首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipid uptake by Plasmodium knowlesi infected erythrocytes   总被引:2,自引:0,他引:2  
The uptake of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) in Plasmodium knowlesi infected erythrocytes has been studied. Whereas uptake of phospholipids, in the absence of phospholipid transfer proteins, is negligible in control cells, the infected cells can incorporate considerable amounts of added phospholipids. The uptake is enhanced by the presence of lipid transfer proteins. Doubly labeled [3H]oleate, [14C]choline) PC does not undergo any appreciable remodelling following uptake, which strongly suggests that plasma PC is used as such for the biogenesis of the parasite membranes. Transport of extracellularly offered PS and PE towards the intraerythrocytic parasite and utilization of these lipids by the parasite are confirmed by the observation that these lipids are converted into respectively PE and PC. The extent and rate of these conversions depend on the way the phospholipids are introduced into the infected cells.  相似文献   

2.
Plasmodium lophurae-infected red blood cells utilized considerably greater quantities of glucose than did uninfected duckling red cells. Kinetic analysis of glucose transport showed: (A). Below a concentration of 2 mM in the medium the uptake process followed Michaelis-Menten kinetics (carrier-mediated facilitated diffusion) whereas at concentrations greater than this simple diffusion became the main mode of entry. (B). The apparent transport constants, Kt, for normal and infected cells were similar. However there was an 8-fold increase in the maximal velocity, Vmax, for infected cells. (C). “Free” malaria parasites had a significantly lower Kt and a higher Vmax than did normal or infected red cells. Entry and exit studies with the nonmetabolizable sugar analog, 3-0-methyl glucose, demonstrated that the enhanced rate of uptake by infected cells involved an increase in the simple diffusion component and the degree of enhancement was correlated with the size of the intracellular parasite. Competition experiments suggested that in the malaria-infected cell one locus is involved in the carrier-mediated transport of glucose, mannose and galactose whereas another locus transports fructose and/or glycerol. These results indicate that the enhanced entry of glucose into the malaria-infected red cell is a consequence of factors other than increased glucose catabolism by the host-parasite complex, and the host cell's capacity to take up greater quantities of sugar directly involves the growing intracellular plasmodium.  相似文献   

3.
Cloning and functional identification of a neuronal glutamine transporter   总被引:18,自引:0,他引:18  
Glutamine is the preferred precursor for the neurotransmitter pool of glutamate, the major excitatory transmitter in the mammalian central nervous system. We have isolated a complementary DNA clone (designated GlnT) encoding a plasma membrane glutamine transporter from glutamatergic neurons in culture, and its properties have been examined using the T7 vaccinia system in fibroblasts. When GlnT is transfected into CV-1 cells, L-glutamine is the preferred substrate. Transport is Na(+)-dependent and inhibited by alpha-methylaminoisobutyric acid, a specific inhibitor of neutral amino acid transport system A. Kinetic analysis of glutamine uptake by GlnT is saturable, with a Michaelis constant (K(m)) of 489 +/- 88 microM at pH 7.4. Glutamine uptake mediated by GlnT is pH-sensitive with a 5-fold greater efficiency of uptake at pH 8.2 than at pH 6.6. Only the maximal velocity of transport increases without a significant change in K(m). The distribution of GlnT mRNA and protein in the central nervous system is widespread and is expressed on neurons that use glutamate as their neurotransmitter. In cultured cerebellar granule cells, GlnT is expressed only on neurons and is absent from astrocytes. GlnT expression increases concomitantly with the morphologic and functional differentiation of these cells in vitro, consistent with its role of supplying glutamatergic neurons with their neurotransmitter precursor. GlnT is the first member of the system A family of neutral amino acid transporters with 11 putative membrane-spanning domains and is a potential target to modulate presynaptic glutamatergic function.  相似文献   

4.
Glucose influx into bovine erythrocytes was found to be significantly increased upon infection with the parasite, Babesia bovis. The influx of glucose into the infected cells over 4 min was not saturable at high concentrations of glucose (240 mM), nor was it affected by established inhibitors of mammalian glucose transport, such as cytochalasin B and phloretin (0.1-100 microM). Glucose uptake into the parasitized cells was, however, inhibited by phloridzin (phloretin-2-beta-glucoside) at concentrations over the range of 10-500 microM. Further inhibition of glucose uptake by adenosine (2.5-15 mM) was found to occur in B. bovis-infected bovine erythrocytes, suggesting an interaction of adenosine with the new or altered component of glucose transport in the parasitized cells.  相似文献   

5.
Lasat MM  Baker A  Kochian LV 《Plant physiology》1996,112(4):1715-1722
Radiotracer techniques were employed to characterize 65Zn2+ influx into the root symplasm and translocation to the shoot in Thlaspi caerulescens, a Zn hyperaccumulator, and Thlaspi arvense, a nonaccumulator. A protocol was developed that allowed us to quantify unidirectional 65Zn2+ influx across the root-cell plasma membrane (20 min of radioactive uptake followed by 15 min of desorption in a 100 [mu]M ZnCl2 + 5 mM CaCl2 solution). Concentration-dependent Zn2+ influx in both Thlaspi species yielded nonsaturating kinetic curves that could be resolved into linear and saturable components. The linear kinetic component was shown to be cell-wall-bound Zn2+ remaining in the root after desorption, and the saturable component was due to Zn2+ influx across the root-cell plasma membrane. This saturable component followed Michaelis-Menten kinetics, with similar apparent Michaelis constant values for T. caerulescens and T. arvense (8 and 6 [mu]M, respectively). However, the maximum initial velocity for Zn2+ influx in T. caerulescens root cells was 4.5-fold higher than for T. arvense, indicating that enhanced absorption into the root is one of the mechanisms involved in Zn hyperaccumulation. After 96 h 10-fold more 65Zn was translocated to the shoot of T. caerulescens compared with T. arvense. This indicates that transport sites other than entry into the root symplasm are also stimulated in T. caerulescens. We suggest that although increased root Zn2+ influx is a significant component, transport across the plasma membrane and tonoplast of leaf cells must also be critical sites for Zn hyperaccumulation in T. caerulescens.  相似文献   

6.
Previous studies have shown that ATP is required for the growth of the intracellular parasite, Plasmodium, outside its host cell, the erythrocyte, and that bongkrekic acid, an inhibitor of mitochondrial ATP/ADP transporter, inhibits intraerythrocytic Plasmodium maturation. We have characterized ATP/ADP transport of Plasmodium falciparum, isolated by either immune lysis or N2-cavitation. [3H]ATP uptake was due to ATP/ADP exchange since ADP efflux was dependent on exogenous ATP in an approximate 1:1 stoichiometry and both ATP influx and ADP efflux were equally inhibited by atractyloside (Ki = 100 nM). ATP uptake was not inhibited by the nucleoside transport inhibitor, nitrobenzylthioinosine. Conversely, adenosine and hypoxanthine transport were insensitive to atractyloside. ATP influx was characterized by a Km = 0.14 mM and Vmax = 1.2 nmol ATP/min/10(6) cells. Substrate specificity studies for nucleotide-induced ADP efflux indicated a preference for an adenosine ring and triphosphate, but transport did not require a hydrolyzable phosphate bond. Protein synthesis was measured with free parasites starved of glucose. Addition of 1.0 mM ATP resulted in a 40% recovery of total protein synthetic capacity in a process inhibited by 500 nM atractyloside, suggesting that uptake of erythrocyte-derived ATP by P. falciparum may be essential for maintaining maximal rates of protein synthesis during specific stages of intra-erythrocytic parasite maturation.  相似文献   

7.
The intraerythrocytic human malarial parasite Plasmodium falciparum produces lactate at a rate that exceeds the maximal capacity of the normal red cell membrane to transport lactate. In order to establish how the infected cell removes this excess lactate, the transport of lactate across the host cell and the parasite membranes has been investigated. Transport of radiolabeled L-lactate across the host cell membrane was shown to increase ca. 600-fold compared to uninfected erythrocytes. It showed no saturation with [L-lactate] and was inhibited by inhibitors of the monocarboxylate carrier, cinnamic acid derivatives (CADs), but not by the SH-reagent p-chloromercuriphenyl sulfonic acid (PCMBS). These results suggest that L-lactate is translocated through CAD-inhibitable new pathways induced in the host cell membrane by parasite activity, probably by diffusion of the acid form and through a modified native monocarboxylate:H+ symporter. Continuous monitoring of extracellular pH changes occurring upon suspension of infected cells in isoosmotic Na-lactate solutions indicates that part of the lactate egress is mediated by anionic exchange through the constitutive, but modified, anion exchanger. The transport of L-lactate across the parasite membrane is rapid, nonsaturating, and insensitive to either CADs or PCMBS, or to the presence of pyruvate. L-lactate uptake increased transiently when external pH was lowered and decreased when delta pH was dissipated by the protonophore carbonylcyanide m-chlorophenyl hydrazone (CCCP). These results are compatible with L-lactate crossing the parasite membrane either as the undissociated acid or by means of a novel type of lactate-/H+ symport.  相似文献   

8.
The intraerythrocytic malaria parasite, Plasmodium falciparum, derives amino acids from the digestion of host cell haemoglobin. However, it also takes up amino acids from the extracellular medium. Isoleucine is absent from adult human haemoglobin and an exogenous source of isoleucine is essential for parasite growth. An extracellular source of methionine is also important for the normal growth of at least some parasite strains. In this study we have characterised the uptake of methionine by P. falciparum-infected human erythrocytes, and by parasites functionally isolated from their host cells by saponin-permeabilization of the erythrocyte membrane. Infected erythrocytes take up methionine much faster than uninfected erythrocytes, with the increase attributable to the flux of this amino acid via the New Permeability Pathways induced by the parasite in the erythrocyte membrane. Having entered the infected cell, methionine is taken up by the intracellular parasite via a saturable, temperature-dependent process that is independent of ATP, Na+ and H+. Substrate competition studies, and comparison of the transport of methionine with that of isoleucine and leucine, yielded results consistent with the hypothesis that the parasite has at its surface one or more transporters which mediate the flux into and out of the parasite of a broad range of neutral amino acids. These transporters function most efficiently when exchanging one neutral amino acid for another, thus providing a mechanism whereby the parasite is able to import important exogenous amino acids in exchange for surplus neutral amino acids liberated from the digestion of host cell haemoglobin.  相似文献   

9.
In several organisms solute transport is mediated by the simultaneous operation of saturable and non-saturable (diffusion-like) uptake, but often the nature of the diffusive component remains elusive. The present work investigates the nature of the diffusive glucose transport in Olea europaea cell cultures. In this system, glucose uptake is mediated by a glucose-repressible, H(+) -dependent active saturable transport system that is superimposed on a diffusional component. The latter represents the major mode of uptake when high external glucose concentrations are provided. In glucose-sufficient cells, initial velocities of D- and L-[U-(14)C]glucose uptake were equal and obeyed linear concentration dependence up to 100 mM sugar. In sugar starved cells, where glucose transport is mediated by the saturable system, countertransport of the sugar pairs 3-O-methyl-D-glucose/D-[U-(14)C]glucose and 3-O-methyl-D-glucose/3-O-methyl-D-[U-(14)C]glucose was demonstrated. This countertransport was completely absent in glucose-sufficient cells, indicating that linear glucose uptake is not mediated by a typical sugar permease. The endocytic inhibitors wortmannin-A and NH(4)Cl inhibited neither the linear component of D- and L-glucose uptake nor the absorption of the nonmetabolizable glucose analog 3-O-methyl-D-[U-(14)C]glucose, thus excluding the involvement of endocytic mediated glucose uptake. Furthermore, the formation of endocytic vesicles assessed with the marker FM1-43 proceeded at a very slow rate. Activation energies for glucose transport in glucose sufficient cells and plasma membrane vesicles were 7 and 4 kcal mol(-1), respectively, lower than the value estimated for diffusion of glucose through the lipid bilayer of phosphatidylethanolamine liposomes (12 kcal mol(-1)). Mercury chloride inhibited both the linear component of sugar uptake in sugar sufficient cells and plasma membrane vesicles, and the incorporation of the fluorescent glucose analog 2-NBDG, suggesting protein-mediated transport. Diffusive uptake of glucose was inhibited by a drop in cytosolic pH and stimulated by the protein kinase inhibitor staurosporine. The data demonstrate that the low-affinity, high-capacity, diffusional component of glucose uptake occurs through a channel-like structure whose transport capacity may be regulated by intracellular protonation and phosphorylation/dephosphorylation.  相似文献   

10.
Kinetics of transport and metabolism of bromosulfophthalein have been studied in isolated liver cells in a dose-dependent manner obtaining the following results. The disposition of bromosulfophthalein in suspensions of isolated liver cells is similar to the turnover in the whole liver. The initial maximal rate of uptake of bromosulfophthalein is 2--3 times faster than intracellular conjugation with glutathione. Conjugation proceeds to an equilibrium between intracellular substrate (bromosulfophthalein) and product (bromosulfophthalein-glutathione conjugate) which are both transiently accumulated in the cell. Formation of bromosulfophthalein-glutathione is accompanied by an equimolar decrease of glutathione. The bromosulfophthalein-glutathione conjugate is slowly released from the cells in an energy-dependent and saturable transport process. The maximal velocity of excretion amounts to only 6% of the maximal velocity of uptake and to 20% of the maximal velocity of conjugation. Excretion, therefore, represents the slowest step in the overall turnover.  相似文献   

11.
Transport of the nucleoside analog cytosine-arabinoside (CAR) in transformed hamster cells in culture has been studied in conditions of minimal metabolic conversion. Uptake (zero-trans in) properties at 20 degrees C over a limited range of CAR concentrations were characterized by a Km of 350 micrometer and a maximal velocity (V) of 780 micrometer.min-1 (V/Km = 2.28 min-1). Equilibrium exhcange at 20 degrees C over a wider range of concentrations was best described by a saturable component with a Km of 500 micrometer and a v of 1230 micrometer.min-1 (V/Km = 2.26 min-1) and either a saturable component of high Km or a nonsaturable component of k = 0.3 min-1. For the saturable component, the v/Km values were similar in both procedures. CAR transport was inhibited by various metabolizable nucleosides. Uptake of some of these nucleosides was inhibited by CAR. CAR transport and uridine uptake were inhibited in a reversible but partially competitive fashion by high affinity probes like S-(p-nitrobenzyl-6-mercaptoinosine (NBMI) (Ki less than 0.5 nM) and in an irreversible fashion by SH reagents such as N-ethylmaleiimide (NEM). The organomercurial p-hydroxymercuribenzene sulfonate (pMBS) markedly stimulated transport of these nucleosides, but also markedly potentiated the inhibitory effects of either NBMI or NEM. The effects are interpreted either in terms of models which invoke allosteric properties or in terms of two transport systems which display distinct chemical susceptibilities to externally added probes.  相似文献   

12.
Cultured fibroblasts derived from skin biopsies were used to develop a system for studying insulin resistance in human tissue in vitro. Uptake of alpha-aminoisobutyric acid by cultured human skin fibroblasts was found to occur by a combination of saturable and nonsaturable processes. Insulin stimulated uptake by decreasing the Km of the saturable transport system from 0.58 mM to 0.26 mM. The maximal velocity of saturable uptake was 16.6 nmol/10(7) cells/min in both the presence and absence of insulin. Uptake of alpha-aminoisobutyric acid at 0.2 mM was studied in human skin fibroblasts with and without chronic exposure to insulin for 4 days at an initial concentration of 10 micrograms/ml. Unstimulated uptake was increased from 17 to 20 nmol/10(8) cells/min, and the increase in uptake due to maximal stimulation by insulin was unchanged at 16 nmol/10(8) cells/min in the cells exposed chronically to insulin. The apparent Km for insulin was increased from 80 microunits/ml to 2400 microunits/ml in the insulin-exposed cells. Thus, chronic exposure to insulin induces resistance of alpha-aminoisobutyric acid uptake by decreasing the apparent affinity for insulin.  相似文献   

13.
The asexual development of the human malaria parasite Plasmodium falciparum is largely intraerythrocytic. When 1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazole-4-yl)amino]caproyl] phosphatidylcholine (NBD-PC) was incorporated into infected and uninfected erythrocyte membranes at 0 degrees C, it remained at the cell surface. At 10 degrees C, the lipid was rapidly internalized in infected erythrocytes at all stages of parasite growth. Our results indicate that the internalization of NDB-PC was not because of endocytosis but rapid transbilayer lipid flip-flop at the infected erythrocyte membrane, followed by monomer diffusion to the parasite. Internalization of the lipid was inhibited by (a) depleting cellular ATP levels; (b) pretreating the cells with N-ethyl maleimide or diethylpyrocarbonate; and (c) 10 mM L-alpha-glycerophosphorylcholine. The evidence suggests protein-mediated and energy dependent transmembrane movement of the PC analogue. The conditions for the internalization of another phospholipid analogue N-4-nitrobenzo-2-oxa-1,3-diazoledipalmitoyl phosphatidylethanolamine (N-NBD-PE) were distinct from that of NBD-PC and suggest the presence of additional mechanism(s) of parasite-mediated lipid transport in the infected host membrane. In spite of the lack of bulk, constitutive endocytosis at the red cell membrane, the uptake of Lucifer yellow by mature infected cells suggests that microdomains of pinocytotic activity are induced by the intracellular parasite. The results indicate the presence of parasite-induced mechanisms of lipid transport in infected erythrocyte membranes that modify host membrane properties and may have important implications on phospholipid asymmetry in these membranes.  相似文献   

14.
Plasmodium falciparum infection induces alterations in the transport properties of infected erythrocytes that have recently been defined using electrophysiological techniques. Mechanisms responsible for transport of substrates into intraerythrocytic parasites have also been clarified by studies of three substrate-specific (hexose, nucleoside and aquaglyceroporin) parasite plasma membrane transporters. These have been characterised functionally using the Xenopus laevis oocyte heterologous expression system. The same expression system is currently being used to define the function of parasite 'P' type ATPases responsible for intraparasitic [Ca(2+)] homeostasis. We review studies on these transport processes and examine their potential as novel drug targets.  相似文献   

15.
The characteristics of the uptake of L-cystine by LLC-PK1 cells were examined. The uptake diminished with time in culture after passage of cells while the uptake of sugar increased. In 48-h-cultured cells at a range of cystine concentrations including physiological levels uptake occurred via a saturable process which was independent of medium sodium concentration and pH. No inhibition of cystine uptake occurred in the presence of lysine which is known to share the cystine transport system in uncultured renal proximal tubule cells and brush-border membrane vesicles. Glutamate was a potent inhibitor of cystine uptake and participated in heteroexchange diffusion with cystine. The cystine-glutamate transport process resembles that of cultured human fibroblasts. The inability of these cells to reflect the genetically determined cystine-lysine system which is altered in the kidney in human cystinuria makes them an inappropriate model of the renal tubule cell cystine transport system. On the other hand, they may provide a model system for examining the factors which determine the presence of the various cystine transport process.  相似文献   

16.
Embryonic chick duodenum maintained in organ culture is a well-suited model for the study of vitamin D effects on inorganic phosphate (Pi) absorption. The system is sensitive to as little as 6.5 nM vitamin D3 (0.1.I.U./ml culture medium). Increased phosphate absorption is observed after 6--12 h of culture. Maximal response (133% of vitamin D-efficient control) is achieved at 24 h. Phosphate uptake by embryonic chick duodenum involves a saturable and a non-saturable component. The former displays characteristics of an active sodium-dependent transport mechanism and is also sensitive to vitamin D3. Presence of the sterol in culture medium raises the maximal velocity from 55 to 75 nmol Pi/min per g tissue. Km remains unchanged (0.5 mM Pi). Duodena cultured in presence of inhibitors of protein synthesis (actinomycin D, alpha-amanitin and cycloheximide) display reduced rates of phosphate absorption. This treatment also prevents vitamin D3 action on phosphate transport. It is concluded that the sterol affects phosphate transport by modulation of synthesis of proteins which are functional in the Pi absorptive process.  相似文献   

17.
The possibility that the herbicide glyphosate (N-phosphonomethylglycine) may be taken up in plant cells via a phosphate transporter of the plasma membrane was investigated using protoplasts of broad bean leaves ( Vicia faba L.). Phosphonoformic acid, a powerful inhibitor of phosphate transport in animal cells, was first demonstrated to be a competitive inhibitor of phosphate uptake inbroad bean protoplasts. Glyphosate was able to inhibit phosphate uptake into the protoplasts, and to protect partially the phosphate transporter from inhibition by phosphonoformic acid. Concentration dependence studies showed that glyphosate uptake exhibited a saturable phase at low glyphosate concentrations (0. 5 to 3 μ M ), superimposed by a linear uptake at higher concentrations (up to 100 μ M ). Inhibition of glyphosate uptake by para -chloromercuribenzene sulphonic acid, sodium azide and carbonyl-cyanide- m -chlorophenylhydrazone was much stronger at 1 than at 100 μ M glyphosate. Kinetics indicated that the saturable component of glyphosate transport was competitively inhibited by either phosphate or phosphonoformic acid. It is concluded that glyphosate can be absorbed via a phosphate transporter of the plasma membrane  相似文献   

18.
The fluorescence probe 1-anilinonaphthalene-8-sulfonate (ANS) has been used to characterize the anion transport properties of normal hepatocytes and hepatoma tissue culture cells. Incubation of hepatocytes in the presence of ANS (20 micron) resulted in a 35-fold enhancement of fluorescence and a 50 nm blue shift. The time course of this process is biphasic. A rapid initial fluorescence enhancement suggests ANS binding to the plasma membrane, and a slower component reflects the uptake of ANS into intracellular compartments. Analysis of ANS uptake showed this latter process to be saturable, with a Km of 10 micron, to be temperature dependent and to occur only in viable cells. The above observations suggest a carrier-mediated anion transport mechanism. Incubation of hepatoma tissue culture cells with ANS (20 micron) gave a fluorescence emission spectrum similar to that obtained from purified plasma membranes. The kinetics of this interaction only exhibited a rapid initial binding of ANS. The second slow component was now absent, suggesting that ANS transport by the malignant cell system was greatly reduced. Transport of ANS could, however, be stimulated in the presence of the local anesthetic tetracaine. The observed transport was now saturable, temperature dependent, and as in normal hepatocytes, required viable cells, again indicating a carrier-mediated transport system. These studies suggest a significant alteration in membrane function in hepatoma tissue culture cells resulting in a major defect in anion transport.  相似文献   

19.
The intraerythrocytic developmental stages of the malaria parasite Plasmodium falciparum are responsible for the clinical symptoms associated with malaria tropica. The non-infected human erythrocyte is a terminally differentiated cell that is unable to synthesize proteins and lipids de novo, and it is incapable of importing a number of solutes that are essential for parasite proliferation. Approximately 12-15 h after invasion the parasitized cell undergoes a marked increase in its permeability to a variety of different solutes present in the extracellular milieu. The increase is due to the induction in the erythrocyte membrane of 'new permeability pathways' which have been characterized in some detail in terms of their transport and electrophysiological properties, but which are yet to be defined at a molecular level. Here we show that these pathways are resistant to trypsin but are abolished by treatment of intact infected erythrocytes with chymotrypsin. On resuspension of chymotrypsinized cells in chymotrypsin-free medium the pathways progressively reappear, a process that can be inhibited by cytotoxic agents, and by brefeldin A which inhibits protein secretion. Our results provide evidence for the involvement of parasite encoded proteins in the generation of the pathways, either as components of the pathways themselves or as auxiliary factors.  相似文献   

20.
Human malaria infected erythrocytes show a dramatic increase in adenosine deaminase activity in vitro. Using recently developed culture techniques, adenosine deaminase-deficient human erythrocytes were infected in vitro with the major human pathogen Plasmodium falciparum. Adenosine deaminase activity was undetectable in the uninfected host red cells, but increased by 2-fold over normal levels in these cells with an 8% parasitemia. The enzyme in these cells appeared unique in that its activity was markedly elevated over that of other parasite purine enzymes, was not cross-reactive with antibody against human erythrocyte adenosine deaminase, and though inhibited competitively by deoxycoformycin was relatively insensitive to erythro-9-(2-hydroxy-3-nonyl) adenine. The use of adenosine deaminase-deficient erythrocytes for the in vitro cultivation of Plasmodium provides a unique system for the study of parasite enzyme and allows further insight into the purine metabolism of the intraerythrocytic malaria parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号