首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1993,121(6):1299-1310
A number of recent reports on the trafficking of receptor proteins in MDCK epithelial cells have provided evidence that delivery to the basolateral domain requires a specific targeting sequence and that deletion of this sequence results in constitutive expression on the apical surface. To date, these studies have concentrated on receptors which are competent for internalization via the clathrin coated pits. We have examined the localization of a resident plasma membrane protein by transfecting human CD44 into MDCK cells. Using human specific and cross-species reactive antibodies, we show that in MDCK cells both the endogenous and transfected wild-type CD44 are found on the basolateral surface where they are restricted to the lateral domain. Deletion of the CD44 cytoplasmic tail reduces the half life of this mutant protein and causes it to be expressed both on the apical surface and to a significant extent within the cell. We have also used biochemical and morphological analysis to investigate the interaction of CD44 with the cytoskeleton in detergent extracted cells. Strikingly different extraction results were obtained between epithelial and fibroblast cells. However, there is no difference in the Triton X-100 solubility of the transfected wild-type and tail-less CD44 in fibroblasts and both forms of the protein remain associated with the cortical cytoskeleton after Triton X-100 extraction. These results demonstrate that the sequence present in the cytoplasmic domain of CD44 responsible for its distribution in epithelial cells is functionally and spatially separate from the ability of this protein to associate with the cytoskeleton.  相似文献   

2.
In this study, we describe a new post-translational modification at position -1 of the PDZ-binding motif in the mutated in colorectal cancer (MCC) protein and its role in lamellipodia formation. Serine 828 at position -1 of this motif is phosphorylated, which is predicted to increase MCC binding affinity with the polarity protein Scrib. We show that endogenous MCC localizes at the active migratory edge of cells, where it interacts with Scrib and the non-muscle motor protein Myosin-IIB. Expression of MCC harboring a phosphomimetic mutation MCC-S828D strongly impaired lamellipodia formation and resulted in accumulation of Myosin-IIB in the membrane cortex fraction. We propose that MCC regulates lamellipodia formation by binding to Scrib and its downstream partner Myosin-IIB in a multiprotein complex. Importantly, we propose that the function of this complex is under the regulation of a newly described phosphorylation of the PDZ-binding motif at position -1.  相似文献   

3.
The paramyxovirus nucleocapsid proteins (NPs) are relatively well conserved, except for the C-terminal 20% (or ca. 100 amino acids), referred to as the tail. We have examined whether this hypervariable tail is required for genome synthesis, both in vitro, where synthesis is predominantly from the input templates, and in vivo, where multiple rounds of amplification occur. In these viruses, genome synthesis and assembly of the nascent chain are coupled. We find that the tail is required in vivo but not in vitro. Closer examination of the in vivo system showed that the tailless NP could encapsidate the genome chain but that amplification did not occur. We interpret these results as indicating that the tail is not required for RNA assembly but is required for the template to function in RNA synthesis. Relatively small deletions within the conserved N-terminal 80% of the protein, on the other hand, rendered the protein nonfunctional in either system. The possible functions of the tail in RNA synthesis are discussed.  相似文献   

4.
With some exceptions, research so far has shown heat shock protein (Hsp) 90 to be a cytoplasmic protein. Here, we studied the sequence determinants which dictate the subcellular localization of Hsp90. By constructing hybrid molecules between a nuclear protein, progesterone receptor (PR), and parts of Hsp90, we demonstrated that the C-terminal but not the N-terminal half of Hsp90 can prevent nuclear translocation of the PR. Studies with an antibody raised against a region which contains the major nuclear localization signal (NLS) of the PR suggest that the inhibition of nuclear localization is not due to steric hindrance of the NLS of the PR by Hsp90 sequences in hybrid molecules. In order to characterize further the cytoplasmic anchoring of Hsp90 we constructed four chimeric molecules between the C-terminal half of Hsp90 and estrogen receptor (ER) with different numbers of nuclear localization protosignals (proto-NLS). When the C-terminal half of Hsp90 was fused with ER containing no or one proto-NLS, the hybrid molecule was located exclusively in the cytoplasm. When the nuclear translocation signal was strengthened by adding two or three protosignals, the hybrid molecule was exclusively nuclear. These results suggest that the C-terminal half of Hsp90 contains a sequence which is responsible for the cytoplasmic localization of the protein. Further deletions of the molecule suggested that the cytoplasmic anchoring signal is located between amino acids 333 and 664.  相似文献   

5.
Heterotetrameric adaptor complexes and SNAREs play key roles in the specificity of membrane budding and fusion. Here we test the hypothesis that vesicle budding and membrane fusion are coupled by the interaction of these molecules. We investigate the role of the di-leucine motif of vesicle-associated membrane protein 4 (VAMP4) in adaptor binding and localization of VAMP4. Mutation of the di-leucine motif inhibits AP-1 binding in vitro and affects the steady state distribution of VAMP4 in vivo.  相似文献   

6.
Although some of the principles of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) function are well understood, remarkably little detail is known about sec1/munc18 (SM) protein function and its relationship to SNAREs. Popular models of SM protein function hold that these proteins promote or maintain an open and/or monomeric pool of syntaxin molecules available for SNARE complex formation. To address the functional relationship of the mammalian endoplasmic reticulum/Golgi SM protein rsly1 and its SNARE binding partner syntaxin 5, we produced a conformation-specific monoclonal antibody that binds only the available, but not the cis-SNARE-complexed nor intramolecularly closed form of syntaxin 5. Immunostaining experiments demonstrated that syntaxin 5 SNARE motif availability is nonuniformly distributed and focally regulated. In vitro endoplasmic reticulum-to-Golgi transport assays revealed that rsly1 was acutely required for transport, and that binding to syntaxin 5 was absolutely required for its function. Finally, manipulation of rsly1-syntaxin 5 interactions in vivo revealed that they had remarkably little impact on the pool of available syntaxin 5 SNARE motif. Our results argue that although rsly1 does not seem to regulate the availability of syntaxin 5, its function is intimately associated with syntaxin binding, perhaps promoting a later step in SNARE complex formation or function.  相似文献   

7.

Background and aims

Involvement of the epithelial chloride channel ClC-2 has been implicated in barrier recovery following ischemic injury, possibly via a mechanism involving ClC-2 localization to the tight junction. The present study investigated mechanisms of intestinal barrier repair following ischemic injury in ClC-2−/− mice.

Methods

Wild type, ClC-2 heterozygous and ClC-2−/− murine jejunal mucosa was subjected to complete ischemia, after which recovery of barrier function was monitored by measuring in vivo blood-to-lumen clearance of 3H-mannitol. Tissues were examined by light and electron microscopy. The role of ClC-2 in re-assembly of the tight junction during barrier recovery was studied by immunoblotting, immunolocalization and immunoprecipitation.

Results

Following ischemic injury, ClC-2−/− mice had impaired barrier recovery compared to wild type mice, defined by increases in epithelial paracellular permeability independent of epithelial restitution. The recovering ClC-2−/− mucosa also had evidence of ultrastructural paracellular defects. The tight junction proteins occludin and claudin-1 shifted significantly to the detergent soluble membrane fraction during post-ischemic recovery in ClC-2−/− mice whereas wild type mice had a greater proportion of junctional proteins in the detergent insoluble fraction. Occludin was co-immunoprecipitated with ClC-2 in uninjured wild type mucosa, and the association between occludin and ClC-2 was re-established during ischemic recovery. Based on immunofluorescence studies, re-localization of occludin from diffuse sub-apical areas to apical tight junctions was impaired in ClC-2−/− mice.

Conclusions

These data demonstrate a pivotal role of ClC-2 in recovery of the intestinal epithelium barrier by anchoring assembly of tight junctions following ischemic injury.  相似文献   

8.
The tomato resistance gene Cf-9 encodes a membrane-anchored, receptor-like protein that mediates specific recognition of the extracellular elicitor protein AVR9 of Cladosporium fulvum. The C-terminal dilysine motif (KKRY) of Cf-9 suggests that the protein resides in the endoplasmic reticulum. Previously, two conflicting reports on the subcellular location of Cf-9 were published. Here we show that the AARY mutant version of Cf-9 is still functional in mediating AVR9 recognition, suggesting that functional Cf-9 resides in the plasma membrane. The data presented here and in reports by others can be explained by masking the dilysine signal of Cf-9 with other proteins.  相似文献   

9.
We tested the importance of the aspartate-any residue-aspartate (DXD) motif for the enzymatic activity and nucleotide binding capacity of the Golgi glycosyltransferase GM2 synthase. We prepared point mutations of the motif, which is found in the sequence 352-VLWVDDDFV, and analyzed cells that stably expressed the mutated proteins. Whereas the folding of the mutated proteins was not seriously disrupted as judged by assembly into homodimers, Golgi localization, and secretion of a soluble form of the enzyme, exchange of the highly conserved aspartic acid residues at position 356 or 358 with alanine or asparagine reduced enzyme activity to background levels. In contrast, the D356E and D357N mutations retained weak activity, while the activity of V352A and W354A mutants was 167% and 24% that of wild-type enzyme, respectively. Despite the major effect of the DXD motif on enzymatic activity, nucleotide binding was not altered in the triple mutant D356N/D357N/D358N as revealed by binding to UDP-beads and labeling with the photoaffinity reagent, P(3)-(4-azidoanilido)uridine 5'-triphosphate (AAUTP). In summary, rather than being critical for nucleotide binding, this motif may function during catalysis in GM2 synthase, as has been proposed elsewhere for the SpsA glycosyltransferase based on its crystal structure.  相似文献   

10.
11.
Cellular trafficking of subtilisin/kexin-like precursor convertases (PCs) may be regulated by a number of motifs, some of which are present within the P-domain and in the C-terminal sequence. Six of the seven known PCs contain a conserved RGD sequence within the P domain. In order to investigate the functional importance of this motif, we generated mutants of PC1 that contain a Myc tag epitope inserted between the prosegment and the catalytic subunit. Cellular expression of vaccinia virus recombinants revealed that this tag did not seem to influence the autocatalytic conversion of proPC1 into PC1 or its bioactivity. The two PC1 variants produced possess either the wild type RGD sequence or its RGE mutant. Stable transfectants of these variants in AtT20 cells revealed that similar to the wild type enzyme, PC1-RGD-Myc is sorted to secretory granules. In contrast, PC1-RGE-Myc exits the cell via the constitutive secretory pathway. In vitro, a 14-mer peptide spanning the RGD sequence of PC1, but not its RGE mutant, binds to cell surface vitronectin-binding integrins of Chinese hamster ovary cells. However, within the endoplasmic reticulum and in an RGD-independent fashion, integrin alpha5beta1 associates primarily with the zymogens proPC1, proPC1-DeltaC (missing the C-terminal 137 residues), as well as proPC2. Thus, the observed discrimination between the secretion routes of PC1-RGD and PC1-RGE does not implicate integrins such as alpha5beta1.  相似文献   

12.
Signals from retinal photoreceptors are processed in two parallel channels—the ON channel responds to light increments, while the OFF channel responds to light decrements. The ON pathway is mediated by ON type bipolar cells (BCs), which receive glutamatergic synaptic input from photoreceptors via a G-protein-coupled receptor signaling cascade. The metabotropic glutamate receptor mGluR6 is located at the dendritic tips of all ON-BCs and is required for synaptic transmission. Thus, it is critically important for delivery of information from photoreceptors into the ON pathway. In addition to detecting glutamate, mGluR6 participates in interactions with other postsynaptic proteins, as well as trans-synaptic interactions with presynaptic ELFN proteins. Mechanisms of mGluR6 synaptic targeting and functional interaction with other synaptic proteins are unknown. Here, we show that multiple regions in the mGluR6 ligand-binding domain are necessary for both synaptic localization in BCs and ELFN1 binding in vitro. However, these regions were not required for plasma membrane localization in heterologous cells, indicating that secretory trafficking and synaptic localization are controlled by different mechanisms. In contrast, the mGluR6 C-terminus was dispensable for synaptic localization. In mGluR6 null mice, localization of the postsynaptic channel protein TRPM1 was compromised. Introducing WT mGluR6 rescued TRPM1 localization, while a C-terminal deletion mutant had significantly reduced rescue ability. We propose a model in which trans-synaptic ELFN1 binding is necessary for mGluR6 postsynaptic localization, whereas the C-terminus has a role in mediating TRPM1 trafficking. These findings reveal different sequence determinants of the multifunctional roles of mGluR6 in ON-BCs.  相似文献   

13.
14.
The v-ErbB retroviral oncogene is a transduced, mutated copy of the avian EGF receptor gene, and its expression is sufficient to induce tumor formation in vivo. The structural alterations that release the oncogenic potential of the v-ErbB oncogene are similar to EGFR gene mutations described in human tumors. Thus, the study of v-ErbB tumor biology offers a useful model through which we can gain insight into the mechanism of EGFR-induced malignancies. Despite years of study, however, questions remain regarding the domains of v-ErbB required for oncogenicity. We sought to clarify the role of the transmembrane domain of v-ErbB during transformation using S3-v-ErbB, an acutely transforming retroviral oncogene isolated from avian sarcomas. Infection of primary fibroblasts with a retroviral vector containing S3-v-ErbB results in the formation of a transformation-associated phosphoprotein signaling complex, soft agar colony formation, and the rapid induction of highly vascularized sarcomas in vivo. To address contribution of the transmembrane domain of S3-v-ErbB during these processes, we constructed a mutant version of this oncogene with a precise deletion in this domain. Specifically, the S3-v-ErbB-TM- mutant was created through an in-frame deletion of the entire transmembrane domain. Primary fibroblasts expressing this S3-v-ErbB-TM- mutant fail to form a characteristic transformation-associated phosphoprotein complex and do not grow in an anchorage-independent manner. In addition, day-old chicks injected with a helper-independent retrovirus expressing the S3-v-ErbB-TM- mutant exhibit only limited tumor formation in vivo. These results demonstrate that the transmembrane domain and, consequently membrane localization, are essential for S3-v-ErbB-mediated transformation.  相似文献   

15.
Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in human tumor cells but not in normal cells. In addition, Apoptin also exhibits tumor-specific nuclear localization and tumor-specific phosphorylation on threonine 108 (T108). Here, we studied the effects of T108 phosphorylation on the tumor-specific nuclear localization and apoptotic activity of Apoptin. We first showed that a hemagglutinin (HA)-tagged Apoptin, but not the green fluorescent protein-fused Apoptin used in many previous studies, exhibited the same intracellular distribution pattern as native Apoptin. We then made and analyzed an HA-Apoptin mutant with its T108 phosphorylation site abolished. We found that Apoptin T108 phosphorylation is not required for its tumor-specific nuclear localization and abolishing the T108 phosphorylation of Apoptin does affect its apoptotic activity in tumor cells but only partially. Our results support the previous finding that Apoptin contains two distinct apoptosis domains located separately at the N- and C-terminal regions and suggest that the T108 phosphorylation may only be required for the apoptotic activity mediated through the C-terminal apoptosis domain.  相似文献   

16.
In vertebrates, the positioning of the internal organs relative to the midline is asymmetric and evolutionarily conserved. A number of molecules have been shown to play critical roles in left-right patterning. Using representational difference analysis to identify genes that are differentially expressed on the left and right sides of the chick embryo, we cloned chick Claudin-1, an integral component of epithelial tight junctions. Here, we demonstrate that retroviral overexpression of Claudin-1, but not Claudin-3, on the right side of the chick embryo between HH stages 4 and 7 randomizes the direction of heart looping. This effect was not observed when Claudin-1 was overexpressed on the left side of the embryo. A small, but reproducible, induction of Nodal expression in the perinodal region on the right side of the embryo was noted in embryos that were injected with Claudin-1 retroviral particles on their right sides. However, no changes in Lefty,Pitx2 or cSnR expression were observed. In addition, Flectin expression remained higher in the left dorsal mesocardial folds of embryos with leftwardly looped hearts resulting from Claudin-1 overexpression on the right side of the embryo. We demonstrated that Claudin-1's C-terminal cytoplasmic tail is essential for this effect: mutation of a PKC phosphorylation site in the Claudin-1 C-terminal cytoplasmic domain at threonine-206 eliminates Claudin-1's ability to randomize the direction of heart looping. Taken together, our data provide evidence that appropriate expression of the tight junction protein Claudin-1 is required for normal heart looping and suggest that phosphorylation of its cytoplasmic tail is responsible for mediating this function.  相似文献   

17.
The conserved dystroglycan-dystrophin (Dg.Dys) complex connects the extracellular matrix to the cytoskeleton. In humans as well as Drosophila, perturbation of this complex results in muscular dystrophies and brain malformations and in some cases cellular polarity defects. However, the regulation of the Dg.Dys complex is poorly understood in any cell type. We now find that in loss-of-function and overexpression studies more than half (34 residues) of the Dg proline-rich conserved C-terminal regions can be truncated without significantly compromising its function in regulating cellular polarity in Drosophila. Notably, the truncation eliminates the WW domain binding motif at the very C terminus of the protein thought to mediate interactions with dystrophin, suggesting that a second, internal WW binding motif can also mediate this interaction. We confirm this hypothesis by using a sensitive fluorescence polarization assay to show that both WW domain binding sites of Dg bind to Dys in humans (K(d) = 7.6 and 81 microM, respectively) and Drosophila (K(d) = 16 and 46 microM, respectively). In contrast to the large deletion mentioned above, a single proline to an alanine point mutation within a predicted Src homology 3 domain (SH3) binding site abolishes Dg function in cellular polarity. This suggests that an SH3-containing protein, which has yet to be identified, functionally interacts with Dg.  相似文献   

18.
Reelin is a very large secreted glycoprotein essential for correct development of the mammalian brain. It is also implicated in higher functions and diseases of human brain. However, whether or not secretion of Reelin is regulated and how Reelin transmits signals remain largely unknown. Reelin protein is composed of an N-terminal F-spondin-like domain, Reelin repeats, and a short and highly basic C-terminal region (CTR). The primary sequence of CTR is almost completely conserved among vertebrates except fishes, indicating its importance. A prevailing idea regarding the function of CTR is that it is required for the secretion of Reelin, although this remains unproven. Here we aimed to clarify the function of Reelin CTR. Neither deleting most of CTR nor replacing CTR with unrelated amino acids affected secretion efficiency, indicating that CTR is not absolutely required for the secretion of Reelin. We also found that Reelin mutants without CTR were less potent in activating the downstream signaling in cortical neurons. Although these mutants were able to bind to the Reelin receptor ectodomain as efficiently as wild-type Reelin, quite interestingly, their ability to bind to the isolated cell membrane bearing Reelin receptors or receptor-expressing cells (including cortical neurons) was much weaker than that of wild-type Reelin. Therefore, it is concluded that the CTR of Reelin is not essential for its secretion but is required for efficient activation of downstream signaling events, presumably via binding to an unidentified "co-receptor" molecule(s) on the cell membrane.  相似文献   

19.
When BRK1, a member of the Wave/SCAR complex, is deleted in Physcomitrella patens (Deltabrk1), we report a striking reduction of filament growth resulting in smaller and fewer cells with misplaced cross walls compared with the normal protonemal cells. Using an inducible green fluorescent protein-talin to detect actin in living tissue, a characteristic broad accumulation of actin is observed at the tip of wild-type apical cells, whereas in Deltabrk1, smaller, more distinct foci of actin are present. Insertion of brk1-yfp into Deltabrk1 rescues the mutant phenotype and results in BRK1 being localized only in the tip of apical cells, the exclusive site of cell extension and division in the filament. Like BRK1, ARPC4 and At RABA4d are normally localized at the tip of apical cells and their localization is correlated with rapid tip growth in filaments. However, neither marker accumulates in apical cells of Deltabrk1 filaments. Although the Deltabrk1 phenotypes in protonema are severe, the leafy shoots or gametophores are normally shaped but stunted. These and other results suggest that BRK1 functions directly or indirectly in the selective accumulation/stabilization of actin and other proteins required for polar cell growth of filaments but not for the basic structure of the gametophore.  相似文献   

20.
Sphingosine 1-phosphate (S1P), a bioactive phospholipid, simultaneously induces actin cytoskeletal rearrangements and activation of matriptase, a membrane-associated serine protease in human mammary epithelial cells. In this study, we used a monoclonal antibody selective for activated, two-chain matriptase to examine the functional relationship between these two S1P-induced events. Ten minutes after exposure of 184 A1N4 mammary epithelial cells to S1P, matriptase was observed to accumulate at cell-cell contacts. Activated matriptase first began to appear as small spots at cell-cell contacts, and then its deposits elongated along cell-cell contacts. Concomitantly, S1P induced assembly of adherens junctions and subcortical actin belts. Matriptase localization was observed to be coincident with markers of adherens junctions at cell-cell contacts but likely not to be incorporated into the tightly bound adhesion plaque. Disruption of subcortical actin belt formation and prevention of adherens junction assembly led to prevention of accumulation and activation of the protease at cell-cell contacts. These data suggest that S1P-induced accumulation and activation of matriptase depend on the S1P-induced adherens junction assembly. Although MAb M32, directed against one of the low-density lipoprotein receptor class A domains of matriptase, blocked S1P-induced activation of the enzyme, the antibody had no effect on S1P-induced actin cytoskeletal rearrangement. Together, these data indicate that actin cytoskeletal rearrangement is necessary but not sufficient for S1P-induced activation of matriptase at cell-cell contacts. The coupling of matriptase activation to adherens junction assembly and actin cytoskeletal rearrangement may serve to ensure tight control of matriptase activity, restricted to cell-cell junctions of mammary epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号