首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular phylogenetic analyses have had a major impact on the classification of the green algal class Chlorophyceae, corroborating some previous evolutionary hypotheses, but primarily promoting new interpretations of morphological evolution. One set of morphological traits that feature prominently in green algal systematics is the absolute orientation of the flagellar apparatus in motile cells, which correlates strongly with taxonomic classes and orders. The order Sphaeropleales includes diverse green algae sharing the directly opposite (DO) flagellar apparatus orientation of their biflagellate motile cells. However, algae across sphaeroplealean families differ in specific components of the DO flagellar apparatus, and molecular phylogenetic studies often have failed to provide strong support for the monophyly of the order. To test the monophyly of Sphaeropleales and of taxa with the DO flagellar apparatus, we conducted a molecular phylogenetic study of 16 accessions representing all known families and diverse affiliated lineages within the order, with data from four plastid genes (psaA, psaB, psbC, rbcL) and one nuclear ribosomal gene (18S). Although single‐gene analyses varied in topology and support values, analysis of combined data strongly supported a monophyletic Sphaeropleales. Our results also corroborated previous phylogenetic hypotheses that were based on chloroplast genome data from relatively few taxa. Specifically, our data resolved Volvocales, algae possessing predominantly biflagellate motile cells with clockwise (CW) flagellar orientation, as the monophyletic sister lineage to Sphaeropleales, and an alliance of Chaetopeltidales, Chaetophorales, and Oedogoniales, orders having multiflagellate motile cells with distinct flagellar orientations involving the DO and CW forms.  相似文献   

2.
The phylogenetic relationships of two unicellular green algae, Ignatius tetrasporus Bold et MacEntee and Pseudocharacium americanum Lee et Bold were investigated by ultrastructural and molecular methods. The zoospores from both species were covered neither by scales nor cell walls. The flagellar apparatus of the zoospores commonly included these features: the upper basal bodies were displaced counterclockwise in half to two‐thirds of the basal body diameter and did not overlap with each other; the lower basal bodies were directly opposed or slightly displaced clockwise; the distal fiber had gently sigmoid central striations; terminal caps were absent from the ends of the basal bodies; a V‐shaped proximal sheath extended from the upper basal bodies; a posterior fiber lay between the opposite lower basal bodies; and the coarsely striated band linked the sinister rootlet to the lower basal body. The suite of these features was not identical to that of any other quadriflagellate swimming cells, but some features including the lower basal body orientation, the striated distal fiber, and the coarsely striated fiber resemble those of the several organisms of the Siphonocladales sensu Floyd and O’Kelly. Phylogenetic analysis using 18S rDNA sequence data revealed that I. tetrasporus and P. americanum formed a monophyletic clade within the clade of Ulvophyceae sensu López‐Bautista and Chapman, but was not nested within any of the orders of the class that were examined.  相似文献   

3.
To elucidate the phylogeny of the Dunaliellales sensu Ettl. the taxon often thought to be intermediate between primitive green flagellates such as the prasinophytes and the advanced chlorophycean algae, the sequences of the nuclear-encoded small subunit ribosomal RNA gene (18SrDNA) were determined and analyzed for five green algae, including three dunaliellalean algae. Phylogenetic trees based on 18SrDNA suggest that Oltmannsiellopsis viridis (Margraves et Steele) Chihara et Inouye represents an early divergence in the Ulvophyceae/Trebouxio-phyceae/Chlorophyceae clade and has no close relationship to any other green algae, as also suggested from ultrastructural characters. We propose Oltmannsiellopsidates ord. nov. for this genus. Hafniomonas and Polytomella are included in the clade which is characterized by clockwise basal bodies (CW group). The 18SrDNA trees suggest that multiple losses of the cell wall of the flagellate cell occurred in the CW group, and that the Dunaliellales sensu Ettl has a polyphyletic nature. This study also suggests that Planophita terrestns Groover et Hof-stetter (Chaetopeltidales) and Chaetophora incras-sata (Hudson) Hazen (Chaetophorales) are distinct lineages in the Chlorophyceae.  相似文献   

4.
The ultrastructure of the green dinoflagellate Lepididodinium viride M. M. Watanabe, S. Suda, I. Inouye Sawaguchi et Chihara was studied in detail. The nuclear envelope possessed numerous chambers each furnished with a nuclear pore, a similar arrangement to that found in other gymnodinioids. The flagellar apparatus was essentially identical to Gymnodinium chlorophorum Elbrächter et Schnepf, a species also containing chloroplasts of chlorophyte origin. Of particular interest was the connection of the flagellar apparatus to the nuclear envelope by means of both a fiber and a microtubular extension of the R3 flagellar root. This feature has not been found in other dinoflagellates and suggests a close relationship between these two species. This was confirmed by phylogenetic analysis based on partial sequences of the large subunit (LSU) rDNA gene of L. viride, G. chlorophorum and 16 other unarmoured dinoflagellates, including both the ‘type’ culture and a new Tasmanian isolate of G. chlorophorum. These two isolates had identical sequences and differed from L. viride by only 3.75% of their partial LSU sequences, considerably less than the difference between other Gymnodinium species. Therefore, based on ultrastructure, pigments and partial LSU rDNA sequences, the genus Lepidodinium was emended to encompass L. chlorophorum comb. nov.  相似文献   

5.
Abstract Nuclear-encoded SSU rDNA sequences have been obtained from 64 strains of conjugating green algae (Zygnemophyceae, Streptophyta, Viridiplantae). Molecular phylogenetic analyses of 90 SSU rDNA sequences of Viridiplantae (inciuding 78 from the Zygnemophyceae) were performed using complex evolutionary models and maximum likelihood, distance, and maximum parsimony methods. The significance of the results was tested by bootstrap analyses, deletion of long-branch taxa, relative rate tests, and Kishino–Hasegawa tests with user-defined trees. All results support the monophyly of the class Zygnemophyceae and of the order Desmidiales. The second order, Zygnematales, forms a series of early-branching clades in paraphyletic succession, with the two traditional families Mesotaeniaceae and Zygnemataceae not recovered as lineages. Instead, a long-branch Spirogyra/Sirogonium clade and the later-diverging Netrium and Roya clades represent independent clades. Within the order Desmidiales, the families Gonatozygaceae and Closteriaceae are monophyletic, whereas the Peniaceae (represented only by Penium margaritaceum) and the Desmidiaceae represent a single weakly supported lineage. Within the Desmidiaceae short internal branches and varying rates of sequence evolution among taxa reduce the phylogenetic resolution significantly. The SSU rDNA-based phylogeny is largely congruent with a published analysis of the rbcL phylogeny of the Zygnemophyceae (McCourt et al. 2000) and is also in general agreement with classification schemes based on cell wall ultrastructure. The extended taxon sampling at the subgenus level provides solid evidence that many genera in the Zygnemophyceae are not monophyletic and that the genus concept in the group needs to be revised.  相似文献   

6.
Sequence data from the nuclear small-subunit ribosomal RNA gene was obtained for nine strains of Bracteacoccus Tereg, representing at least five morphological species and four distinct geographic locations. These, along with sequence data from two additional chlorophycean taxa, Spongiochloris spongiosa Starr and Ascochloris multinucleata Bold et MacEntee, and 48 published sequences from green algal taxa, were used to determine the phylogenetic placement of Bracteacoccus with respect to other chlorophycean green algae. Results support the monophyly of Bracteacoccus strains, contrasting with patterns observed so far for many other coccoid green algae. The range of variation among Bracteacoccus strains is similar to that of other congeners. Basal body orientation in Bracteacoccus has been interpreted as clockwise; however, the 18S data point to a relationship between Bracteacoccus and taxa with the directly opposed configuration of the flagellar apparatus. No close relationship was found to the multinucleated green coccoids with clockwise orientation of basal bodies, such as Spongiochloris, or to those with parallel basal bodies, such as Spermatozopsis. However, 18S data confirm that the motile and vegetative cells of Bracteacoccus are structurally distinct from the representatives of sphaeroplealean families currently studied. It is premature to reclassify Bracteacoccus until 18S comparisons can be made with additional sphaeroplealean taxa and with algae with similar flagellar structure such as Dictyochloris and Heterochlamydomonas.  相似文献   

7.
Since the phylogenetic relationships of the green plants (green algae and land plants) have been extensively studied using 18S ribosomal RNA sequences, change in the arrangement of basal bodies in flagellate cells is considered to be one of the major evolutionary events in the green plants. However, the phylogenetic relationships between biflagellate and quadriflagellate species within the Volvocales remain uncertain. This study examined the phylogeny of three genera of quadriflagellate Volvocales (Carteria, Pseudocarteria, and Hafniomonas) using concatenated sequences from three chloroplast genes. Using these multigene sequences, all three quadriflagellate genera were basal to other members (biflagellates) of the CW (clockwise) group (the Volvocales and their relatives, the Chlorophyceae) and formed three robust clades. Since the flagellar apparatuses of these three quadriflagellate lineages are diverse, including counter clockwise (CCW) and CW orientation of the basal bodies, the CW orientation of the basal bodies might have evolved from the CCW orientation in the ancestral quadriflagellate volvocalean algae, giving rise to the biflagellates, major members of the CW group.  相似文献   

8.
H. W. Kroes 《Oecologia》1973,11(2):93-98
Summary In Spin Filter flasks interacting populations of algae can be grown in such a way that they are kept separate spatially but remain in close contact chemically. The rotating filter unit of the flasks is a solution to the clogging problem. In experiments with this system Chlamydomonas globosa was always inhibited slightly by Chlorococcum ellipsoideum, but Chlorococcum was only inhibited by Chlamydomonas when the latter had an initial advantage.  相似文献   

9.
Moriya M  Nakayama T  Inouye I 《Protist》2002,153(2):143-156
A marine flagellate resembling Cafeteria roenbergensis (bicosoecids, stramenopiles) in cell shape and behavior of the cell while attached to substratum was collected from the coast of Japan. The flagellate was examined by light and electron microscopy, and the 18S rDNA was sequenced to elucidate its taxonomic and phylogenetic position. Ultrastructural features suggested that the flagellate is not a bicosoecid, but a relative of the recently described stramenopile, Wobblia lunata. 18S rDNA phylogenetic trees also revealed that the flagellate forms a monophyletic clade with W. lunata and that it is distantly related to Cafeteria and other bicosoecids. The flagellate differs from W. lunata due to its lack of wobbling motion as well as intracellular features such as the number of mitochondria, flagellar apparatus architecture, the presence of a paranuclear body and cytoplasmic microtubules. The similarity of 18S rDNA sequences was 81% between the flagellate and W. lunata. This new flagellate was described as Placidia cafeteriopsis gen. et sp. nov. Because the phylogenetic lineage comprised of W. lunata and P. cafeteriopsis was one of the major, deep-branching clades of the stramenopiles, the class Placididea (= Placidiophyceae) classis nova was proposed.  相似文献   

10.
Sequences from gapA, gyrA and ompA were used to evaluate the relationships of the enterobacterial plant pathogens, and assess whether a robust phylogeny can be ascertained using this group of housekeeping genes. Up to 48 taxa were included in a combined phylogenetic analysis to explore the evolutionary distribution of plant pathogenic species across the family Enterobacteriaceae. Phylogenies were reconstructed from gapA, gyrA and ompA gene sequences using maximum parsimony and maximum likelihood algorithms, and phylogenetic congruence was evaluated by the incongruence length difference test and the partition addition bootstrap alteration approach. The resulting gene trees were found to be incongruent, with gapA supporting a monophyletic origin for the plant pathogenic species. In contrast, gyrA and ompA supported multiple polyphyletic origins of Erwinia, Brenneria, Pectobacterium and Pantoea in conjunction with a previously published 16S rDNA phylogeny. However, none of the trees (not even the published 16S rDNA gene tree) supports the current taxonomic classification of these genera into four clades, with Pantoea forming the only monophyletic group in the gapA, gyrA and 16S rDNA trees. Finally, the gapA, gyrA and previously published 16S rDNA phylogenies differ in the taxonomic placement of several bacterial strains which are separated in the three trees. The observed incongruence among the four gene histories is likely to be the result of horizontal transfer events, confounding the search for a robust set of housekeeping genes with a shared evolutionary history that could be used to confidently characterize the relationships of the plant pathogenic enterobacteria. © The Willi Hennig Society 2010.  相似文献   

11.
The Chlorophyceae (sensu Mattox and Stewart) is a morphologically diverse class of the Chlorophyta displaying biflagellate and quadriflagellate motile cells with varying configurations of the flagellar apparatus. Phylogenetic analyses of 18S rDNA data and combined 18S and 26S rDNA data from a broad range of chlorophycean taxa uncovered five major monophyletic groups (Chlamydomonadales, Sphaeropleales, Oedogoniales, Chaetophorales, and Chaetopeltidales) but could not resolve their branching order. To gain insight into the interrelationships of these groups, we analyzed multiple genes encoded by the chloroplast genomes of Chlamydomonas reinhardtii P. A. Dang. and Chlamydomonas moewusii Gerloff (Chlamydomonadales), Scenedesmus obliquus (Turpin) Kütz. (Sphaeropleales), Oedogonium cardiacum Wittr. (Oedogoniales), Stigeoclonium helveticum Vischer (Chaetophorales), and Floydiella terrestris (Groover et Hofstetter) Friedl et O’Kelly (Chaetopeltidales). The C. moewusii, Oedogonium, and Floydiella chloroplast DNAs were partly sequenced using a random strategy. Trees were reconstructed from nucleotide and amino acid data sets derived from 44 protein‐coding genes of 11 chlorophytes and nine streptophytes as well as from 57 protein‐coding genes of the six chlorophycean taxa. All best trees identified two robustly supported major lineages within the Chlorophyceae: a clade uniting the Chlamydomonadales and Sphaeropleales, and a clade uniting the Oedogoniales, Chaetophorales, and Chaetopeltidales (OCC clade). This dichotomy is independently supported by molecular signatures in chloroplast genes, such as insertions/deletions and the distribution of trans‐spliced group II introns. Within the OCC clade, the sister relationship observed for the Chaetophorales and Chaetopeltidales is also strengthened by independent data. Character state reconstruction of basal body orientation allowed us to refine hypotheses regarding the evolution of the flagellar apparatus.  相似文献   

12.
The order Oedogoniales is made up of green algae with an unusual form of cytokinesis, a ring of flagella on the zoids, and a complex sexual reproduction. The genera included in this order, Oedogonium, Oedocladium and Bulbochaete, differ in their type of habit. In this contribution we report a phylogenetic analysis using 18S ribosomal DNA sequences from 66 species of green algae, including ten species of Oedogonium isolated from fresh water bodies in Argentina. The phylogenetic study demonstrates the monophyly of the Oedogoniales within the green algae, and suggests that in this group the flagellar apparatus of the stephanokont zoid could have derived from a DO configuration. It is also found that the genus Oedogonium does not appear to be monophyletic and that the morphological characters traditionally used for the taxonomic classification of Oedogonium species do not define natural groups.  相似文献   

13.
Phylogeny of Schistidium (Bryophyta, Grimmiaceae) was studied by comparing the nucleotide sequences of internal transcribed spacers ITS1-2 of nuclear rDNA and the trnT-trnD region of chloroplast DNA. Phylogenetic trees constructed based on nuclear and chloroplast sequences were consistent, comprising a basal grade and two large clades. Morphological characteristics specific for these clades were described. Secondary structures of ITS1 and ITS2 Schistidium species were modeled using thermodynamic criteria. Four different structures of the longest ITS1 hairpin were identified. These results were used to analyze possible paths of Schistidium evolution. Characteristics of the ITS2 secondary structure support the two major clades recognized in the phylogenetic trees.  相似文献   

14.
The evolutionary affinities of Heterochlamydomonas Cox and Deason and Dictyochloris Vischer ex Starr were investigated using phylogenetic analyses of a combined data set of 18S and 28S rDNA sequences with those from 38 additional green algae. Previous ultrastructural studies have shown that motile cells of Heterochlamydomonas and Dictyochloris have an unusual flagellar apparatus organization in that the two flagella are of unequal length and the basal bodies are persistently parallel. Because of this similarity these taxa, along with Bracteacoccus Tereg, a third taxon with this same flagellar apparatus arrangement, are hypothesized to be closely related. We show, with maximum parsimony and Bayesian analyses, that the parallel basal bodies are not homologous in the three genera. Rather, Heterochlamydomonas is most closely related to Chlamydomonas baca in the clockwise flagellar apparatus clade, and Dictyochloris and Bracteacoccus are nested within the Sphaeropleales, which has the directly opposite flagellar absolute orientation. Surprisingly, Dictyochloris and Bracteacoccus are not supported as closest relatives. These relationships are supported by morphological features such as the presence or absence of a walled motile cell but not by the orientation of the basal bodies. In addition, our data are derived from multiple isolates of each study genera, and the analyses show that Heterochlamydomonas and Dictyochloris are each monophyletic.  相似文献   

15.
From previously published data, 73 characteristics of 17 species of Chlorococcum were compiled. Comparisons of character states of each character were made, and simple matching coefficients were calculated for each species by following the procedure of Sokal & Michener. From a data matrix of the matching coefficients, a phenogram was constructed according to the unweighted pair group method of Sokal & Sneath. Arithmetic averages were used in transferring data from one matrix to another. The frequency of each character state was calculated, and the character states of the highest frequency (the modes) were used to describe a “typical” Chlorococcum species. Comparisons were made between the “typical” Chlorococcum species and each of the 17 species studied. Simple matching coefficients were also calculated from these comparisons. All of the species had a relatively high affinity for the data of the calculated “typical”. Suggestions are made about the use of a “typical” taxonomic unit, and questions are raised about the taxonomic relationship among species of the genus Tetracystis and the genus Chlorococcum.  相似文献   

16.
Eighteen new 16S rDNA and 16 new 18S rDNA sequences from 24 strains, representing 23 species of photoautotrophic euglenoids, were obtained in nearly their entire length. Maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses were performed on separate data (39 sequences of 16S rDNA and 58 sequences of 18S rDNA), as well as on combined data sets (37 sequences). All methods of sequence analysis gave similar results in those cases in which the clades received substantial support. However, the combined data set produced several additional well‐supported clades, not encountered before in the analyses of green euglenoids. There are three main well‐defined clades (A, B/C/D, and G) on trees from the combined data set. Clade G diverges first, while clades A and B/C/D form sister groups. Clade A consists of Euglena species sensu stricto and is divided into three sub‐clades (A1, A2, and A3). Clade A3 (composed of E. deses and E. mutabilis) branches off first; then, two sister clades emerge: A1 (composed of E. viridis‐like species) and A2 (consisting of E. agilis and E. gracilis species). Clade B/C/D consists of the Strombomonas, Trachelomonas, Cryptoglena, Monomorphina, and Colacium genera. Clade G comprises Phacus and Lepocinclis, as well as the Discoglena species of Euglena, with Discoglena branching off first, and then Phacus and Lepocinclis emerging as sister groups.  相似文献   

17.
Endosymbiotic green algae of Japanese Paramecium bursaria were phylogenetically analyzed based on DNA sequences from the ribosomal DNA operon (18S rDNA, ITS1, 5.8S rDNA, and ITS2). Phylogenetic trees constructed using 18S rDNA sequences showed that the symbionts belong to the Chlorella sensu stricto (Trebouxiophyceae) group. They are genetically closer to the C. vulgaris Beijerinck group than to C. kessleri Fott et Nováková as proposed previously. Branching order in C. vulgaris group was unresolved in 18S rDNA trees. Compared heterogeneities of 18S rDNA, ITS1, 5.8S r, and ITS2 among symbionts and two Chlorella species, indicated that the ITS2 region (and probably also ITS1) is better able to resolve phylogenetic problems in such closely related taxa. All six symbiotic sequences obtained here (approximately 4000-bp sequences of 18S rDNA, ITS1, 5.8S rDNA, and ITS2) were completely identical in each, strongly suggesting a common origin.  相似文献   

18.
Spermatozoids and vegetative cells of the green alga Golenkinia minutissima Iyengar et Balakrishnan have been examined by light and electron microscopy. The biflagellate spermatozoids are of a somewhat specialised type, elongated with the nucleus attached to the flagellar bases, and containing a reduced chloroplast without pyrenoid or eyespot. The flagellar apparatus and root system has been examined in detail and is compared with that found in other green algae. The flagella are of a previously unknown type; they contain only one central microtubule—possibly non-functional—but they move in an apparently normal way. Present knowledge about flagellar roots in green algae has been assembled in a table, showing that the cruciate root has now been found in 10 genera, belonging to almost as many families. Exceptions are Oedogonium, which contains a modification of this type, and the Charales, which are very different. During spermatogenesis in Golenkinia each spermatozoid is surrounded by a wall which disappears at maturity. This fact may prove to be of taxonomic value.

The spines on the vegetative cells are composed of regularly arranged longitudinal fibrils, possibly cellulose, attached to the inner part of the two-layered cell wall. The content of the vegetative cell is typically chlorococcalean.  相似文献   

19.
Proteins of whole cell extracts from 16 Chlorococcum species and 3 Tetracystis species (formerly Chlorococcum) were analyzed for isozymes of nonspecific α-esterases, leucine aminopeptidase, and malate dehydrogenase using starch gel electrophoresis. Each species could be identified by the banding patterns. Chlorococcum species are heterogenous regarding the presence, number, electrophoretic mobility, concentration, and distribution of isozymes. The data are discussed in relation to current knowledge of each species. Taxonomic applications of algal isozymes are considered.  相似文献   

20.
A coccoid green alga, Hemiflagellochloris kazakhstanica S. Watanabe, S. Tsujimura, T. Misono, S. Nakamura et H. Inoue, gen. et sp. nov., was described from soil samples of a saline irrigation land in Ili River basin, Kazakhstan. This alga had a parietal chloroplast with a pyrenoid, which was covered with starch segments and penetrated with thylakoid membranes. Reproduction occurred by the formation of aplanospores and zoospores. The aplanospores frequently formed tetrad aggregations in a mother cell. The zoospores were covered by a single‐layered cell wall and lacked stigmata. The zoospores had two flagella of considerably unequal lengths; the longer flagellum was 17–19 lm in length and the shorter one was 9–10 lm. The flagellar apparatus architecture was of the clockwise orientation group type in the Chlorophyceae. Molecular phylogenetic analysis using 18S and 28S rDNA sequence data resolved this organism in a separate clade from the green algae that had flagella of slightly unequal lengths. It was suggested that features such as inequality in flagellar lengths, parallel exsertion of basal bodies, and subapical position of the flagellar apparatus were sporadically evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号