首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reduction of ethanolic solutions of niobium pentachloride with zinc, followed by treatment with aqueous acids serves as a versatile entry into the aqueous solution chemistry of niobium. From the zinc-reduced solution, the major intermediate, Nb42-O)22-OC2H5)4Cl4(OC2H5)4(HOC2H5)4, was isolated and the crystal structure determined by X-ray crystallography. The complex crystallizes in the orthorhombic space group Pccn, with Z=4, a=21.0105(9), b=11.0387(5), c=19.1389(8), V=4438.9(3) Å3, Mr=1090.19,R1=0.0327 and wR2=0.0876. The structure revealed a centrosymmetric tetrameric Nb(IV) complex, consisting of a pair of edge-sharing bi-octahedral Nb22-OC2H5)4Cl2(OC2H5)2(HOC2H5)2 units that are joined by two axial oxo ligands. The Nb-Nb distance of 2.7458(3) Å is consistent with a single metal-metal bond.  相似文献   

2.
[Ir(η5-C5Me5)(C8H4S8)] (1) [ = 2-{(4,5-ethylenedithio)-1,3-dithiole-2-ylidene}-1,3-dithiole-4,5-dithionate(2−)] was reacted with iodine in dichloromethane to afford one-electron- and two-electron-oxidized species [IrI(η5-C5Me5)(C8H4S8)] (2), [IrI(η5-C5Me5)(C8H4S8)](I3) (3) and [IrI(η5-C5Me5)(C8H4S8)](I5) (4). The oxidized species exhibit electrical conductivities of (1.1-5.0) × 10−6 S cm−1 measured for compacted pellets at room temperature. The X-ray crystal structures of the two-electron-oxidized complexes 3 and 4 revealed the Ir-I bonds for both of them and the presence of for 3 and ions for 4 as the counter anions. They have many S-S and S-I non-bonding contacts to form two-dimensional molecular interaction sheets in the solid state.  相似文献   

3.
Some novel hydrido-anions of general formula [Ir4H(CO)9(μ-L-L)] (L-L = Ph2PCH(CH3)PPh2, Ph2P(CH2)2PPh2, Ph2P(CH2)3PPh2 and Ph2AsCH2AsPh2) have been obtained by the reaction of [Ir4(CO)10(μ-L-L)] with the base 1,8-diazabicyclo[5.4.0]undec-7-ene in wet dichloromethane. According to IR and 1H, 31P and 13C NMR data at low temperature, these anionic derivatives display a single conformation in solution: three edge-bridging COs around the triangular basal face and both the hydride and the bidentate ligands located in axial positions relative to this face. The structures of four compounds were established by X-ray diffraction studies, which confirmed the configuration proposed on the basis of spectroscopic data.  相似文献   

4.
Bi-nuclear neutral sulfur-nitrosyl iron complex [Fe2(SR)2(NO)4] (I) has been obtained by replacement of thiosulfate ligands in dianion [Fe2(S2O3)2(NO)4]2− by 1-methyl-imidazole-2-yl. From X-ray analysis data, the complex has centrosymmetrical dimeric structure, with the iron atoms being linked via μ-N-C-S bridge. From Mossbauer spectroscopy, isomeric shift δFe is 0.180(1) mm/s and quadrupole splitting ΔEQ is 0.928(2) mm/s at T = 290 K. By comparative studying the mass-spectra in the gaseous phase of solid samples decomposition and kinetics of NO release in 1% aqueous solutions of dimethylsulfoxide, using of the ligand with CH3 substituent in position 1 of imidazole-2-thiol was shown to yield a more stable donor of nitrogen monoxide than earlier obtained analog with imidazole-2-thiol, [Fe2(C3H3N2S)2(NO)4].  相似文献   

5.
A method for the synthesis of titanocene (IV) aryl carboxylate complexes is presented in this paper. It is based on the fact that alcohol can catalyze the reaction between Cp2TiCl2 and aryl carboxylate ligands in the presence of sodium hydroxide (NaOH). The effects of the catalyst on the reaction system were studied and the possible reaction mechanism was proposed. This method was used to prepare a series of titanocene (IV) aryl carboxylate complexes and a macrocyclic titanocene (5,5′-dithiodisalicylato titanocene), whose structure was determined by X-ray diffraction analysis.  相似文献   

6.
Reactions of [Pt2(μ-S)2(PPh3)4] with the diarylthallium(III) bromides Ar2TlBr [Ar = Ph and p-ClC6H4] in methanol gave good yields of the thallium(III) adducts [Pt2(μ-S)2(PPh3)4TlAr2]+, isolated as their salts. The corresponding selenide complex [Pt2(μ-Se)2(PPh3)4TlPh2]BPh4 was similarly synthesised from [Pt2(μ-Se)2(PPh3)4], Ph2TlBr and NaBPh4. The reaction of [Pt2(μ-S)2(PPh3)4] with PhTlBr2 gave [Pt2(μ-S)2(PPh3)4TlBrPh]+, while reaction with TlBr3 gave the dibromothallium(III) adduct [Pt2(μ-S)2(PPh3)4TlBr2]+[TlBr4]. The latter complex is a rare example of a thallium(III) dihalide complex stabilised solely by sulfur donor ligands. X-ray crystal structure determinations on the complexes [Pt2(μ-S)2(PPh3)4TlPh2]BPh4, [Pt2(μ-S)2(PPh3)4TlBrPh]BPh4 and [Pt2(μ-S)2(PPh3)4TlBr2][TlBr4] reveal a greater interaction between the thallium(III) centre and the two sulfide ligands on stepwise replacement of Ph by Br, as indicated by shorter Tl-S and Pt?Tl distances, and an increasing S-Tl-S bond angle. Investigations of the ESI MS fragmentation behaviour of the thallium(III) complexes are reported.  相似文献   

7.
Reactions of orthometallated binuclear palladium complexes with NaER, obtained by NaBH4 reduction of R2E2 in methanol, gave complexes, [Pd2(μ-ER)2(CY)2] (HCY = N,N-dimethylbenzylamine (C6H5CH2NMe2), N,N-dimethylnaphthylamine (C10H7NMe2), tri-o-tolylphosphine {P(tol-o)3}; ER=SePh, SeMes, TePh, TeMes (Mes = 2,4,6-Me3C6H2). Similar reactions of [Pd2(μ-Cl)2(C10H6NMe2-C,N)2] with Pb(SMes)2 or MesSH in the presence of NaHCO3 gave chloro/thiolato-bridged complex [Pd2(μ-Cl)(μ-SMes)(C10H6NMe2-C,N)2]. The newly synthesized complexes were characterized by elemental analysis, UV-Vis, IR, NMR (1H, 13C, 31P, 77Se, 125Te) spectroscopy. These complexes crystallized out preferentially in sym-cis configuration. A low energy charge transfer transition has been identified from chalcogenolate centers to an emptyπ orbital of cyclometallated ligand in absorption spectroscopy in these complexes. The structures of [Pd2(μ-Cl)(μ-SMes)(C10H6NMe2-C,N)2] (1) and [Pd2(μ-SePh)2(C10H6NMe2-C,N) 2] (3) have been established by single crystal X-ray diffraction analyses. In the former, the two palladium atoms are held together by chloro and thiolato bridges whereas in the latter, the two phenylselenolato ligands bridge two palladium atoms. The pyrolysis of [Pd(μ-TeMes)(C10H6NMe2-C,N)]2 (10) in a furnace gave Pd7Te3 whereas thermolysis in TOPO afforded primarily PdTe2.  相似文献   

8.
Dinuclear dichloro complexes [Ru(C6H6)Cl2]2, [Ru(p-MeC6H4 iPr)Cl2]2, [Ru(1,2,4,5-C6H2Me4)Cl2]2, and [Ru(C6Me6)Cl2]2 react in ethanol with p-bromothiophenol to give the corresponding cationic complexes [Ru2(C6H6)2(p-S-C6H4-Br)3]+ (1), [Ru2(p-MeC6H4 iPr)2(p-S-C6H4-Br)3]+ (2), [Ru2(1,2,4,5-C6H2Me4)2(p-S-C6H4-Br)3]+ (3), and [Ru2(C6Me6)2(p-S-C6H4-Br)3]+ (4), which can be isolated in quantitative yield as their chloride salts. X-ray structure analysis of these complexes shows that the nature of the arene ligand influences the folding of the p-S-C6H4-Br units. In 1, where the less hindered arene ligand is present, the three phenyl rings of the thiolato units are not constrained to a coplanar arrangement, whereas in 4 the C6Me6 forces the three phenyl rings to be in perfect planarity. Complexes 2 and 3 show an intermediary arrangement.  相似文献   

9.
The reactions of [Pt2(μ-S)2(PPh3)4] towards a range of palladium(II) complexes containing organometallic ligands (cyclopalladated N-donor ligands, η3-allyl, phenyl) have been explored, leading to the formation of a series of cationic, trinuclear sulfido-bridged aggregates containing {Pt2PdS2} cores. [Pt2(μ-S)2(PPh3)4] also reacts with the platinum(II) hydride complex trans-[PtHCl(PPh3)2] giving the adduct [Pt2(μ-S)2(PPh3)4PtH(PPh3)]+. X-ray crystal structure determinations on the complexes [Pt2(μ-S)2(PPh3)4PdPh(PPh3)]PF6 and [Pt2(μ-S)2(PPh3)4PtH(PPh3)]PF6 are reported, and show the expected bis μ3-sulfido aggregates with three square-planar metal centres.  相似文献   

10.
The reactions of [Pt2(μ-E)2(PPh3)4] (E = S, Se) with cis-1,4-dichlorobut-2-ene (cis-ClCH2CHCHCH2Cl) give the dichalcogenolate complexes [Pt2(μ-ECH2CHCHCH2E)(PPh3)4]2+; an X-ray structure determination on the thiolate complex was carried out. The complexes give the expected dications in ESI mass spectra recorded at very low cone voltages, but at moderate cone voltages undergo facile fragmentation via a retro-Diels-Alder reaction and loss of 1,3-butadiene, giving the dichalcogenide species [Pt2(μ-E2)(PPh3)4]2+. Analogous species containing bidentate phosphine or arsine ligands have been previously generated electrochemically, and studied theoretically.  相似文献   

11.
Photolysis of M2(CO)4(μ-S-t-Bu)2, where M = Rh or Ir, in Nujol matrices at ca. 90 K results in simple CO loss to form a tricarbonyl intermediate analogous to that observed for Rh2(CO)4(μ-Cl)2. Photolysis of the anions, [M(CO)2Cl2]1−, where M = Rh or Ir, in inert ionic matrices at ca. 90 K, results in CO-loss to form an intermediate analogous to that formed by Rh(CO)2(i-Pr2HN)Cl. Finally, photolysis of trans-Ir(CO)(PMe3)2Cl in a Nujol matrix at ca. 90 K gives rise to a new species whose carbonyl band is shifted slightly down in energy as has been observed for trans-Rh(CO)(PMe3)2Cl. In all cases the iridium compounds behave similarly to the rhodium species although the photon energy for iridium photochemistry is typically above that of the rhodium compounds.  相似文献   

12.
Two novel tetranuclear compounds with an unprecedented mode of a hydrogenphosphato bridge, [Cu4(dpyam)443-HPO4)2(μ-X)2]2+ (in which dpyam = di-2-pyridylamine and X = Cl (1), Br (2)) have been synthesised and characterised structurally and magnetically. The Cu(II) ions in the structures each display a square-pyramidal geometry, with two tridentate hydrogenphosphato groups bridging four copper atoms in a μ43 coordination mode which is rarely found in hydrogenphosphate metal compounds. Each (different) pair of Cu(II) ions is additionally bridged by halide ions, with relatively long Cu-X distances (2.551(3)-2.604(3) Å for 1 and 2.707(1)-2.766(2) Å for 2) and subsequently also a small Cu-X-Cu angle (65.7(1)° and 65.1(1)° for 1 and 61.6(1)° and 62.4(1) for 2) and a large Cu-X-Cu angle (95.5(1)° and 96.5(1)° for 1 and 91.1(1)° and 92.6(1)° for 2). Cu?Cu distances in the tetranuclear units varies from 2.802(3) to 5.232(3) Å for 1 and from 2.834(1) to5.233(1) Å in 2. The lattice structures are stabilised by extensive intermolecular hydrogen bonds. The magnetic susceptibility measurements down to 5 K revealed a weak ferromagnetic interaction between the outer pairs of Cu(II) ions which vary from 22 to 46 cm−1 in 1 and 12 to 33 cm−1 in 2 and a moderately strong antiferromagnetic interaction between the inner Cu(II) ions of −79 cm−1 in 1 and −83 cm−1 in 2, via the Cu-O-P-O-Cu pathway.  相似文献   

13.
Routes to the synthesis of the mixed sulfide-phenylthiolate complex [Pt2(μ-S)(μ-SPh)(PPh3)4]+ have been explored; reaction of [Pt2(μ-S)2(PPh3)4] with excess Ph2IBr proceeds readily to selectively produce this complex, which was structurally characterised as its PF6 salt. Reactions of [Pt2(μ-S)2(PPh3)4] with other potent arylating reagents (1-chloro-2,4-dinitrobenzene and 1,5-difluoro-2,4-dinitrobenzene) also produce the corresponding nitroaryl-thiolate complexes [Pt2(μ-S){μ-SC6H2(NO2)2X}(PPh3)4]+ (X = H, F). The complex [Pt2(μ-S)(μ-SPh)(PPh3)4]+ reacts with Me2SO4 to produce the mixed alkyl/aryl bis-thiolate complex [Pt2(μ-SMe)(μ-SPh)(PPh3)4]2+, but corresponding reactions with the nitroaryl-thiolate complexes are plagued by elimination of the nitroaryl group and formation of [Pt2(μ-SMe)2(PPh3)4]2+. [Pt2(μ-S)(μ-SPh)(PPh3)4]+ also reacts with Ph3PAuCl to give [Pt2(μ-SAuPPh3)(μ-SPh)(PPh3)4]2+.  相似文献   

14.
The reaction of metallocene complexes of the type [η5:C5H4-(CH2)n-C6H5]2MCl2 (n=1-5; M=Zr, Hf) with EtLi gives the mono nuclear ethyl derivatives [η5:C5H4-(CH2)n-C6H5]2M(Et)Cl and the metallacycles [η5:C5H4-(CH2)n-C6H5][η5:C5H4-(CH2)n1:C6H4]MEt. A large excess of EtLi affords the dinuclear species [η5:C5H4-(CH2)n6:C6H5]2M2Cl2 (n=2-5). All types of complexes can be activated with methylalumoxane (MAO) and then be used for catalytic polymerization of ethylene.  相似文献   

15.
Reaction of [Pt2(μ-S)2(PPh3)4] with a number of transition metal-iodo complexes leads to the formation of the cationic iodo analogue [Pt2(μ-S)(μ-I)(PPh3)4]+, identified using electrospray ionisation mass spectrometry (ESI MS). Synthetic routes to this complex were developed, using the reaction of [Pt2(μ-S)2(PPh3)4] with either [PtI2(PPh3)2] or elemental iodine. The complex was characterised by NMR spectroscopy, ESI MS and an X-ray structure determination, which reveals the presence of a planar, disordered {Pt2SI}+ core. Monitoring the iodine reaction by ESI MS allows the identification of various iodine species, including the short-lived intermediate [Pt2(μ-S)2(PPh3)4I]+, which allows a mechanism for the reaction to be proposed.  相似文献   

16.
《Inorganica chimica acta》2004,357(2):571-580
Treatment of the ligand N-(2-mercaptoethyl)-3,5-dimethylpyrazole with [Pd(CH3COO)2]3 and reaction of [PdCl(μ-med)]2 with pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 produced the following complexes: [Pd(CH3COO)(μ-med)]2, [Pd(μ-med)(py)]2(BF4)2 and [Pd(μ-med)(PPh3)]2(BF4)2. Similar reactions carried out with 2,2-bipyridine (bpy) or 1,3-bis(diphenylphosphino)propane (dppp) produced [Pd(μ-med)(bpy)]x(BF4)x (x=1 or 2) and [Pd(μ-med)(dppp)]x(BF4)x (x=1 or 2). Treatment of [Pd(μ-med)(bpy)]x(BF4)x with [PdCl2(CH3CN)2] produced [Pd3Cl2(μ-med)2(bpy)2](BF4)2. Treatment of [Pd(μ-med)(dppp)]x(BF4)x with [PdCl2(CH3CN)2] produced a mixture of [Pd(μ-Cl)(dppp)]2(BF4)2 and [Pd(μ-med)2(dppp)]2+. X-ray crystal structures of [Pd(μ-med)(PPh3)]2(BF4)2 · 2CH3CN and [Pd(μ-med)(bpy)]2(BF4)2 · 0.5CH3OH are presented.  相似文献   

17.
Novel two iridium terphenyl complexes were prepared and their structures were characterized crystallographically. The reaction of [Ir(cod)2]BF4 with p-terphenyl (p-tp) in CH2Cl2 was carried out to afford dinuclear Ir(I) complex {[Ir2(p-tp)(cod)2](BF4)2 · 2CH2Cl2}3 (cod=1,5-cyclooctadiene) (1 · 2CH2Cl2), whereas the reaction of the intermediate [Ir(η5-C5Me5)(Me2CO)3]3+ in Me2CO with m-terphenyl (m-tp) was done to provide mononuclear Ir(III) complex [Ir(m-tp)(η5-C5Me5)](BF4)2 (2). In complex 1 · 2CH2Cl2, two Ir atoms are η6-coordinated to both sides of terminal benzene rings from the upper and lower sides in the p-tp ligand, while one Ir atom is η6-coordinated to one side of the terminal benzene ring in the m-tp ligand in complex 2. Each crystal structure describes the first coordination mode found in metal complexes with the m- and p-tp ligands.  相似文献   

18.
Reaction of [WVIS4]2− with ethane-1,2-dithiol edtH2 in the presence of the sulfide scavenger Cd2+ yielded the dinuclear tungstate syn-[{(edt)WV(O/S)}2(μ-S)2]2− (1), with the terminal S/O disordered over the two tungsten sites in the ratio 0.8:02. In the presence of thiocyanate, phosphine and CuI, the anionic cuboidal clusters of composition [{(SCN)3WV}2{CuI(PPh3)}23-S)4]2− (2) and (3, diphos = 1,2-bis(o-diphenylphosphinophenyl)ethane), and possibly via an intermediate [{(SCN)3WVS}2(μ-S)2]4−. The crystal and molecular structures of [Et4N]21, [Et4N]22 · H2O and [Et4N]23 · H2O have been determined.  相似文献   

19.
The 86-electron dicationic octahedral rhodium clusters containing Cp (Cp = C5H5) ligands and either an interstitial carbon atom, [Rh6Cp66-C)]2+ ([1]2+), or two carbonyl groups, [Rh6Cp63-CO)2]2+ ([2]2+), were synthesized in low yields by reactions of Rh3Cp3(μ-CO)3 with RhCp(C2H4)2 or [RuCp(MeCN)3]+ (Cp = C5Me5), respectively. The structures of [1]2+ and [2]2+ were determined by X-ray diffraction. Their electrochemical behavior proved that they possess a rather extended electron transfer activity. In accordance with DFT calculations, the nearly octahedral structure of [1]2+ and [2]2+ is retained both upon oxidation (2+/3+) and the first reduction (2+/+); however, the second reduction (+/0) results in the breaking of one (for [1]0) or two (for [2]0) Rh-Rh bonds. In the case of the related Dahl’s nickel cluster Ni6Cp6 the nearly octahedral structure is retained upon all redox steps (3+/2+/+/0/−/2−).  相似文献   

20.
The reaction of cyanamide and its derivatives with the (η5-C5H5)Mn(CO)2(THF) and (η5-C5H4CH3)Mn(CO)2(THF) complexes affords the cyanamide substituted complexes of types (η5-C5H5)Mn(CO)2(NCN(R′)(R″)) (2a-d) and (η5-C5H4CH3)Mn(CO)2(NCN(R′)(R″)) (3a-e). All complexes were characterized by spectroscopy (1H, 13C NMR, IR), elemental and mass spectroscopy analysis. Complex 2b5-C5H5)Mn(CO)2(NCN(CH3)2) was additionally examined by single crystal X-ray structure determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号