首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new aqua-soluble rhodium(I) complex trans-[RhCl2(PTA)(PTAH)] (1) {PTAH = N-protonated form of 1,3,5-triaza-7-phosphaadamantane (PTA)} has been synthesized via the reaction of trans-[RhCl(CO)(PTA)2] with aqueous HCl or N-chlorosuccinimide, or by the treatment of RhCl3 with PTA. Compound 1 has been characterized by IR, 1H and 31P{H} NMR spectroscopies, ESI-MS(+), elemental and single crystal X-ray diffraction analyses, the latter showing a square planar {RhCl2P2} geometry. Besides, the stepwise addition of diluted HCl to an aqueous solution of trans-[RhCl(CO)(PTA)2] has been monitored by 31P{1H} NMR and ESI-MS(+) techniques, allowing to detect a number of intermediate Rh(I) species.  相似文献   

2.
A series of new imidophosphanes and phosphine oxides containing 3,3,4,4-tetramethylsuccinimidyl group were synthesized and characterized by 1H, 13C{1H} and 31P NMR spectroscopy, IR and MS. PhmPCln (m = 3 − n, n = 3, 2, 1) reacted with 3,3,4,4-tetramethylsuccinimide (TH) and potassium 3,3,4,4-tetramethylsuccinimidate 1 to give corresponding PhmPTn. Molecular structures of products were established by single-crystal X-ray diffraction experiments. Attempts to prepare new imidophosphoranes by reactions of 1 with PhmPCln (m = 5 − n, n = 4, 3, 2) resulted in phosphine oxides. In these reactions the phosphoryl group was formed and we characterized a by-product of this type of reaction.  相似文献   

3.
Two dinuclear palladium(II) complexes, [{Pd(en)Cl}2(μ-pz)](NO3)2 and [{Pd(en)Cl}2(μ-pydz)](NO3)2, have been synthesized and characterized by elemental microanalysis and spectroscopic (1H and 13C NMR, IR and UV–vis) techniques (en is ethylenediamine; pz is pyrazine and pydz is pyridazine). The square planar geometry of palladium(II) metal centers in these complexes has been predicted by DFT calculations. The chlorido complexes were converted into the corresponding aqua complexes, [{Pd(en)(H2O)}2(μ-pz)]4+ and [{Pd(en)(H2O)}2(μ-pydz)]4+, and their reactions with N-acetylated l-histidylglycine (Ac–l–His–Gly) and l-methionylglycine (Ac–l–Met–Gly) were studied by 1H NMR spectroscopy. The palladium(II)-aqua complexes and dipeptides were reacted in 1:1 M ratio, and all reactions performed in the pH range 2.0 < pH < 2.5 in D2O solvent and at 37 °C. In the reactions of these complexes with Ac–l–His–Gly and Ac–l–Met–Gly dipeptides, the hydrolysis of the amide bonds involving the carboxylic group of both histidine and methionine amino acids occurs. The catalytic activities of the palladium(II)-aqua complexes were compared with those previously reported in the literature for the analogues platinum(II)-aqua complexes, [{Pt(en)(H2O)}2(μ-pz)]4+ and [{Pt(en)(H2O)}2(μ-pydz)]4+.  相似文献   

4.
PbI2 forms iodo-bridged neutral polymer upon reaction with 1-alkyl-2-(arylazo)imidazoles (RaaiR′). The reaction of PbI2 and dialkyl imidazolium iodides [RaaiR′R″]+I has synthesized {1,3-dialkyl-2-(arylazo)imidazolium}m-{tri-iodoplumbate(II)}m. The complexes are characterized by different spectroscopic studies. Iodobridged chelated polymer, [Pb(RaaiR′)I2]n, has been established by single crystal X-ray diffraction measurements in one case. Tri-iodoplumbates form iodo bridged anion polymer, which connects [RaaiR′R″]+ by hydrogen bonding and are placed in between the pillars of [Pb(μ-I)6]n motif.  相似文献   

5.
Two ruthenium nitrosyl bis-pyridyl/biscarboxamido compounds, [Ru(NO)(bpp)Cl · 2H2O] [bpp = N,N′-bis(2-pyridinecarboxamide)-1,3-propane dianion] and [Ru(NO)(bpe)Cl · 2H2O] [bpe = N,N′-(bis-2-pyridinecarboxamide)-1,2-ethane dianion] have been characterized by 1H NMR, 13C{1H} NMR, and IR spectroscopies, electrospray ionizaton mass spectrometry, and X-ray crystallography.  相似文献   

6.
The reactions of [ReCl22-N2C(O)Ph}(PPh3)2] (1) with 2-aminopyrimidine (H2Npyrm), 2,2′-bipyridine (bpy) and tetraethylthiuram disulfide (tds), in MeOH upon reflux, lead to the new η1-(benzoyldiazenido)rhenium(III) complexes [ReCl{η1-N2C(O)Ph}(HNpyrm)(PPh3)2] (2) and [ReCl21-N2C(O)Ph}(bpy)(PPh3)] (3), and the known oxo(diethyldithiocarbamato)dirhenium(v) complex [Re2O2(μ-O){Et2NC(S)S}4] (4), respectively. The Et2NC(S)S ligands in 4 result from S-S bond rupture of tds molecules. The obtained compounds have been characterized by IR, 1H, 31P{1H} and 13C{1H} NMR spectroscopies, FAB+-MS, elemental and single-crystal X-ray diffraction (for 2 and 4) analyses. Complex 2 represents the first structurally characterized Re compound derived from 2-aminopyrimidine. Besides, the redox behaviour of 2-4 in CH2Cl2 solution has been studied by cyclic voltammetry, and the Lever electrochemical ligand parameter (EL) has been estimated, for the first time, for HNpyrm. The electrochemical results are discussed in terms of electronic properties of the Re centres and the ligands.  相似文献   

7.
《Inorganica chimica acta》2006,359(9):2842-2849
The reaction between TpOs(N)Cl2 (1) [Tp = hydrotris(1-pyrazolyl)borate] and aqueous (nBu4N)(OH) in THF-d8 forms the nitrosyl complex TpOs(NO)Cl2 (5) among other products, suggesting an initial hydroxide attack at the nitrido ligand. In contrast, the reaction of the acetate complex TpOs(N)(OAc)2 (2) with NaOH in Me2CO/H2O yields the osmium bis-hydroxide complex TpOs(N)(OH)2 (3), which has been structurally characterized by single-crystal X-ray diffraction. Acetate for hydroxide exchange could occur by ligand substitution or by nucleophilic attack at the carbonyl carbon of the acetate ligands (saponification). Reacting 2 with Na18OH in H218O/CD3CN yields predominantly doubly 18O-labeled TpOs(N)(18OH)2 (3-18O2) and unlabeled acetate, by ESI/MS and 13C{1H} NMR. This indicates that hydroxide reacts by substitution rather than by attack at the ligand. The reaction of 2 with the softer nucleophile thiosulfate occurs at the nitrido ligand, giving the thionitrosyl complex TpOs(NS)(OAc)2 (4). Reacting 4 with NaOH in (CD3)2CO/D2O also generates the bis-hydroxide complex 3.  相似文献   

8.
The solution structures of the lanthanide complexes, [Ln(L)(NO3)3] and [Ln(L)2(NO3)3], where L = bis(diphenylphosphorylmethyl)mesitylene and Ln = La, Ce, Nd, Er, were investigated by 31P NMR and IR spectroscopy, conductivity and sedimentation analysis. Variable-temperature 31P{1H} NMR spectroscopy was used to identify species present in solution and to monitor their interconversions. The results indicate that equilibrium between molecular complexes [Ln(L)n(NO3)3]0 and cationic species (as ion pairs [Ln(L)n(NO3)2]+ · (NO3) and as free ions [Ln(L)n(NO3)2]+, throughout n = 1, 2) in solutions can be observed by 31P{1H} NMR spectroscopy due to separate detection of the molecular complexes and cationic species. The chelate coordination of the ligand and nitrate ions is retained in all complex species at ambient temperature except for [Er(L)2(NO3)3]. The crystal structure of [Nd(L)(NO3)3(MeCN)]MeCN was determined by X-ray diffraction.  相似文献   

9.
A series of new aluminum(III), gallium(III) and indium(III) complexes with some tridentate Schiff base, viz., N-{pyridine-2-ylmethyl}-2-hydroxy-5-methoxy-benzylideneamine [HL1], N-{pyridine-2-ylmethyl}-2-hydroxy-benzylideneamine [HL2], N-{pyridine-2-ylmethyl}-2-hydroxy-5-nitro-benzylideneamine [HL3], N-{pyridine-2-ylmethyl}-2-hydroxy-5-bromo-benzylideneamine [HL4], N-{pyridine-2-ylethyl}-2-hydroxy-5-methoxy-benzylideneamine [HL5], N-{pyridine-2-ylethyl}-2-hydroxy-benzylideneamine [HL6], N-{pyridine-2-ylethyl}-2-hydroxy-5-nitro-benzylideneamine [HL7], N-{pyridine-2-ylethyl}-2-hydroxy-5-bromo-benzylideneamine [HL8], with the general formula [ML2][Y] (M = Al3+, Ga3+, In3+; Y = NO3, ClO4) were synthesised and characterized by elemental analysis, 1H NMR, FT-IR, UV-Vis spectrophotometry and mass spectrometry. The thermodynamic formation constants of the complexes were determined spectrophotometrically at constant ionic strength (I = 0.10 M NaClO4) and at 25 °C in methanol. The trend of formation constants of the complexes are as follow:
Al<Ga<In  相似文献   

10.
The coordination chemistry of a potentially tridentate, dianionic biphenolato phosphine ligand with respect to group 1 metals is described. Deprotonation of bis-(3,5-di-tert-butyl-2-hydroxyphenyl)phenylphosphine (H2[OPO]) with two equivalents of n-BuLi, NaH, or KH in dimethoxyethane (DME) solutions produces the corresponding dinuclear alkali metal complexes [OPO]M2(DME)2 (M = Li, Na, K). The X-ray structure of [OPO]Li2(DME)2 reveals that the two lithium atoms are bridged by both phenolato oxygen donors with only one lithium being coordinated to the phosphorus donor. Consistently, variable-temperature 31P{1H} and 7Li{1H} NMR spectroscopic studies elucidate the coordination of the phosphorus donor in [OPO]Li2(DME)2 to one of the lithium atoms in solution. Interestingly, an X-ray diffraction study of the potassium complex indicates a dimeric structure with S2 symmetry for this species in which the four potassium atoms are bridged by both phosphorus and oxygen donors of the biphenolato phosphine ligands. These alkali metal complexes are active initiators for catalytic ring-opening polymerization of ε-caprolactone.  相似文献   

11.
The ruthenium complexes [RuII(bbp)(L)(Cl)] (1), [RuII(bbp)(L)(H2O)] (2) and [RuII(bbp)(L)(DMSO)] (3) {bbp = 2,6-bis(benzimidazol-2-yl)pyridine, L = o-iminoquinone} have been synthesized in a stepwise manner starting from [RuIII(bbp)Cl3]. The single crystal X-ray structures, except for the complex 2, have been determined. All the complexes were characterized by UV-Vis, FT-IR, 1H NMR, Mass spectroscopic techniques and cyclic voltammetry. The RuIII/RuII couple for complexes 1, 2, and 3 appears at 0.63, 0.49, 0.55 V, respectively versus SCE. It is observed that complex 2, on refluxing in acetonitrile, results into [RuII(bbp)(L)(CH3CN)], 4 which has been prepared earlier in a different method. The structural, spectral and electrochemical properties of complexes 1, 2 and 3 were compared to those of earlier reported complex 4, [RuII(bbp)(L)(CH3CN)].  相似文献   

12.
Nitric oxide reacts with [Co(PSR)2](BF4)2 (PSR  1-(thioalkyl)-2-(diphenylphosphino)ethane) to form five-coordinate mononitrosyl {CoNO}8 complexes. On the basis of infrared and NMR data the [Co(NO)(PSR)2]2+ cations are believed to have a trigonal–bipyramidal geometry, with a linear Co–NO linkage. The mononitrosyl derivatives disproportionate in solution giving [Co(NO)2(PSR)2]+ species, and probably Co(III) compounds. The stoichiometry of this reaction was examined in different solvents and in the presence of added halide or pseudohalide ions by NMR and IR techniques. The cobalt(III) complex [Co(NCS)2(PSEt)2]BF4 has been isolated and characterized.  相似文献   

13.
Silver(I) derivatives [Ag(L)(PiBu3)] (L = H2B(tz)2 (dihydrobis(1H-1,2,4-triazol-1-yl)borate), HB(tz)3 (hydrotris(1H-1,2,4-triazol-1-yl)borate), Tp (hydrotris(1H-pyrazol-1-yl)borate), Tp∗ (hydrotris(3,5-dimethyl-1H-pyrazol-1-yl)borate), TpMe (hydrotris(3-methyl-1H-pyrazol-1-yl)borate), TpCF3 (hydrotris(3-trifluoromethyl-1H-pyrazol-1-yl)borate), Tp4Br (hydrotris(4-bromo-1H-pyrazol-1-yl)borate), HB(btz)3 (hydrotris(1H-1,2,4-benzotriazol-1-yl)borate), Tm (hydrotris(3-methy-1-imidazolyl-2-thione)borate), pzTp (tetrakis(1H-pyrazol-1-yl)borate), pz0TpMe (tetrakis(3-methyl-1H-pyrazol-1-yl)borate) have been synthesized from the reaction of [Ag(NO3)(PiBu3)2] with ML (M = Na or K) and characterized both in solution (1H- and 31P{1H} NMR, ESI MS spectroscopy, conductivity) and in the solid state (IR, single crystal X-ray structure analysis). These complexes are air-stable and light-sensitive and non-electrolytes in CH2Cl2 and acetone in which they slowly decompose, even with the strict exclusion of oxygen and light, yielding metallic silver and/or azolate (Az) species of formula [Ag(Az)(PiBu3)x] upon breaking of the bridging B-N(azole) bond. The solid state structures of [Ag(Tp)(PiBu3)], [Ag(TpMe)(PiBu3)], [Ag(TpCF3)(PiBu3)], [Ag{HB(btz)3}(PiBu3)], and [Ag(Tm)(PiBu3)] show that the silver atom adopts a distorted tetrahedral coordination geometry. [Ag(L)(PPh3)] can be easily obtained from the reaction of [Ag(L)(PiBu3)] with excess PPh3, whereas from the reverse reaction of [Ag(L)(PPh3)] with PiBu3a mixture of [Ag(L)(PiBu3)] and [Ag(L)]2 and [Ag(L)(PPh3)] was recovered. 31P{1H} NMR variable temperature NMR studies showed that in the pz0Tpx derivatives the scorpionate ligand acts as a bidentate donor, whereas tridentate coordination is found for all tris(azolyl)borate derivatives, both in solution and in the solid state. ESI MS data suggest the existence in solution of species such as [Ag(PiBu3)2]+ upon dissociation of the L ligand, and also the formation of dimeric species of the form [Ag2(L)(PiBu3)2]+.  相似文献   

14.
Nitric oxide (NO) plays an important role on several biological functions. Recently, it has been reported the possibility of modifying the NO release profile from the NO donors through its coupling to gold nanoparticles (AuNPs). Thus, AuNPs were synthesized and they were exposed to the NO donor ruthenium complex Cis-[Ru(bpy)2(NO)(4PySH)].(PF6)3 termed (Ru-4PySH)—forming AuNPs-{Ru-4PySH}n cluster. Our results indicate that AuNPs do not modify the maximum effect (ME) and potency (pD2) in the vasodilation induced by Ru-4PySH. Both complexes induce similar vascular relaxation in concentration-dependent way. However, the NO released from the complex AuNPs-{Ru-4PySH}n is lower than Ru-4PySH. Both complexes release only NO0 specie, but AuNPs-{Ru-4PySH}n releases NO in constant way and exclusively in the extracellular medium. In time-course, Ru-4Py-SH was faster than AuNPs-{Ru-4PySH}n in inducing the maximum vasodilation. Inhibition of soluble guanylyl cyclase (sGC) abolished the vasodilation induced by Ru-4PYSH, but not by AuNPs-{Ru-4PySH}n. Non-selective potassium (K+) channel blocker TEA had no effect on the vasodilation induced by AuNPs-{Ru-4PySH}n, but it reduced the potency to Ru-4PySH. In conclusion, our results suggest that AuNPs can reduce the permeability of NO donor Ru-4PySH due to AuNPs-{Ru-4PySH}n cluster formation. AuNPs reduce NO release, but they do not impair the vasodilator effect induced by the NO donor. Ru-4PySH induces vasodilation by sGC and K+ channels activation, while AuNPs-{Ru-4PySH}n activates mainly sGC. Taken together, these findings represent a new pharmacological strategy to control the NO release which could activate selective biological targets.  相似文献   

15.
《Inorganica chimica acta》1988,151(4):249-253
A series of water-soluble N-substituted iminodiacetato (diammine)platinum(II) complexes [Pt(NRIDA)(NH3)2] have been synthesized and characterized by measurement of physical properties (conductivity and pH) and by various spectroscopic techniques (infrared, 1H and 13C{1H} nuclear magnetic resonance). The iminodiacetate ligand is coordinated to platinum through an O,N linkage. The results obtained suggest that these complexes are relatively stable for more than 24 h in aqueous solution. Preliminary in vitro and in vivo screening test for antitumor activity of these complexes against L1210 murine leukemia were performed. Many of complexes had acceptable in vitro cytotoxicity, but none displayed a significant level of in vivo antitumor efficacy.  相似文献   

16.
The synthesis of four guanidine-pyridine hybridligands and their spectroscopic features in MeCN are described. In order to demonstrate their coordinating properties, the corresponding cobalt(II)chloride complexes have been prepared and completely characterised by means of X-ray structure analysis, UV/Vis spectroscopy and mass spectrometry. The neutral complexes {1,1,3,3-tetramethyl-2-(quinolin-8-yl)guanidine}cobalt(II)-dichloride [Co(TMGqu)Cl2] and {N-(1,3-dimethylimidazolidin-2-yliden)pyridin-8-amine}cobalt(II)-dichloride [Co(DMEGpy)Cl2] exhibit a tetrahedral coordination of the cobalt atom, whereas in bis[chlorobis{N-(1,3-dimethylimidazolidin-2-yliden)quinolin-8-amine}cobalt(II)]tetrachlorocobaltate [Co(DMEGqu)2Cl]2[CoCl4] and chlorobis{1,1,3,3-tetramethyl-2-((pyridin-2-yl)methyl)guanidine}cobalt(II)chloride [Co(TMGpy)2Cl]Cl, the cobalt atom is coordinated in a trigonal pyramidal environment. These trigonal pyramidal complex cations represent the first bis(chelated) guanidine cobalt complexes in which the pyridine donor resides on the apical position and the guanidine donor forms with the chlorine atom the base of the pyramid. Besides the structural characterisation, the quenching effect of the cobalt(II) ion (d7) on the ligand fluorescence has been studied.  相似文献   

17.
Ten centimeter long stem cuttings of sweet potato (Ipomoea batatas L. cv. Georgia Jet) with intact apex and leaves were cultured in distilled water as well as in varying concentrations of abscisic acid (ABA) in open top chambers at 364, 438 and 666 cm3 m{-3}CO2. Low concentration of ABA promoted rooting and elongation of roots at 364 cm3 m{-3} CO2 while rooting was suppressed at enriched levels of CO2. However, biomass production in shoots and roots was higher in 666 than in 364 cm3 m-3 CO2.  相似文献   

18.
Targeted profiling is a library-based method of using mathematically modeled reference spectra for quantification of metabolite concentrations in NMR mixture analysis. Metabolomics studies of biofluids, such as urine, represent a highly complex problem in this area, and for this reason targeted profiling of 1H NMR spectra can be hampered. A number of the issues relating to 1H NMR spectroscopy can be overcome using 13C{1H} NMR spectroscopy. In this work, a 13C{1H} NMR database was created using Chenomx NMR Suite, incorporating 120 metabolites. The 13C{1H} NMR database was standardized through the analysis of a series of metabolite solutions containing varying concentrations of 19 distinct metabolites, where the metabolite concentrations were varied across a range of values including biological ranges. Subsequently, the NMR spectra of urine samples were collected using 13C{1H} NMR spectroscopy and profiled using the 13C{1H} NMR library. In total, about 30 metabolites were conclusively identified and quantified in the urine samples using 13C{1H} NMR targeted profiling. The proton decoupling and larger spectral window provided easier identification and more accurate quantification for specific classes of metabolites, such as sugars and amino acids with overlap in the aliphatic region of the 1H NMR spectrum. We discuss potential application areas in which 13C{1H} NMR targeted profiling may be superior to 1H NMR targeted profiling.  相似文献   

19.
Seasonal characteristics of surface water fulvic acids (FAs) isolated from Japanese clear-water lakes were investigated. Qualitative changes in Lake Biwa and Lake Tankai FAs were determined and compared. Although the relative molecular weights determined by high-performance size-exclusion chromatography did not change remarkably, the elemental compositions, E6001% E_{600}^{1\% } values and 1H- and 13C-NMR spectral properties varied with the season. Both the H/C and N/C ratios for Lake Biwa FAs tended to be higher than those for Lake Tankai FAs, but O/C ratios were lower and decreased from spring to winter. The E6001% E_{600}^{1\% } values suggested that Lake Biwa FAs contained lower levels of unsaturated structures than Lake Tankai FAs, and the amounts of these structures increased in winter. The 1H and 13C NMR spectra indicated that Lake Biwa FAs are richer in saturated aliphatic chains, especially in spring. Overall, Lake Biwa FAs exhibited clearer seasonal changes in these characteristics than Lake Tankai FAs, suggesting that the seasonal variation may depend on changes in aquatic microbial activities.  相似文献   

20.
The compounds [SbCl5(R3EY)] (R = Me or Ph; E = P or As; Y = O or S) have been prepared from SbCl5 and the appropriate ligand in CH2Cl2 or CCl4 solutions, and characterised by analysis, IR, 1H, 31P{1H}, 121Sb NMR spectroscopy and conductance measurements. The [SbCl5(μ-L-L)SbCl5] L-L = Ph2P(O)CH2P(O)Ph2, Ph2P(O)(CH2)2P(O)Ph2, Ph2P(S)CH2P(S)Ph2, Ph2As(O)CH2As(O)Ph2, and o-C6H4(P(O)Ph2)2 have been synthesised and similarly characterised. The unstable [SbCl5(R3PSe)] have been prepared at low temperatures and characterised by IR spectroscopy. In solution in chlorocarbons they decompose rapidly to Se and R3PCl2. The reactions of R3SbS with SbCl5 produced R3SbCl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号