首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During a period of about 10 years the systematic anatomy of the vegetative organs of more than 280 species belonging to 90 genera of the taxonomically complex family Cyperaceae have been examined, some of them for the first time. Abstracts of about 250 published articles relating to the anatomy of the Cyperaceae have also been prepared. The combined results of this investigation and literature survey are to appear as Vol. 5 of a reference book entitled Anatomy of the Monocotyledons. In the present article particulars are given of the anatomical characters which have proved to be among the most important as an aid in classifying the tribes and genera within the family. Special attention has been devoted to silica-bodies in surface-view preparations of the leaf epidermis. In transverse sections of the lamina, the relationship between genera and species in which there are dorsiventral, isobilateral, pseudodorsiventral, and cylindrical leaves, respectively, appears to be of special interest. Selected conclusions concerning the affinities between tribes and between certain genera and the tribes to which they belong within the Cyperaceae are presented. The relationship of the Cyperaceae to other families is briefly discussed.  相似文献   

2.
Floral morphology, anatomy and histology in the newly circumscribed order Celastrales, comprising Celastraceae, Parnassiaceae and Lepidobotryaceae are studied comparatively. Several genera of Celastraceae and Lepidobotrys (Lepidobotryaceae) were studied for the first time in this respect. Celastraceae are well supported as a group by floral structure (including genera that were in separate families in earlier classifications); they have dorsally bulged‐up locules (and thus apical septa) and contain oxalate druses in their floral tissues. The group of Celastraceae and Parnassiaceae is also well supported. They share completely syncarpous gynoecia with commissural stigmatic lobes (and strong concomitant development of the commissural vascular bundles but weak median carpel bundles), only weakly crassinucellar or incompletely tenuinucellar ovules with an endothelium, partly fringed sepals and petals, protandry in bisexual flowers combined with herkogamy by the movement of stamens and anther abscission, and stamens fused with the ovary. In contrast, Lepidobotryaceae are more distant from the other two families, sharing only a handful of features with Celastraceae (not Parnassiaceae), such as pseudohermaphroditic flowers, united stamen bases forming a collar around the gynoecium and seeds with a conspicuous aril. However, all three families together are also somewhat supported as a group and share petals that are not retarded in late floral bud development, 3‐carpellate gynoecia, ventral slits of carpels closed by long interlocking epidermal cells and pollen tube transmitting tissue encompassing several cell layers, both integuments usually more than two cell layers thick, and only weak or lacking floral indumentum. In some molecular analyses Celastrales form an unsupported clade with Malpighiales and Oxalidales. This association is supported by floral structure, especially between Celastrales and Malpighiales. Among Celastrales, Lepidobotryaceae especially share special features with Malpighiales, including a diplostemonous androecium with ten fertile stamens, epitropous ovules with an obturator and strong vascularization around the chalaza. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149 , 129–194.  相似文献   

3.
4.
The delimitation of Bignoniaceae and Scrophulariaceae has long been a taxonomic problem. Several genera, including Paulownia, Schlegelia, Gibsoniothamnus, and Synapsis, have been variously placed in one or the other family. Differences between these two families have been noted with regard to the presence of endosperm, embryo and seed morphology, and placentation; however, the lack of comprehensive data on the distribution of such characters within these two families left the delimitation problem unsolved. A comprehensive study of floral anatomy confirmed a basic difference in the placentation of these two families, as well as a basic difference in gynoecial vascularization. Paulownia has a floral anatomy, embryo morphology, and seed morphology consistent with placement in Scrophulariaceae. While reminiscent of Bignoniaceae, Paulownia is not an intermediate genus linking the two families. Schlegelia and Gibsoniothamnus have a floral anatomy consistent with placement in Scrophulariaceae. Schlegelia also has a scrophulariaceous seed morphology. Considered anomalous in the Bignoniaceae, the Schlegelieae similarly are distinct in the Scrophulariaceae.  相似文献   

5.
The Ulmaceae is usually split into two subgroups, referred to as either tribes or more commonly subfamilies (Ulmoideae andCeltidoideae). The two groups are separated, with some exceptions, on the basis of leaf venation, fruit type, seed morphology, wood anatomy, palynology, chemistry, and chromosome number. Propositions to separate the two groups as distinct families have never gained general acceptance. Recent morphological and anatomical data have suggested, however, that not only is family status warranted but thatCeltidaceae are more closely related toMoraceae and otherUrticales than toUlmaceae. In order to test these alternative sets of relationships, restriction site mapping of the entire cpDNA was done with nine rare cutting enzymes using 11 genera ofUlmaceae s. l., three other families of theUrticales, and an outgroup family from theHamamelidae. Cladistic analysis of the data indicates thatUlmaceae s. l. is not monophyletic and that distinct families (Ulmaceae andCeltidaceae) are warranted; thatUlmaceae is the sister group toCeltidaceae plus all other families in the order; and thatCannabaceae might be nested withinCeltidaceae. Familial placements of various problematic genera (e.g.Ampelocera, Aphananthe) are resolved and character evolution of key morphological, anatomical, chemical, and chromosomal features are discussed.  相似文献   

6.
Penaeoidea is a diverse group of economically important marine shrimps. Attention to the evolutionary history of the penaeoids has been raised since studies using mitochondrial DNA markers and sperm ultrastructure contradict classification of the penaeoid families based on morphology and hence challenge the long standing taxonomy of this superfamily. In this study, DNA sequences of two nuclear protein-coding genes, phosphoenolpyruvate carboxykinase and sodium–potassium ATPase α-subunit, were determined from 37 penaeoid genera to reconstruct the evolutionary relationships and to estimate divergence ages of the penaeoid shrimps. Phylogenetic analyses using maximum likelihood and Bayesian approaches strongly support the monophyly of Solenoceridae, Aristeidae and Benthesicymidae, but find Sicyoniidae nested within Penaeidae, making this family paraphyletic. Penaeoidea comprises two lineages: the former three families in one while the latter two in another. The diversification of these lineages may be related to bathymetry. The penaeid-like lineage diversified in the Triassic, earlier than the aristeid-like lineage with an origin in the Jurassic. Taxonomic revisions within Penaeoidea are also proposed for further investigation. Due to the paraphyly of Penaeidae and the high genetic divergence among the three penaeid tribes of Burkenroad [Burkenroad, M.D., 1983. Natural classification of Dendrobranchiata, with a key to recent genera. In: Schram, F.R. (Ed.), Crustacean Issues I. Crustacean Phylogeny. A.A. Balkema, Rotterdam, pp. 279–290], these tribes should be treated as having the same taxonomic rank as Sicyoniidae, while the family ranking of Benthesicymidae has to be re-considered owing to the low genetic divergence between the benthesicymids and the aristeids.  相似文献   

7.
To estimate the evolutionary history of the mustard family (Brassicaceae or Cruciferae), we sampled 113 species, representing 101 of the roughly 350 genera and 17 of the 19 tribes of the family, for the chloroplast gene ndhF. The included accessions increase the number of genera sampled over previous phylogenetic studies by four-fold. Using parsimony, likelihood, and Bayesian methods, we reconstructed the phylogeny of the gene and used the Shimodaira-Hasegawa test (S-H test) to compare the phylogenetic results with the most recent tribal classification for the family. The resultant phylogeny allowed a critical assessment of variations in fruit morphology and seed anatomy, upon which the current classification is based. We also used the S-H test to examine the utility of trichome branching patterns for describing monophyletic groups in the ndhF phylogeny. Our phylogenetic results indicate that 97 of 114 ingroup accessions fall into one of 21 strongly supported clades. Some of these clades can themselves be grouped into strongly to moderately supported monophyletic groups. One of these lineages is a novel grouping overlooked in previous phylogenetic studies. Results comparing 30 different scenarios of evolution by the S-H test indicate that five of 12 tribes represented by two or more genera in the study are clearly polyphyletic, although a few tribes are not sampled well enough to establish para- or polyphyly. In addition, branched trichomes likely evolved independently several times in the Brassicaceae, although malpighiaceous and stellate trichomes may each have a single origin.  相似文献   

8.
The anatomy of the middle ear region of the skull is described for the families of the Avian orders Pelecaniformes and Ciconiiformes. Emphasis is placed on the foramina and paths of the nerves and blood vessels. The morphology of the basicranium and quadrate is also discussed. Comparative analyses of the characters are used to assess taxonomic conclusions.
Extant Pelecaniformes consist of six families, four of which are monogenic: Phaethontidae, Pelecanidae, Anhingidae and Fregatidae; one is composed of two genera: Sulidae; and the last has three genera: Phalacrocoracidae. Several years ago a relationship was suggested which would ally the Phaethontidae and the Fregatidae. While these families share several non middle ear characters the anatomy of the middle ear is not compatible with any particular relationship. Indeed, several obvious differences are described. The data presented here are consistent with the idea that the Phaethontidae and the Fregatidae each form a separate group of Pelecaniform birds, with the rest of the families forming a third group. Several differences in the middle ear region of the species of Anhingidae suggest that the family may be composed of two genera.
While sharing many Ciconiiform characters the Ciconiidae have been shown not to be as closely related to the Ardeidae as they are to other families of Ciconiiformes. In addition, evidence is presented to support the recent idea that the three species of ibis (I. ibis, I. cinereus and I. leucocephalus ) be united within the genus Mycteria. Also supported is the notion that Balaeniceps is Pelecaniform in character, and not Ciconiiform.  相似文献   

9.
The Guyana Highland-centred genera, or Stenopadus group, are a complex of species that belong to the tribes Mutisieae and Stifftieae of Asteraceae. The pollen morphologies of 29 species, from 12 of 13 genera of this complex, are described and illustrated using light and scanning electron microscopy. The exine sculpture and structure are highly significant. Four exine types, previously characterized, were distinguished: Gongylolepis , Wunderlichia , Mutisia , and Stenopadus . The characterization of the Stenopadus exine type is enlarged here. These exine types led to the recognition of four well-defined pollen types, whereas the spine length and exine thickness characterized six subtypes. Pollen types circumscribe genera or groups of genera, and some subtypes distinguish species. The pollen morphology within the complex is discussed in relation to the rest of Mutisioideae and other palynologically allied tribes of Cichorioideae. There is little correlation between pollen types and tribes; only the Stenopadus exine type is exclusive to the Stifftieae tribe. The remaining types are shared by the two tribes of the complex. Pollen morphology supports the hypothesis that this group of genera is close to the Gochnatia complex and the Cardueae tribe.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 327–340.  相似文献   

10.
11.
时敏  陈学新  马云  何俊华 《昆虫学报》2007,50(2):153-164
本研究选取矛茧蜂亚科Doryctinae(昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)的6族15属18种做内群,茧蜂科其它7亚科11属11种做外群,首次结合同源核糖体28S rDNA D2基因序列片段和100个形态学和解剖学特征对该亚科进行了系统发育学研究。利用“非圆口类"的小腹茧蜂亚科Microgastrinae为根,以PAUP*4.0和MrBayes 3.0B4软件分别应用最大简约法(MP)和贝叶斯法对矛茧蜂亚科的分子数据和分子数据与非分子数据的结合体进行了运算分析;并以PAUP*4.0对矛茧蜂亚科的28S rDNA D2基因序列片段的碱基组成与碱基替代情况进行了分析。结果表明:矛茧蜂亚科的28S rDNA D2基因序列片段的GC含量在39.33%~48.28%之间变动,而对于碱基替代情况来讲,矛茧蜂亚科各成员间序列变异位点上颠换(transversion)大于转换(transition)。不同的分析算法所产生的系统发育树都表明矛茧蜂亚科是一个界限分明的单系群;在矛茧蜂亚科内,除了吉丁茧蜂族Siragrini为单系群外,其他族(矛茧蜂族Doryctini和方头茧蜂族Hecabolini)都是并系群。对于矛茧蜂亚科内各属之间的相互亲缘关系,不同算法所得的系统发育树的拓扑结构不完全一致,表明矛茧蜂亚科内(属及族)的系统发育关系还有待于进一步研究。  相似文献   

12.
The morphology, anatomy, and histology of the gynoecia at or close to anthesis are described for 20 genera of palms selected to represent different taxonomic alliances and to include major gynoecial types within the family. Palms may have 1–10 carpels, but most have three. Fifteen genera, including 14 coryphoid palms and the monotypic Nypa fruticans, are apocarpous and the remainder, approximately 190, are syncarpous. Fusion of carpels in some gynoecia begins in the base, in others in the styles. Pseudomonomerous pistils occur in several different alliances: the ovarian parts of two carpels are reduced but three usually equal and functional styles and stigmas are present. The carpel is often follicular in shape with the ventral suture open or, more frequently, partially or completely closed. The carpel may be stipitate or sessile and usually has a conduplicate laminar part. Most carpels are spirally and laterally inserted on the receptacle, but the carpel in some unicarpellate genera (e.g., Thrinax) appears terminal. Stipes, ovarian parts, styles, and stigmas vary in structure and development. Septal nectaries which differ in size, in the presence or absence of specialized canals, and in position, characterize all genera of some groups but only some genera of others. Diverse vascular configurations in the bases of gynoecia vary according to the extent of the floral axis, the development of carpellary stipes, and the connation of the carpels and their adnation to the tip of the floral axis. Four types of carpellary vascular systems are present in the genera described: (1) most palm carpels have three major traces consisting of a dorsal bundle and two ventral bundles, and they may also have up to four pairs of lateral bundles or occasionally more; (2) in certain cocosoid palms no ventral bundles can be distinguished, but a dorsal bundle, many parallel lateral bundles, and a row of immature ventral strands vascularize each carpel; (3) carpels of Phytelephas have a dorsal bundle, two pairs of major lateral bundles and about four pairs of shorter lateral bundles, with no identifiable ventral bundles; (4) carpels of Nypa have many dichotomously branched bundles but none that are recognizable as dorsal, ventral, or lateral strands. Additional peripheral bundles or systems may be present in each of the above types. Ovules are supplied by 1–15 bundles. These are derived either from the carpellary stele; from ventral bundles only; from ventral, lateral, and dorsal bundles; or from a combination of these origins. Certain areas of the gynoecia or certain parts of dorsal carpellary walls in some genera are much less mature at anthesis than surrounding tissues. Implications for floral biology and relationships within the palms and of palms to other groups are discussed.  相似文献   

13.
Various interpretations of the holothurian system and phylogeny are critically reviewed and the main characters that form the basis of the existing systematics of this group are analyzed. A system of holothurians based on thorough analysis of their morphology and anatomy is proposed. Four subclasses are recognized in the class Holothuroidea: Arthrochirotacea, Synaptacea, Elpidiacea, and Holothuriacea. The subclass Arthrochirotacea includes the extinct Paleozoic order Arthrochirotida. The subclass Synaptacea includes the order Synaptida with two suborders and three families. The subclass Elpidiacea includes the order Elasipodida with four families. The subclass Holothuriacea includes four orders: Aspidochirotida with five families; Dendrochirotida with 15 families (14 extant and one extinct); Molpadiida with three families; Gephyrothuriida with one family and two genera Gephyrothuria and Hadalothuria. The order Gephyrothuriida is re-established. The order Dactylochirotida Pawson et Fell, 1965 is synonymized under the order Dendrochirotida. A new suborder Cucumariina and new family Mesothuriidae are described. The family Vaneyellidae is synonymized under the family Cucumariidae. Four subfamilies are classified as families: Cladolabidae, Sclerothyonidae, Monilipsolidae, and Thyonidiidae.  相似文献   

14.
Paleontological Journal - Two families, two tribes, 30 genera and 57 insect species are described as new from Taimyr amber, as well as the first new plant genus and species to be described from...  相似文献   

15.
The phylogeny of the Giant Pill-Millipedes, order Sphaerotheriida, is investigated using a new morphological character matrix comprising 89 characters. The majority of these characters are employed for the first time in millipedes. All trees obtained agree on the monophyletic status of the Sphaerotheriida and several of its tribes, each restricted to a modern land mass. The species from Madagascar displaying island gigantism do not form a monophyletic group. The classic division of Giant Pill-Millipedes into two families, Sphaerotheriidae and Zephronidae, was not reflected in the analysis. The genus Procyliosoma is the sister-group to all other Sphaerotheriida, rendering the family Sphaerotheriidae paraphyletic. A new family-level classification of Giant Pill-Millipedes, based on the current phylogeny, is introduced. The new family Procyliosomatidae contains only the genus Procyliosoma , distributed in Australia and New Zealand. The family Zephronidae remains unchanged, while the family Sphaerotheriidae now incorporates only the African Giant Pill-Millipede genera. All genera from southern India and Madagascar form a monophyletic group and are placed in the new family Arthrosphaeridae. The Malagasy genus Sphaeromimus is more closely related to the Indian Arthrosphaera species than to other genera from Madagascar. A biogeographical analysis identifies the group as a Gondwana taxon (with a notable absence from South America). The current phylogeny of Giant Pill-Millipede families mirrors perfectly the suggested break-up of Gondwana fragments 160–90 Ma. No evidence for a dispersal event could be found, highlighting the importance of Giant Pill-Millipedes as a potential model taxon.  相似文献   

16.
Phenetic and cladistic relationships among tenebrionid beetles (Coleoptera)   总被引:4,自引:0,他引:4  
Abstract. The higher classification of Tenebrionidae is analysed using numerical phenetic, numerical cladistic and traditional Hennigian methods. In all, eighty characters are examined for about 335 taxa; definitive analyses are made on combinations of eighteen to seventy characters for thirty-three OTUs. At lower levels of relationship (genera and closely related tribes) phenetic and cladistic classifications are shown to be congruent, but at higher levels (tribes and subfamilies) there is marked discordance with phenetic results being more stable. A consensus classification is more similar to the Hennigian cladogram than is any single computer generated cladogram. Two main tribal groups – the Lagrioid and Tenebrionoid groups – are suggested which differ in defensive glands, female anatomy, wing and mouthpart morphology, larval characters and other features. The Tenebrionoid group consists of three main subdivisions – the tenebrionine, coelometopine and diaperine lineages. Changes in classificatory position are recommended for eighty-seven genera and tribes (listed in Appendix E) and implied for numerous others.  相似文献   

17.
Silicon (Si) distribution in the roots of Sorghastrum nutans (L.) Nash and Sorghum bicolor (L.) Moench. was investigated by means of the electron-probe microanalyzer and scanning electron microscope. In both species, Si was confined to the inner tangential wall of the tertiary-phase endodermal cells in the form of nodular silica aggregates of similar morphology and X-ray intensity. The results are compared to those for six closely related genera, as well as to studies of Si in the roots of species of other tribes of the family Poaceae. The various types of root deposits occurring in the family are described, and their relationships discussed. It is concluded that the type of Si distribution exhibited is determined largely by the phylogenetic status of the genus, rather than by the basic pattern of root anatomy.  相似文献   

18.
Canright , James E. (Indiana U., Bloomington.) The comparative morphology and relationships of the Magnoliaceae. III. Carpels. Amer. Jour. Bot. 47(2): 145—155. Illus. 1960.–The morphology and vascular anatomy of the carpels of 49 species in 9 of the 10 genera of the Magnoliaceae are described. Assuming that the conduplicate carpel of Australasian species of Drimys (Winteraceae) represents the primitive condition, various carpellary modifications are indicated for the Magnoliaceae. These evolutionary spcializations from the basic type include: basal adnation, lateral concrescence, reduction in number of ovules, closure of the ventral suture, and localization of stigmatic areas. Among the examined species it was determined that carpels of the genera Elmerrillia and Manglietia retain the most primitive features, whereas those of the genus Liriodendron possess the most advanced. Comparisons are made with the gynoecia of related ranalean families, viz., Himantandraceae, Degeneriaceae and Annonaceae.  相似文献   

19.
Abstract.  Fifty-four genera of the bee family Apidae comprising almost all tribes were analysed based on 77 traditional and one new character of the mature larvae. Nine, especially cleptoparasitic species, were newly added. Analyses were performed by maximum parsimony and Bayesian inference. Trees inferred from the analysis of the complete dataset were rooted by taxa from the families Melittidae and Megachilidae. Unrooted trees inferred from the analysis of the partial dataset (excluding outgroup taxa) are also presented to preclude possible negative effects of the outgroup on the topology of the ingroup. Only the subfamily Nomadinae was statistically well supported. The monophyly of the subfamilies Xylocopinae and Apinae was not topologically recovered. The monophyly of the tribe Tetrapediini was supported, and this tribe was found to be related to xylocopine taxa. At the very least, larval morphology suggests that Tetrapedia is not a member of the subfamily Apinae. Our analyses support the monophyly of the Eucerine line (Emphorini, Eucerini, Exomalopsini, Tapinotaspidini) and of the Apine line (Anthophorini, Apini, Bombini, Centridini, Euglossini, Meliponini). All analyses support the monophyly of totally cleptoparasitic tribes of the subfamily Apinae. We named this group the Melectine line (Ericrocidini, Isepeolini, Melectini, Osirini, Protepeolini, Rhathymini). In previous studies all these cleptoparasitic tribes were considered independent evolutionary lineages. Our results suggest that their similarities with hosts in morphology and pattern are probably the result of convergence and host–parasite co-evolution than phylogenetic affinity. According to the present analysis, the cleptoparasitism has evolved independently only six times within the family Apidae.  相似文献   

20.
Phylogeny of the Taxaceae genera and the monotypic family Cephalotaxaceae has been extraordinarily controversial. In this paper chloroplast matK genes and nuclear ITS sequences were determined for all six genera of the two families and representatives of other conifer families. Analysis using either the nonsynonymous sites or the deduced amino acid sequences of matK genes strongly indicates that taxad genera and Cephalotaxaceae are monophyletic, with the Taxodiaceae/Cupressaceae clade as their sister group. Cephalotaxus is basal to the taxad genera, among which two clades, Torreya/Amentotaxus and Taxus/Pseudotaxus/Austrotaxus, are resolved. They correspond to Janchen's two tribes, Torreyeae and Taxeae. In Taxeae, Austrotaxus is the first to branch off. Analyses of the nuclear ITS sequence data corroborated the topology of the matK gene tree. These results refute the views that Cephalotaxaceae has no alliance with Taxaceae and that Austrotaxus and Amentotaxus should be excluded from the Taxaceae. We estimated the divergence time between the Taxodiaceae/Cupressaceae and the Cephalotaxaceae/Taxaceae clades to be 192-230 Myr ago and the divergence time between taxads and Cephalotaxus to be 149-179 Myr ago. Soon after the latter divergence event, within 6-8 Myr, the two taxad tribes originated. In conclusion, our data do not support Florin's claim that taxads could be traced to Devonian psilophytes (359-395 Myr ago).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号