首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aromatic thioether (2,6-bis((2-(dimethylamino)ethylamino)methyl)phenyl)(tert-butyl)sulfane (6) reacts with [Pd(NCCH3)2Cl2] under S-C bond cleavage to give the dinuclear palladium(II) complex [L3Pd2(μ-Cl)]2+ (7), where (L3) = 2,6-bis((2-(dimethylamino)ethylamino)methyl)-thiophenolate. Complex 7 reacts readily with sodium acetate and sodium acetamide by the displacement of the bridging chloride group forming [L3Pd2(μ-OAc)]2+ (8) and [L3Pd2(μ-ONHCCH3)]2+ (9), respectively. Complex 8 can also be prepared by the reaction of 6 with [Pd(OAc)2]. All complexes were isolated as perchlorate salts and fully characterized by ESI-MS, IR, 1H, and 13C NMR spectroscopy. The structures of 7[ClO4] and 9[ClO4]2 have been determined by X-ray crystallography. The latter structure reveals a μ1,3-bridging acetamidate unit showing that (L3) can alter its conformation sufficiently to accommodate a multi-atom bridging species between the two Pd atoms.  相似文献   

2.
《Inorganica chimica acta》2004,357(15):4568-4576
The synthesis of palladacyclic derivatives with the hybrid pyridylphosphine ligands Py(CH2)OPPh2 (a) and PyNHPPh2 (b) in a neutral P,N-chelating coordination mode has been achieved. Treatment of selected chloride-bridged cyclometallated precursors [Pd(CN)(μ-Cl)]2 [CN = 2-pyridinin-phenyl Phpy, I-compounds; 7,8-benzoquinolyl Bzq, II-compounds; phenylazophenyl Azb, III-compounds or 2-(2-oxazolinyl)phenyl Phox, IV-compounds] with a or b in the presence of stoichiometric KPF6 gave the mononuclear derivatives Ia-IVa and Ib-IVb. The crystal structures of compounds [Pd(Azb)(Ph2POCH2Py-P,N)][PF6] (IIIa) and [Pd(Phpy)(Ph2PNHPy-P,N)][PF6] (Ib) have been determined. The new palladacyclopentadiene precursor [Pd{C4COOMe4}(CH3CN)2] (V) has been prepared starting from the polymeric complex [Pd{C4COOMe4}]n. Its usefulness in the preparation of new derivatives has been tested by means of the straightforward reaction with ligands (a) or (b) to give mononuclear compounds [Pd{C4(COOMe)4}(Ph2POCH2Py-P,N)] (Va) and [Pd{C4(COOMe)4}(Ph2PNHPy-P,N)] (Vb). The reactions of hydroxo-bridged precursors [Pd(CN)(μ-OH)]2 or [Pd2{C4(COOMe)4}2 (μ-OH)2][NBu4]2 with PyNHPPh2 afforded mononuclear complexes Ic-Vc in which a less common anionic P,N-binding mode is forced as a result of ligand deprotonation. The new complexes were characterised by partial elemental analyses and spectroscopic methods (IR, FAB, 1H and 31P{1H} NMR).  相似文献   

3.
Palladium [PdCl2(L)] complexes with N-alkylpyridylpyrazole derived ligands [2-(5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L1), 2-(1-ethyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L2), 2-(1-octyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L3), and 2-(3-pyridin-2-yl-5-trifluoromethyl-pyrazol-1-yl)ethanol (L4) were synthesised. The crystal and molecular structures of [PdCl2(L)] (L = L2, L3, L4) were resolved by X-ray diffraction, and consist of monomeric cis-[PdCl2(L)] molecules. The palladium centre has a typical square-planar geometry, with a slight tetrahedral distortion. The tetra-coordinate metal atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine ligands in cis disposition. Reaction of L (L2, L4) with [Pd(CH3CN)4](BF4)2, in the ratio 1M:2L, gave complexes [Pd(L)]2(BF4)2. Treatment of [PdCl2(L)] (L = L2, L4) with NaBF4 and pyridine (py) and treatment of the same complexes with AgBF4 and triphenylphosphine (PPh3) yielded [Pd(L)(py)2](BF4)2 and [Pd(L)(PPh3)2](BF4)2 complexes, respectively. Finally, reaction of [PdCl2(L4)] with 1 equiv of AgBF4 yields [PdCl(L4)](BF4).  相似文献   

4.
Three new supramolecular coordination complexes [Zn(Hdmpz)2(O2C(CH2)2CO2)]n (1), Ni3(Hdmpz)4(HOOC(CH2)2CO2)2(O2C(CH2)2CO2)2(CH3OH)2 (2) and Co3(Hdmpz)2(HOOC(CH2)3CO2)2(O2C(CH2)3CO2)2(CH3OH)4 (3) (Hdmpz = 3,5-dimethylpyrazol) have been synthesized and characterized by elemental analyses, IR spectra and single crystal X-ray diffraction analysis. Complex 1 is a polymer with the ZnO4N2 core that is interconnected by bridging succinate moieties into a 1D chain structure. Complexes 2 and 3 are discrete structures, both of them have two types of bridging-coordinated modes of carboxylate ligands (μ322, μ211). And there are rich intra- or intermolecular hydrogen bonds in the crystals of 1-3, thereby forming a set of supramolecular frameworks. In addition, the thermal behaviors of 1-3 were also investigated.  相似文献   

5.
[Pd(dppf)(MeCN)2](OTf)2 [dppf = 1,1′-bis(diphenylphosphino)ferrocene, OTf = triflate] reacts with pyridyl acetic acid (PyAcOH) to yield a dipalladium ring structure, [Pd2(dppf)2(μ-PyOAc)2](OTf)2 (1). The doubly-bridging ligands exhibit basicity at the pendant carboxyl oxygen to attract AgX (X = OTf or CF3CO2) to form [Pd2Ag2(dppf)2(PyOAc)2(OTf)4] (2) and [Pd2Ag2(dppf)2(PyOAc)2(OTf)2(CF3CO2)2] (3), respectively. Complexes 1 and 2 have been crystallographically characterized. Similar spacer-guest affinity is not found in the Pt(II) or isonicotinate analogues.  相似文献   

6.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

7.
Two new pyrazole-derived ligands, 1-ethyl-3,5-bis(2-pyridyl)pyrazole (L1) and 1-octyl-3,5-bis(2-pyridyl)pyrazole (L2), both containing alkyl groups at position 1 were prepared by reaction between 3,5-bis(2-pyridyl) pyrazole and the appropriate bromoalkane in toluene using sodium ethoxide as base.The reaction between L1, L2 and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) resulted in the formation complexes of formula [MCl2(L)] (M = Pd(II), L = L1 (1); M = Pd(II), L = L2 (2); M = Pt(II), L = L1 (3); M = Pt(II), L = L2 (4)). These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 13C{1H} NMR and HMQC spectroscopies. The X-ray structure of the complex [PtCl2(L2)] (4) was determined. In this complex, Npyridine and Npyrazole donor atoms coordinate the ligand to the metal, which complete its coordination with two chloro ligands in a cis disposition.  相似文献   

8.
The organometallic tin(IV) complexes [SnPh2(SRF)2] SRF = SC6F4-4-H (1), SC6F5 (2), were synthesized and their reactivity with [MCl2(PPh3)2] M = Ni, Pd and Pt explored. Thus, transmetallation products were obtained affording polymeric [Ni(SRF)(μ-SRF)]n, monomeric cis-[Pt(PPh3)2(SC6F4-4-H)2] (3) and cis-[Pt(PPh3)2(SC6F5)2] (4) and dimeric species [Pd(PPh3)(SC6F4-4-H)(μ-SC6F4-4-H)]2 (5) and [Pd(PPh3)(SC6F5)(μ-SC6F5)]2 (6) for Ni, Pt and Pd, respectively. The crystal structures of complexes 1, 2, 3, 4 and 6 were determined.  相似文献   

9.
Using a phosphorus based Mannich condensation reaction the new pyridylphosphines {5-Ph2PCH2N(H)}C5H3(2-Cl)N (1-Cl) and {2-Ph2PCH2N(H)}C5H3(5-Br)N (1-Br) have been synthesised in good yields (60% and 88%, respectively) from Ph2PCH2OH and the appropriate aminopyridine. The ligands 1-Cl and 1-Br display variable coordination modes depending on the choice of late transition-metal complex used. Hence P-monodentate coordination has been observed for the mononuclear complexes AuCl(1-Cl) (2), AuCl(1-Br) (3), RuCl2(p-cymene)(1-Cl) (4), RuCl2(p-cymene)(1-Br) (5), RhCl2(Cp)(1-Cl) (6), RhCl2(Cp)(1-Br) (7), IrCl2(Cp)(1-Cl) (8), IrCl2(Cp)(1′-Cl) (8′), IrCl2(Cp)(1-Br) (9), cis-/trans-PdCl2(1-Cl)2 (10), cis-/trans-PdCl2(1-Br)2 (11), cis-PtCl2(1-Cl)2 (12) and cis-PtCl2(1-Br)2 (13). Reaction of Pd(Me)Cl(cod) (cod = cycloocta-1,5-diene) with either 1 equiv. of 1-Br or the known pyridylphosphines 1′-Cl, 1-OH or 1-H gave the P/N-chelate complexes Pd(Me)Cl(1-Br-1-H) (14)-(17). All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 4, 5, 10 and 16 · (CH3)2SO have been elucidated by single crystal X-ray crystallography. A crystal structure of the dinuclear metallocycle trans,trans-[PdCl2{μ-P/N-{Ph2PCH2N(H)}C5H4N}]2 · CHCl3, 18 · CHCl3, has also been determined. Here 1-H bridges, using both P and pyridyl N donors, two dichloropalladium centres affording a 12-membered ring with the PdCl2 units adopting a head-to-tail arrangement.  相似文献   

10.
Three palladium(II) complexes have been synthesized, using 3,4-bis(cyanamido) cyclobutane-1,2-dione dianion (3,4-bis(cyanamido)squarate or 3,4-NCNsq2−): [Pd(en)(3,4-NCNsq)] · 1.5H2O (1) (en=1,2-diaminoethane), [Pd(en)(3,4-(NC(O)NH2)sq)] · 0.5H2O (2) and K3Na[Pd2(3,4-(NCN)2sq)4] · 5H2O (3). Complex 1 has been characterized by elemental analysis, IR and 13C NMR spectroscopies. Complexes 2 and 3 have been characterized by single-crystal X-ray diffraction. In complex 2, the unusual hydration of the cyanamido ligand was observed, it proceeds in the coordination sphere of the palladium and leads to a chelating urea squarate ligand. Complex 3 is an anionic dinuclear complex containing four bridging cyanamido squarate ligands. In complexes 2 and 3, the 3,4-NCNsq2− ligand (hydrated or not) is, for the first time, coordinated to the metal atom by the two amido nitrogen atoms, either in a chelating mode (complex 2) or in a bridging mode giving a short Pd ? Pd distance of 2.8866(15) Å (complex 3). Electrochemical studies in acetonitrile and dmf solutions have been performed on complexes 1 and 3.  相似文献   

11.
Reactions of ligands 1-ethyl-5-methyl-3-phenyl-1H-pyrazole (L1) and 5-methyl-1-octyl-3-phenyl-1H-pyrazole (L2) with [PdCl2(CH3CN)2 and K2PtCl4 gave complexes trans-[MCl2(L)2] (L = L1, L2). The new complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H and 13C{1H} NMR spectroscopies and X-ray diffraction. The NMR study of the complex [PdCl2(L1)2], in CDCl3 solution, is consistent with a very slow rotation of ligands around the Pd-N bond, so that two conformational isomers can be observed in solution (syn and anti). Different behaviour is observed for complexes [PdCl2(L2)2] and [PtCl2(L)2] (L = L1, L2), which present an isomer in solution at room temperature (anti). The crystal structure of [PdCl2(L1)2] complex is described, where the Pd(II) presents a square planar geometry with the ligands coordinated in a trans disposition.  相似文献   

12.
Heteroleptic triphenylphosphine carbonyl palladium clusters of different nuclearities were prepared under mild conditions by only varying the amount of ligand (PPh3) used in the synthesis: three different clusters were successfully isolated after CO bubbling in a solution of [Pd2(dba)3] (dba = dibenzylideneacetone) with 3, 1 or 0.5 equiv of PPh3, which led, respectively, to [Pd4(CO)5(PPh3)4] (1), [Pd10(CO)12(PPh3)6] (2) and [Pdn(CO)x(PPh3)y] (3) (n ≈ 24). The molecular structures of compounds 1 and 2 were determined by X-ray crystallography. The metal cores in these compounds were shown to consist in a butterfly for 1 and a bridged octahedron for 2. Compound 3 was shown to be at the boundary between molecular clusters and colloidal particles with tentative formulation arising from characterization data. These three clusters and the known [Pd10(CO)12(PBu3)6] and [Pd12(CO)15(PBu3)7] were submitted to NaBH4 reduction. The Pd4 cluster 1 did not react. The colloidal Pdn species led to no isolable product. By contrast, the two Pd10 and the Pd12 clusters led to reduction products, isolated as salts. In the case of the reduced Pd12 cluster, its structure was resolved by X-ray crystallography: the metal core consists of a face-capped octahedron. The reduced species reacted readily with Au(PPh3)+, confirming their anionic nature.  相似文献   

13.
The dinuclear complexes [Pd2(L)2(bipy)2] (1), [Pd2(L)2(phen)2] (2), [Pt2(L)2(bipy)2] (3) and [Pt2(L)2(phen)2] (4), where bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline and L = 2,2′-azanediyldibenzoic dianion) dibridged by H2L ligands have been synthesized and characterized. The binding of the complexes with fish sperm DNA (FS-DNA) were investigated by fluorescence spectroscopy. The results indicate that the four complexes bound to DNA with different binding affinity, in the order complex 4 > complex 3 > complex 2 > complex 1, and the complex 3 binds to DNA in both coordination and intercalative mode. Gel electrophoresis assay demonstrates the ability of the complexes to cleave the pBR 322 plasmid DNA. The cytotoxic activity of the complexes was tested against four different cancer cell lines. The four complexes exhibited cytotoxic specificity and significant cancer cell inhibitory rate.  相似文献   

14.
The manganese complexes [MnII(Hbmimpm)2(NO3)](NO3) · Et2O (1), [MnIII(bmimpm)2(OAc)] · 2CH2Cl2(2), and [MnIII(bmiapm)2(OAc)] · MeOH · H2O · CH2Cl2(3) containing the new ligands Bis(1-methylimidazol-2-yl)-(4-methoxyphen-1-yl)methanol (Hbmimpm) and Bis[(1-methylimidazol-2-yl)](2-aminophenyl)methanol (Hbmiapm) were synthesized. They are good structural models for the reduced (1) and oxidized (2, 3) form of manganese superoxide dismutase. All complexes were characterized by spectroscopic methods and X-ray structure analysis. Compounds 1 and 2 crystallize in the monoclinic space group P21/c whereas complex 3 crystallizes in the monoclinic space group P21/n. The coordination sphere around the manganese cores is distorted octahedral with two corresponding tridentate ligands representing the protein ligands and one nitrate (1) or acetate (2, 3) ion occupying two cis positions. Similar to the enzyme the Mn(III) complex 2 reacts with sodium azide. The obtained microcrystalline azide adduct was characterized by UV-Vis and IR spectroscopy.  相似文献   

15.
The ligands 1,3-bis(3-pyridyl)benzene (1), 1,3-bis(4-pyridyl)benzene (2) and 1,3,5-tris(4-pyridyl)benzene (3) have been prepared by Stille coupling of 3- or 4-trimethylstannylpyridine with the appropriate bromoarene. Ligands 1 and 2 react with [M(OTf)2(dppp)] (M=Pd, Pt) to produce the dipalladium- or diplatinum-containing macrocycles [M2(μ-1)2(dppp)2](OTf)4 or [M2(μ-2)2(dppp)2](OTf)4. These have been characterized by NMR spectroscopy and mass spectrometry and, in the case of [Pd2(μ-1)2(dppp)2](OTf)4, by X-ray crystallography. The molecular structure of the [Pd2(μ-1)2(dppp)2]4+ cation reveals a shallow arrangement of the aromatic rings, with the palladium atoms lying above and below. The tridentate ligand 3 reacts with [Pd(OTf)2(dppp)] to produce a trimetallic species of the form [Pd33-3)2(dppp)3](OTf)6.  相似文献   

16.
The complexes [Pd(acac)2] 1, [Pd(hfa)2] 2 (hfa = hexafluoroacetylacetonate), [Pd(CF3CO2)2] 3 and [Pd3(CH3CO2)6] 4 exhibit very different catalytic efficiency in the reaction between secondary amines and activated alkenes. Complexes 1 and 4 generally show an enhanced activity when catalytic amounts of NH4X salts (X = low-coordinating anion) are added to the reaction mixtures. On the contrary, the activity of the perfluorurate analogues 2 and 3, which is much higher than that of 1 and 4, is generally scarcely affected by the presence of the NH4X additive. The cocatalytic effect of NH4X is comparable with that of strong acids such as CF3SO3H. The ammonium salts alone can behave as a catalyst giving an almost quantitative yield of the hydroamination product.  相似文献   

17.
The new mononuclear bis(oxamato) complex [n-Bu4N]2[Cu(obbo)] (1) (obbo=o-benzyl-bis(oxamato)) has been synthesized as a precursor for trinuclear oxamato-bridged transition metal complexes. Starting from 1 the homotrinuclear complexes [Cu3(obbo)(pmdta)2(NO3)](NO3)·CH2Cl2·H2O (2) and [Cu3(obbo)(tmeda)2(NO3)2(dmf)] (3) have been prepared, where pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine, tmeda = N,N,N′,N′-tetramethylethylenediamine and dmf = dimethylformamide. The crystal structures of 1-3 were solved. The magnetic properties of 2 and 3 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter values of −111 cm−1 (2) and −363 cm−1 (3) were obtained.  相似文献   

18.
In our continuing efforts to explore the effects of substituent groups of ligands in the formation of supramolecular coordination structures, seven new CuII complexes formulated as [Cu2(L1)4(DMF)2] (1), {[Cu2(L1)4(Hmta)](H2O)0.75} (2), [Cu2(L2)4(2,2′-bipy)2] (3), [Cu2(L3)4(H2O)2] (4), [Cu2(L3)4(Hmta)] (5), [Cu2(L3)4(Dabco)] (6) and [Cu2(L3)4(Pz)] (7) with three monocarboxylate ligands bearing different substituent groups HL1-HL3 (HL1 = phenanthrene-9-carboxylic acid, HL2 = 2-phenylquinoline-4-carboxylic acid, HL3 = adamantane-1-carboxylic acid, Hmta = hexamethylenetetramine, 2,2′-bipy = 2,2′-bipyridine, Dabco = 1,4-diazabicyclo[2.2.2] octane and Pz = pyrazine), have been prepared and characterized by X-ray diffraction. In 1, 2 and 4-7, each CuII ion is octahedrally coordinated, and carboxylate acid acts as a syn-syn bridging bidentate ligand. While each CuII ion in 3 is penta-coordinated in a distorted square-pyramidal geometry. 1 and 4 both show a dinuclear paddle-wheel block, while 2, 5, 6 and 7 all exhibit an alternated 1D chain structure between dinuclear paddle-wheel units of the tetracarboxylate type Cu2-(RCO2)4 and the bridging auxiliary ligands Hmta, Dabco and Pz. Furthermore, 3 has a carboxylic unidentate and μ1,1-oxo bridging dinuclear structure with the chelating auxiliary ligand 2,2′-bipy. Moreover, complexes 1-6 were characterized by electron paramagnetic resonance (EPR) spectroscopy.  相似文献   

19.
The reaction between Pd(dba)2 and phosphino-amide ligands yielded the unexpected Pd(II) homoleptic complexes [Pd(o-Ph2PC6H4CO-NR)2] [R = iPr (1), Ph (2), 4-MeC6H4 (3), 4-FC6H4 (4)], in which an κ2-P,N coordination mode for diphenylphosphine-benzamidate ligands is observed. In order to induce amide protonation in the ligands and subsequent κ2-P,O coordination, compounds (1-4) were treated with HClO4(aq) to give cationic complexes [Pd(o-Ph2PC6H4CO-NHR)2][ClO4]2 (5-8). These complexes and the analogous with iminophosphine ligands [Pd(o-Ph2PC6H4CHN-R)2] [ClO4]2 [R = iPr (9), Ph (10)] can be alternatively obtained when [PdCl2(PhCN)2] is treated with AgClO4 in the presence of the corresponding ligand. The reaction of Pd(dba)2 with iminophosphines has also been explored, yielding in this case the Pd(0) derivatives [Pd(o-Ph2PC6H4CHN-R)2] [R = iPr (11), Ph (12)]. X-ray structures of (3), (4), (5), (8) and (9) have been established, allowing an interesting comparative structural discussion.  相似文献   

20.
In this work we report on the synthesis, crystal structure, and physicochemical characterization of the novel dinuclear [FeIIICdII(L)(μ-OAc)2]ClO4·0.5H2O (1) complex containing the unsymmetrical ligand H2L = 2-bis[{(2-pyridyl-methyl)-aminomethyl}-6-{(2-hydroxy-benzyl)-(2-pyridyl-methyl)}-aminomethyl]-4-methylphenol. Also, with this ligand, the tetranuclear [Fe2IIIHg2II(L)2(OH)2](ClO4)2·2CH3OH (2) and [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) complexes were synthesized and fully characterized. It is demonstrated that the precursor [FeIII2HgII2(L)2(OH)2](ClO4)2·2CH3OH (2) can be converted to (3) by the fixation of atmospheric CO2 since the crystal structure of the tetranuclear organometallic complex [FeIIIHgII(L)(μ-CO3)FeIIIHgII(L)](ClO4)2·H2O (3) with an unprecedented {FeIII(μ-Ophenoxo)2(μ-CO3)FeIII} core was obtained through X-ray crystallography. In the reaction 2 → 3 a nucleophilic attack of a FeIII-bound hydroxo group on the CO2 molecule is proposed. In addition, it is also demonstrated that complex (3) can regenerate complex (2) in aqueous/MeOH/NaOH solution. Magnetochemical studies reveal that the FeIII centers in 3 are antiferromagnetically coupled (J = − 7.2 cm− 1) and that the FeIII-OR-FeIII angle has no noticeable influence in the exchange coupling. Phosphatase-like activity studies in the hydrolysis of the model substrate bis(2,4-dinitrophenyl) phosphate (2,4-bdnpp) by 1 and 2 show Michaelis-Menten behavior with 1 being ~ 2.5 times more active than 2. In combination with kH/kD isotope effects, the kinetic studies suggest a mechanism in which a terminal FeIII-bound hydroxide is the hydrolysis-initiating nucleophilic catalyst for 1 and 2. Based on the crystal structures of 1 and 3, it is assumed that the relatively long FeIII…HgII distance could be responsible for the lower catalytic effectiveness of 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号