for SDTFs. The low genetic diversity, unimodal mismatch distribution and unfavourable climatic conditions in the southern region suggest a recent southward expansion of the range of the species during the Holocene, supporting the hypothesis of the southward expansion of SDTFs during this period. The central and northern regions of the current distribution of F. bonijesulapensis, which are consistent with arboreal caatinga and rock outcrop floristic units, were potential refugia during Quaternary climatic fluctuations. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 189–201.  相似文献   

13.
ABSTRACT.   Many parrot populations are threatened with extinction due to habitat loss and collection for the pet trade. The loss of nest trees and chick poaching can drastically reduce reproductive success. However, due to the long life span of many parrots, populations are unlikely to become extinct rapidly even with complete reproductive failure. For parrots that travel in family groups, rapid estimates of reproductive success can be obtained by recording group sizes in areas where they congregate. We used roost counts over an 18-month period to estimate the size and productivity of a population of Yellow-naped Parrots ( Amazona auropalliata auropalliata ) in Costa Rica. Up to 300 birds were observed flying to roost on offshore islands near Curú National Wildlife Refuge. Roost counts were lowest during the breeding period (December–March), increased after fledging (April–July), and peaked during the late wet season (September–October). Increased food availability on the islands during the breeding season allowed the parrots to become seasonal island residents, and lowered roost counts during that period. We calculated reproductive parameters by assuming that groups of >2 birds were adults traveling with young. The percentage of young in the population was 12.5% and did not differ between years. Studies of group size in birds that form stable family groups, such as psittacines in the genera Amazona and Ara , are an inexpensive way to obtain estimates of the reproductive output of some parrot populations and determine if further study or intensive management are warranted.  相似文献   

14.
Hairy woodpeckers Picoides villosus are a common, year round resident with distinct plumage and morphological variation across North America. We genotyped 335 individuals at six variable microsatellite loci and analyzed 322 mtDNA control region sequences in order to examine the role of contemporary and historical barriers to gene flow. In addition we combined genetic analyses with ecological niche modelling to test if hairy woodpeckers were isolated in northern refugia (Alaska, Newfoundland and the Queen Charlotte Islands) during the last glacial maximum. Genetic analyses revealed that gene flow among North American hairy woodpecker populations is restricted, but not to the extent predicted for a sedentary species. Populations clustered into two main genetic groups, east and west of the Great Plains in the south and the Rocky Mountains in the north. Contact zones between the two main genetic groups exist in central British Columbia and Washington, but are narrow. Within each group we found additional population structure with genetic breaks between subgroups in the geographic west corresponding to breaks in forested habitat and physical barriers like open expanses of water. Population genetic patterns for hairy woodpeckers have resulted from isolation in multiple southern refugia with the current distribution of genetic groups resulting from post‐glacial expansion and subsequent reduction in gene flow. While populations in Alaska, Newfoundland and the Queen Charlotte Islands are genetically distinct from other populations, we found no evidence of these areas acting as refugia throughout the Pleistocene. Atlantic Canada populations contained unique haplotypes raising the possibility of a separate colonization from the rest of eastern Canada. The endemic subspecies on the island of Newfoundland is not genetically distinct from their closest mainland population unlike the Queen Charlotte Island subspecies.  相似文献   

15.
The redshank (Tringa totanus) is declining throughout Europe and to implement efficient conservation measures, it is important to obtain information about the population genetic structure. The aim of the present study was two-fold. First, we analysed the genetic variation within and between populations in the Baltic region in southern Scandinavia. Evidence of genetic structure would suggest that different populations might require separate management strategies. Second, in an attempt to study large-scale genetic structure we compared the Baltic populations with redshanks from northern Scandinavia and Iceland. This analysis could reveal insights into phylogeography and long-term population history. DNA samples were collected from six breeding sites in Scandinavia presumed to include two subspecies (totanus and britannica) and a further sample from Iceland (subspecies robusta). Two methods were used to study the population genetic structure. Domain II and III of the mitochondrial control region was analysed by DNA sequencing and nuclear DNA was analysed by screening amplified fragment length polymorphism (AFLP) markers. Mitochondrial DNA showed no variation between individuals in domain II. When analysing an 481 bp fragment of domain III seven haplotypes were found among birds. On the basis of mtDNA sequences, redshanks showed some evidence of a recent expansion from a bottlenecked refugial population. Bayesian analyses of AFLP data revealed a significant genetic differentiation between suggested subspecies but not between populations within the Baltic region. Our results indicate that populations of redshanks in Europe constitute at least three separate management units corresponding to the recognised subspecies.  相似文献   

16.
Aim Alternative hypotheses concerning genetic structuring of the widespread endemic New Guinean forest pademelons (Thylogale) based on current taxonomy and zoogeography (northern, southern and montane species groupings) and preliminary genetic findings (western and eastern regional groupings) are investigated using mitochondrial sequence data. We examine the relationship between the observed phylogeographical structure and known or inferred geological and historical environmental change during the late Tertiary and Quaternary. Location New Guinea and associated islands. Methods We used primarily museum specimen collections to sample representatives from Thylogale populations across New Guinea and three associated islands. Mitochondrial cytochrome b and control region sequence data were used to construct phylogenies and estimate the timing of population divergence. Results Phylogenetic analyses indicated subdivision of pademelons into ‘eastern’ and ‘western’ regional clades. This was largely due to the genetic distinctiveness of north‐eastern and eastern peninsula populations, as the ‘western’ clade included samples from the northern, southern and central regions of New Guinea. Two tested island groups were closely related to populations north of the Central Cordillera; low genetic differentiation of pademelon populations between north‐eastern New Guinea and islands of the Bismarck Archipelago is consistent with late Pleistocene human‐mediated translocations, while the Aru Islands population showed divergence consistent with cessation of gene flow in the mid Pleistocene. There was relatively limited genetic divergence between currently geographically isolated populations in subalpine and nearby mid‐montane or lowland regions. Main conclusions Phylogeographical structuring does not conform to zoogeographical expectations of a north/south division across the cordillera, nor to current species designations, for this generalist forest species complex. Instead, the observed genetic structuring of Thylogale populations has probably been influenced by geological changes and Pleistocene climatic changes, in particular the recent uplift of the north‐eastern Huon Peninsula and the lowering of tree lines during glacial periods. Low sea levels during glacial maxima also allowed gene flow between the continental Aru Island group and New Guinea. More work is needed, particularly multi‐taxon comparative studies, to further develop and test phylogeographical hypotheses in New Guinea.  相似文献   

17.
Identifying natural populations that might be considered separate units using morphology, genotype or both is important in understanding the process of speciation and for conservation. We examined the relationships between the only two subspecies of the most numerous Arctic seabird, the Little Auk Alle alle, using both morphological (wing and head‐bill lengths) and genetic data (482 base pairs of the mitochondrial control region and seven nuclear microsatellite loci). We found significant morphological differences between the subspecies, A. a. polaris being significantly larger than the nominate A. a. alle. However, we did not find the subspecies to be differentiated at either mitochondrial DNA or at microsatellite loci. Consequently, one evolutionary significant unit is proposed. The similarity of the two subspecies at neutral genetic markers may be due to contemporary gene flow between populations, as well as large population sizes both in the present and in the past, combined with recent post‐glacial colonization of the Artic.  相似文献   

18.
The Common Pheasant Phasianus colchicus is widely distributed in temperate to subtropical regions of the Palaearctic realm. Populations of Common Pheasant have been classified into five subspecies groups based on morphological variations in male plumage. Previous phylogeographical studies have focused on limited sets of subspecies groups in the eastern Palaearctic and knowledge on subspecies in the western Palaearctic region is still poor. In this study, we undertake the first comprehensive analysis of subspecies from all five defined subspecies groups across the entire Palaearctic region. Two mitochondrial (CYTB and CR) and two nuclear (HMG and SPI) loci were used to investigate genetic relationships of these subspecies groups and to infer their dispersal routes. Our results revealed that the subspecies elegans, with its range in northwestern Yunnan, China, was in the basal position among 17 studied subspecies, supporting a previous hypothesis that the Common Pheasant most probably originated in forests in southeastern China. Subspecies in the western Palaearctic region nested within the most subspecies‐rich torquatus group (‘Grey‐rumped Pheasants’), indicating that the torquatus group is not a clade but instead forms a gradation with other subspecies and subspecies groups. Our dating analysis suggested that the initial divergence among populations of Common Pheasant originated around 3.4 Mya with subsequent dispersal into the Western Palaearctic region during the Late Pliocene–Lower Pleistocene approximately 2.5–1.8 Mya. We propose two possible east‐to‐west colonization routes for the Common Pheasant and suggest conservation implications for some regional subspecies. Overall, this study demonstrates the lack of concordance between morphology‐based subspecies delimitation and their genetic relationships. This is likely to be a consequence of initial isolation due to historical vicariance followed by population admixture due to recent range expansion of Common Pheasant in the western Palaearctic region.  相似文献   

19.
A comprehensive study of the phylogeography and population genetics of the largest wild artiodactyl in the arid and cold‐temperate South American environments, the guanaco (Lama guanicoe) was conducted. Patterns of molecular genetic structure were described using 514 bp of mtDNA sequence and 14 biparentally inherited microsatellite markers from 314 samples. These individuals originated from 17 localities throughout the current distribution across Peru, Bolivia, Argentina and Chile. This confirmed well‐defined genetic differentiation and subspecies designation of populations geographically separated to the northwest (L. g. cacsilensis) and southeast (L. g. guanicoe) of the central Andes plateau. However, these populations are not completely isolated, as shown by admixture prevalent throughout a limited contact zone, and a strong signal of expansion from north to south in the beginning of the Holocene. Microsatellite analyses differentiated three northwestern and 4–5 southeastern populations, suggesting patterns of genetic contact among these populations. Possible genetic refuges were identified, as were source‐sink patterns of gene flow at historical and recent time scales. Conservation and management of guanaco should be implemented with an understanding of these local population dynamics while also considering the preservation of broader adaptive variation and evolutionary processes.  相似文献   

20.
The Icelandic Purple Sandpiper Calidris maritima littoralis (C.L. Brehm, 1831) represents one member of a poorly understood subspecies complex. Currently, differences in size define two other subspecies: Calidris maritima belcheri Engelmoer & Roselaar, 1998, which breeds in north‐eastern Canada along the Hudson Bay and James Bay, and Calidris maritima maritima (Brunnich, 1764), which breeds along the Arctic coasts elsewhere in northern Canada, Greenland, Svalbard, Scotland, and Fennoscandia, to northern central Siberia. There are large size differences amongst populations of C. m. maritima, however. As an Arctic/Alpine breeding bird, C. m. littoralis could provide an interesting perspective on the evolutionary changes following a northwards expansion of a species after glacial retreat. Considering the extent of the ice sheet in the northern hemisphere during the last glaciation, and the short period of time since it ended, the correct attribution of subspecies status for C. m. maritima may reflect either rapid diversification from a single population or ancestral splits of distinct evolutionary lineages that survived in isolation at southern latitudes. We applied morphometric subspecies criteria, diagnosability by Amadon's rule, and genetic analysis of five nuclear introns, and the mitochondrial DNA markers cytochrome oxidase c subunit I (COI) and NADH dehydrogenase subunit 2 (ND2), to geographically separate breeding populations in order to examine the subspecies status of the Icelandic population. The results do not provide support for the subspecies status of the Icelandic population because the nominate and Icelandic subspecies fail to uphold Amadon's rule, and genetic analyses indicate that the study populations derive from a single shared refugium. © 2015 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号