首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tritium suicide was shown to be highly efficient method for isolating mutants defective in hypoxanthine incorporation in the Chinese hamster lung cell line V79. The tritium suicide procedure consisted of 3 kill cycles. Survivors of one kill cycle were used for the next kill cycle. The kill cycles involved incorporation of [3H]hypoxanthine for 5 or 10 min, followed by storage of 3H-labelled cells at ?70°C for 4–10 days. 12 clones that survived the 3rd kill cycle were tested for incorporation of [3H]hypoxanthine and all were found to be defective. At least 6 of the clones have defective hypoxanthine phosphoribosyltransferase (HPRT) activity. One mutant, H19, chosen for further characterization, had HPRT with a 13-fold elevation in apparent Km for phosphoribosylpyrophosphate (PRPP). Thin-layer chromatography of cell extracts showed that this mutant was incapable of converting intracellular hypoxanthine to IMP or to other purine metabolites. In addition, H19 was resistant to 6-thioguanine.  相似文献   

2.
The initial velocity pattern has been determined for uridine-cytidine kinase purified from the murine mast cell neoplasm P815. With either uridine or cytidine as phosphate acceptor, and ATP as phosphate donor, the pattern observed was one of intersecting lines, ruling out a ping-pong reaction mechanism, and suggesting that the reaction probably proceeds by the sequential addition of both substrates to the enzyme to form a ternary complex, followed by the sequential release of the two products. This pattern was obtained whether the reaction was run in 0.01 m potassium phosphate buffer, pH 7.5, or in 0.1 m Tris-HCl, pH 7.2. When analyzed by the Sequen computer program, the data indicated an apparent Km of the enzyme for uridine of 1.5 × 10?4m, an apparent Km for cytidine of 4.5 × 10?5m, and a Km for ATP, with uridine or cytidine as phosphate acceptor, of 3.6 × 10?3m or 2.1 × 10?3m, respectively. The V was 1.83 μmol phosphorylated/min/mg enzyme protein for the uridine kinase reaction and 0.91 μmol for the cytidine kinase reaction.  相似文献   

3.
Uridine uptake and its intracellular phosphorylation during the cell cycle   总被引:2,自引:0,他引:2  
The rate of 5-3H uridine uptake into Chinese hamster V79 cells and the rate of its incorporation into RNA increase tenfold during the cell cycle. Both reactions exhibit the same apparent Km(1.7 × 10?5 M ). Chromatography of acid-soluble material from cells incubated with 5-3H uridine (0.25 μM) at different times of the cell cycle revealed that intracellular uridine was rapidly phosphorylated at all times, even though cells in late S and G2 take up roughly ten times as much uridine as cells in G1. Uridine kinase activity in synchronized cells increases about two and one-half-fold during the same time period, and in exponentially growing cells is not saturated until the external uridine concentration is raised above 200 μM. It is concluded that the change in uridine kinase activity during the cell cycle is not responsible for the tenfold increase in the rate of uridine transport, and that these two processes are independently regulated.  相似文献   

4.
Induction studies on pyrimidine metabolizing enzymes in E. coli B have shown that the enzymes fall into three distinct groups according to their induction pattern. a) Cytidine deaminase and uridine phosphorylase, are induced by cytidine, CMP and adenosine; no induction was observed with uridine and AMP; b) thymidine phosphorylase is induced by cytidine, adenosine, all deoxyribonucleosides, CMP, deoxyribonucleotides, deoxyribose and deoxyribose-1-phosphate; c) uridine-cytidine kinase, uracil phosphoribosyltransferase, 5'-nucleotidase, thymidine kinase, are uninducible enzymes. Simultaneous addition of cytidine and glucose partially overcomes the cytidine deaminase and uridine phosphorylase induction. Cytidine deaminase reaches its maximum activity levels, in E. coli growing cells in presence of cytidine, two hours before the uridine phosphorylase activity. Maximum glucose repression of cytidine deaminase and uridine phosphorylase was obtained in correspondence of maximum cytidine induction.  相似文献   

5.
ABSTRACT

Uridine-cytidine kinase (UCK) catalyzes the phosphorylation of uridine, cytidine, and several pyrimidine ribonucleoside analogs. We overexpressed and purified the two known isoforms of human UCK in Escherichia coli, produced a specific antibody against UCK1 and characterized the kinetic properties of UCK1 and 2. The Vmax of purified recombinant UCK2 was 22- and 8-fold higher with uridine and cytidine, respectively, compared to those observed for the purified recombinant UCK1 enzyme. The Km of UCK1 was 39- and 40-fold higher with uridine and cytidine, respectively, compared to those observed for the purified recombinant UCK2 enzyme. The UCK1 antibody showed no cross reactivity against UCK2. Our data showed that UCK1 and 2 are both expressed in several neuroblastoma cell lines, including four MYCN single copy cell lines and five MYCN amplified cell lines, with the exception that UCK1 was not expressed in SJNB8. These results indicate that UCK2 in neuroblastoma might be used as a selective target for chemotherapy using UCK2-dependent pyrimidine analogues.  相似文献   

6.
The biosynthesis of cytidine nucleotides and the level of microsomal cytochrome P-450 in intact and regenerating rat liver after repeated administration of alpha-hexachlorocyclohexane (alpha-HCH) were compared. In alpha-HCH treated animals the utilization of [2-14C] orotic acid for the synthesis of cytidine nucleotides is suppressed. In 24-h regenerating liver the incorporation of labelled orotic acid into cytidine nucleotides is markedly activated; the degree of activation is lower in regenerating livers of alpha-HCH treated animals. The changes in the level of cytochrome P-450 vary inversely with the changes in the utilization of [2-14C] orotic acid for the synthesis of cytidine nucleotides. The activity of cytidine triphosphate synthetase of liver cytosol increases shortly after the administration of alpha-HCH; uridine-cytidine kinase is enhanced in the later stages of the drug action. Within 15-45 min after the administration of alpha-HCH the uptake of [U-14 C] cytidine into the liver and its incorporation into RNA cytosine are increased. After the administration of the drug the uptake of [2-14 C] uridine and its incorporation into RNA uracil is also enhanced whereas its utilization for the synthesis of cytidine nucleotides of the acid-soluble extract as well as for the RNA cytosine are suppressed.  相似文献   

7.
SYNOPSIS. Uridine uptake was examined in Tetrahymena pyriformis GL-7 in defined medium under conditions where food vacuole formation is not a significant factor in solute acquisition by the cell. The results indicate the presence of a saturable mechanism which follows Michaelis-Menten kinetics. When corrected for diffusion the apparent Km for the carrier is 2.3 ± 0.6 μM and the Vmax is 7.3 ± 0.2 × 10?7 nmoles/cell/min. It is evident from nucleotide pool analysis that most of the radioactivity of externally supplied [3H]uridine appears in UMP with the remainder in UTP. Uridine is apparently phosphorylated immediately upon entry into the cell and neither uridine-cytidine kinase activity nor RNA synthesis are rate-limiting in the uptake process. Uridine transport is competitively inhibited by a variety of ribo- and deoxyribonucleosides as well as several nucleoside analogs. Neither uracil nor ribose or deoxyribose are effective inhibitors of uridine transport indicating the carrier is specific for the nucleoside. There is little difference between the Ki values for ribo- as opposed to deoxyribonucleosides except in the case of deoxyguanosine which is much less effective as an inhibitor under the conditions of this study, than all the other nucleosides, including guanosine.  相似文献   

8.
Summary Strains of Escherichia coli have been selected, which contain mutations in the udk gene, encoding uridine kinase. The gene has been located on the chromosome as cotransducible with the his gene and shown to be responsible for both uridine and cytidine kinase activities in the cell.An additional mutation in the cdd gene (encoding cytidine deaminase) has been introduced, thus rendering the cells unable to metabolize cytidine. In these mutants exogenously added cytidine acts as inducer of nucleoside catabolizing enzymes indicating that cytidine per se is the actual inducer.When the udk, cdd mutants are grown on minimal medium the enzyme levels are considerably higher than in wild type cells. Evidence is presented indicating that the high levels are due to intracellular accumulation of cytidine, which acts as endogenous inducer.Abbreviations and Symbols FU 5-fluorouracil - FUR 5-fluorouridine - FUdR 5-fluoro-2'deoxyuridine - FCR 5-fluorocytidine - FCdR 5-fluorodeoxycytidine - THUR 3, 4, 5, 6-tetrahydrouridine - UMP uridine monophosphate - CMP cytidine monophosphate - dUMP deoxyuridine monophosphate. Genes coding for: cytidine deaminase - edd uridine phosphorylase - udp thymidine phosphorylase - tpp purmnucleoside phosphorylase - pup uridine kinase (=cytidine kinase) - udk UMP-pyrophosphorylase - upp. CytR regulatory gene for cdd, udp, dra, tpp, drm and pup Enzymes EC 2.4.2.1 Purine nucleoside phosphorylase or purine nucleoside: orthophosphate (deoxy)-ribosyltransferase - EC 2.4.2.4 thymidine phosphorylase or thymidine: orthophosphate deoxyribosyltransferase - EC 2.4.2.3 uridine phosphorylase or uridine: orthophosphate ribosyltransferase - EC 3.5.4.5 cytidine deaminase or (deoxy)cytidine aminohydrolase - EC 4.1.2.4 deoxyriboaldolase or 2-deoxy-D-ribose-5-phosphate: acetaldehydelyase - EC 2.4.2.9 UMP-pyrophosphorylase or UMP: pyrophosphate phosphoribosyltransferase - EC 2.7.1.48 uridine kinase or ATP: uridine 5-phosphotransferase  相似文献   

9.
Two clones were isolated from mutagenized mouse T-lymphoma cells (S49) which are over 90% deficient in uridine-cytidine kinase. The first clone, AU-200-1, was isolated in two steps by virtue of its resistance to 6-azauridine; whereas the second clone, FU3-70G, was isolated in three steps after exposure to three increasing concentrations of 5-fluorouracil. Extracts of both the AU-200-1 and the FU3-70G cell lines lacked over 90% of the capacity of those from wild type cells to phosphorylate either uridine or cytidine. Furthermore, the uptake of radioactive uridine and cytidine from the medium by intact AU-200-1 and FU3-70G cells was less than 5% of that found for intact wild type cells. By growth rate experiments, these uridine-cytidine kinase-deficient cell lines have altered sensitivities to the toxic pyrimidine analogs, 6-azauridine, 5-fluorouracil, and 5-fluorouridine and thus have been useful in elucidating the biochemical determinants involved in the metabolism of these compounds.  相似文献   

10.
Uridine-cytidine kinase (UCK) catalyzes the phosphorylation of uridine and cytidine and activates pharmacological ribonucleoside analogs. Here we present the crystal structures of human UCK alone and in complexes with a substrate, cytidine, a feedback inhibitor, CTP or UTP, and with phosphorylation products, CMP and ADP, respectively. Free UCK takes an alpha/beta mononucleotide binding fold and exists as a homotetramer with 222 symmetry. Upon inhibitor binding, one loop region was loosened, causing the UCK tetramer to be distorted. Upon cytidine binding, a large induced fit was observed at the uridine/cytidine binding site, which endows UCK with a strict specificity for pyrimidine ribonucleosides. The first UCK structure provided the structural basis for the specificity, catalysis, and regulation of human uridine-cytidine kinase, which give clues for the design of novel antitumor and antiviral ribonucleoside analogs that inhibit RNA synthesis.  相似文献   

11.
N62-Isopentenyl)adenosine (IPAR) inhibited severely the incorporation of uridine and cytidine into S-180 cells in culture. When IPAR and the nucleosides were simultaneously present in the medium the inhibition was competitive (Ki 3.4 m̈M) and indicated inhibition of transport. However, the inhibition occurred even in the absence of extracellular IPAR if the cells had been preincubated with IPAR. Since 5′-IPAMP was the product which accumulated in large quantities in S-180 cells when incubated with IPAR, the effects of this AMP analog on the intracellular metabolism of uridine had to be considered. No direct correlation between the amount of intracellular IPAMP and the degree of inhibition of uridine utilization was observed and the relative distribution of uridine nucleotides in the acid soluble pool of the cells was unaltered in cells treated with IPAR. Also, IPAMP was not an inhibitor of uridine kinase in a cell free system nor was the activity of this enzyme affected by treatment of cells with IPAR. In addition, a profound inhibition of uridine utilization was also observed in a resistant subline of S-180 cells, which is unable to form IPAMP. These data suggest that IPAMP was not the inhibitory agent. Furthermore, the observation that the inhibition in both sensitive and resistant cells was caused even by a 15-second exposure to 100 m̈M IPAR, followed by rinsing, suggests that IPAR itself is the effective agent. It is concluded that IPAR exerts its inhibitory effect on uridine and cytidine utilization by becoming lodged in the cell membrane and thereby preventing the passage of these nucleosides into the cells. It is also shown that the inhibition of uridine and cytidine utilization by IPAR and by other potent nucleoside uptake inhibitors is unrelated to inhibition of growth or of RNA-synthesis when the cells do not depend on an extracellular source of a nucleoside for growth.  相似文献   

12.
Tritium suicide is shown to be an efficient technique for mutant enrichment in Saccharomyces cerevisiae. Decays from incorporated [5-3H]uridine and tritiated amino acids proved equally effective in inducing suicide; in cultures labeled to a specific activity of 50 dpm/cell, the viability fell to 2% after 12 days' storage at 4°. Mutagenized cultures were labeled with either [5-3H]uridine or a mixture of tritiated amino acids under conditions where auxotrophic mutants and temperature-sensitive mutants in RNA or protein synthesis would not incorporate a significant amount of the tritiated percursor. When survival fell to 2%, the percentages of both auxotrophic and temperature-sensitive mutants were 10-fold higher among these survivors than in the original mutagenized culture, regardless of the radioactive precursor used.  相似文献   

13.
Summary The combined phosphorylation of uridine and cytidine by a partially purified preparation of uridine-cytidine kinase has been studied with dual-substrate kinetics. The kinetic patterns obtained are consistent with the theoretical analysis for two competing, alternate substrates interacting with a single enzyme. Thus, despite feedback regulation of the kinase by both UTP and CTP, the results allow a clear conclusion that both nucleosides are phosphorylated by the same enzyme, and probably at a single site, rather than by two closely related isozymes, each specific for one pyrimidine.A preliminary report of these results has been presented (Proc. Amer. Assoc. Cancer Res.17 : 78, 1976).  相似文献   

14.
The nucleoside triphosphate pools of two cytidine auxotrophic mutants of Salmonella typhimurium LT-2 were studied under different conditions of pyrimidine starvation. Both mutants, DP-45 and DP-55, are defective in cytidine deaminase and cytidine triphosphate (CTP) synthase. In addition, DP-55 has a requirement for uracil (uridine). Cytidine starvation of the mutants results in accumulation of high concentrations of uridine triphosphate (UTP) in the cells, while the pools of CTP and deoxy-CTP drop to undetectable levels within a few minutes. Addition of deoxycytidine to such cells does not restore the dCTP pool, indicating that S. typhimurium has no deoxycytidine kinase. From the kinetics of UTP accumulation during cytidine starvation, it is concluded that only cytidine nucleotides participate in the feedback regulation of de novo synthesis of UTP; both uridine and cytidine nucleotides participate in the regulation of UTP synthesis from exogenously supplied uracil or uridine. Uracil starvation of DP-55 in presence of cytidine results in extensive accumulation of CTP, suggesting that CTP does not regulate its own synthesis from exogenous cytidine. Analysis of the thymidine triphosphate (dTTP) pool of DP-55 labeled for several generations with (32)P-orthophosphate and (3)H-uracil in presence of (12)C-cytidine shows that only 20% of the dTTP pool is derived from uracil (via the methylation of deoxyuridine monophosphate); 80% is apparently synthesized from a cytidine nucleotide.  相似文献   

15.
4-N-hydroxy-cytidine was found to substitute for uridine as a pyrimidine supplement for the growth of Escherichia coli Bu. Measurement of the incorporation of 4-N-hydroxy-cytidine-2-14C into ribonucleic acid and deoxyribonucleic acid revealed that this compound was converted to cytidine or uridine before utilization. Two pathways for metabolism were considered: (i) the reduction of 4-N-hydroxy-cytidine to cytidine followed by deamination, (ii) the direct hydrolysis of hydroxylamine from 4-N-hydroxy-cytidine to yield uridine. A threefold increase in cytidine (deoxycytidine) deaminase (EC 3.5.4.5) activity, when the cells were grown on 4-N-hydroxy-cytidine, suggested the involvement of this enzyme. More direct proof was obtained by purifying the deaminase 185-fold and finding that it released hydroxylamine from 4-N-hydroxy-cytidine at one-fiftieth the rate at which ammonia was removed from cytidine. This result is consistent with the slower rate of growth of the Bu cells on 4-N-hydroxy-cytidine than cytidine and suggests that the second pathway is the major route for utilization of this compound.  相似文献   

16.
Cell-free extracts of 3–4 days old mats of nitrate-grown Penicillium citrinum catalyze the hydrolytic cleavage of the N-glycosidic bonds of inosine, guanosine and adenosine optimally at pH 4, 0.1 M citrate buffer. The same extracts catalyze the hydrolytic deamination of cytidine at a maximum rate in 0.08 M Tris-acetate buffer pH 6.5, 40°C and 50°C were the most suitable degrees for purine nucleoside hydrolysis and cytidine deamination, respectively. The incubation of the extracts at 60°C, in the absence of cytidine caused a loss in the deaminating activity, while freezing and thawing had no effect on both activities. The deaminating activity seems to be cytidine specific as neither cytosine, adenine, adenosine nor guanosine could be deaminated. Uridine competively inhibited this activity, while ammonia had no effect. The apparent Km value of this enzyme for cytidine was 1.57×10?3M and its Ki value for uridine was 7.8×10?3M. The apparent Km values of the N-glycosidic bond cleaving enzyme for inosine, guanosine and adenosine were 13.3, 14.2 and 20×10?3 M, respectively.  相似文献   

17.
Metabolism of cytidine and uridine in bean leaves   总被引:3,自引:3,他引:0       下载免费PDF全文
Ross C  Cole CV 《Plant physiology》1968,43(8):1227-1231
The metabolism of cytidine-2-14C and uridine-2-14C was studied in discs cut from leaflets of bean plants (Phaseolus vulgaris L.). Cytidine was degraded to carbon dioxide and incorporated into RNA at about the same rates as was uridine. Both nucleosides were converted into the same soluble nucleotides, principally uridine diphosphate glucose, suggesting that cytidine was rapidly deaminated to uridine and then metabolized along the same pathways. However, cytidine was converted to cytidine diphosphate and cytidine triphosphate more effectively than was uridine. Cytidine also was converted into cytidylic acid of RNA much more extensively and into RNA uridylic acid less extensively than was uridine. Azaserine, an antagonist of reactions involving glutamine (including the conversion of uridine triphosphate to cytidine triphosphate), inhibited the conversion of cytidine into RNA uridylic acid with less effect on its incorporation into cytidylic acid. On the other hand, it inhibited the conversion of orotic acid into RNA cytidylic acid much more than into uridylic acid. The results suggest that cytidine is in part metabolized by direct conversion to uridine and in part by conversion to cytidine triphosphate through reactions not involving uridine nucleotides.  相似文献   

18.
The purine and pyrimidine metabolism of Tetrahymena pyriformis   总被引:1,自引:0,他引:1  
The metabolism of purines and pyrimidines by the ciliated protozoan Tetrahymena was investigated with the use of enzymatic assays and radioactive tracers. A survey of enzymes involved in purine metabolism revealed that the activities of inosine and guanosine phosphorylase (purine nucleoside: orthophosphate ribosyltransferase, E.C. 2.4.2.1) were high, but adenosine phosphorylase activity could not be demonstrated. The apparent Km for guanosine in the system catalyzing its phosphorolysis was 4.1 ± 0.6 × 10?3 M. Pyrophosphorylase activities for IMP and GMP (GMP: pyrophosphate phosphoribosyltransferase, E.C. 2.4.2.8), AMP (AMP: pyrophosphate phosphoribosyltransferase, E.C. 2.4.2.7), and 6-mercaptopurine ribonucleotide were also found in this organism; but a number of purine and pyrimidine analogs did not function as substrates for these enzymes. The metabolism of labeled guanine and hypoxanthine by intact cells was consistent with the presence of the phosphorylases and pyrophosphorylases of purine metabolism found by enzymatic studies. Assays for adenosine kinase (ATP: adenosine 5'-phosphotransferase, E.C. 2.7.1.20) inosine kinase, guanosine kinase, xanthine oxidase (xanthine: O2 oxidoreductase, E.C. 1.2.3.2), and GMP reductase (reduced-NADP: GMP oxidoreductase [deaminating], E.C. 1.6.6.8) were all negative. In pyrimidine metabolism, cytidine-deoxycytidine deaminase (cytidine aminohydrolase, E.C. 3.5.4.5), thymidine phosphorylase (thymidine: orthophosphate ribosyltransferase, E.C. 2.4.2.4), and uridine-deoxyuridine phosphorylase (uridine: orthophosphate ribosyltransferase, E.C. 2.4.2.3) were active; but cytidine kinase, uridine kinase (ATP: uridine 5'-phosphotransferase, E.C. 2.7.1.48), and CMP pyrophosphorylase could not be demonstrated.  相似文献   

19.
A cDNA encoding the Arabidopsis thaliana uridine 5′-monophosphate (UMP)/cytidine 5′-monophosphate (CMP) kinase was isolated by complementation of a Saccharomyces cerevisiae ura6 mutant. The deduced amino acid sequence of the plant UMP/CMP kinase has 50% identity with other eukaryotic UMP/CMP kinase proteins. The cDNA was subcloned into pGEX-4T-3 and expressed as a glutathione S-transferase fusion protein in Escherichia coli. Following proteolytic digestion, the plant UMP/CMP kinase was purified and analyzed for its structural and kinetic properties. The mass, N-terminal sequence, and total amino acid composition agreed with the sequence and composition predicted from the cDNA sequence. Kinetic analysis revealed that the UMP/CMP kinase preferentially uses ATP (Michaelis constant [Km] = 29 μm when UMP is the other substrate and Km = 292 μm when CMP is the other substrate) as a phosphate donor. However, both UMP (Km = 153 μm) and CMP (Km = 266 μm) were equally acceptable as the phosphate acceptor. The optimal pH for the enzyme is 6.5. P1, P5-di(adenosine-5′) pentaphosphate was found to be a competitive inhibitor of both ATP and UMP.  相似文献   

20.
Summary Two allelic auxotrophic mutants at a locus close to the bw locus (2–104.5) of Drosophila melanogaster are described. The mutants respond to dietary ribonucleosides (uridine, cytidine, adenosine, guanosine and inosine) but less well to bases or pyrimidine precursors. This phenotype is unique to these mutants.We suggest that the mutants are defective in phosphoribosyl pyrophosphate biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号