首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voigt A  Schöfl G  Saluz HP 《PloS one》2012,7(4):e35097

Background

Chlamydiaceae are a family of obligate intracellular pathogens causing a wide range of diseases in animals and humans, and facing unique evolutionary constraints not encountered by free-living prokaryotes. To investigate genomic aspects of infection, virulence and host preference we have sequenced Chlamydia psittaci, the pathogenic agent of ornithosis.

Results

A comparison of the genome of the avian Chlamydia psittaci isolate 6BC with the genomes of other chlamydial species, C. trachomatis, C. muridarum, C. pneumoniae, C. abortus, C. felis and C. caviae, revealed a high level of sequence conservation and synteny across taxa, with the major exception of the human pathogen C. trachomatis. Important differences manifest in the polymorphic membrane protein family specific for the Chlamydiae and in the highly variable chlamydial plasticity zone. We identified a number of psittaci-specific polymorphic membrane proteins of the G family that may be related to differences in host-range and/or virulence as compared to closely related Chlamydiaceae. We calculated non-synonymous to synonymous substitution rate ratios for pairs of orthologous genes to identify putative targets of adaptive evolution and predicted type III secreted effector proteins.

Conclusions

This study is the first detailed analysis of the Chlamydia psittaci genome sequence. It provides insights in the genome architecture of C. psittaci and proposes a number of novel candidate genes mostly of yet unknown function that may be important for pathogen-host interactions.  相似文献   

2.
Chlamydia comprises a group of obligate intracellular bacterial parasites responsible for a variety of diseases in humans and animals, including several zoonoses. Chlamydia trachomatis causes diseases such as trachoma, urogenital infection and lymphogranuloma venereum with severe morbidity. Chlamydia pneumoniae is a common cause of community-acquired respiratory tract infections. Chlamydia psittaci, causing zoonotic pneumonia in humans, is usually hosted by birds, while Chlamydia abortus, causing abortion and fetal death in mammals, including humans, is mainly hosted by goats and sheep. We used multi-locus sequence typing to asses the population structure of Chlamydia. In total, 132 Chlamydia isolates were analyzed, including 60 C. trachomatis, 18 C. pneumoniae, 16 C. abortus, 34 C. psittaci and one of each of C. pecorum, C. caviae, C. muridarum and C. felis. Cluster analyses utilizing the Neighbour-Joining algorithm with the maximum composite likelihood model of concatenated sequences of 7 housekeeping fragments showed that C. psittaci 84/2334 isolated from a parrot grouped together with the C. abortus isolates from goats and sheep. Cluster analyses of the individual alleles showed that in all instances C. psittaci 84/2334 formed one group with C. abortus. Moving 84/2334 from the C. psittaci group to the C. abortus group resulted in a significant increase in the number of fixed differences and elimination of the number of shared mutations between C. psittaci and C. abortus. C. psittaci M56 from a muskrat branched separately from the main group of C. psittaci isolates. C. psittaci genotypes appeared to be associated with host species. The phylogentic tree of C. psittaci did not follow that of its host bird species, suggesting host species jumps. In conclusion, we report for the first time an association between C. psittaci genotypes with host species.  相似文献   

3.
Chlamydiaceae are obligate intracellular bacterial pathogens for humans and animals. A recent study highlighted that a Chlamydiaceae intermediary between C. psittaci and C. abortus can infect hawks. Here, an isolate was obtained upon passage of cloacal and conjunctival sac material collected from a female hatch-year red-shouldered hawk (Buteo lineatus) in cultured cells. The diseased bird, one of 12 birds housed in a rehabilitation center, developed conjunctivitis and later died. Swabs from both sites tested positive for Chlamydia using the QuickVue Chlamydia test. The isolate, named RSHA, tested negative in qPCR assays specific for C. psittaci and C. abortus, respectively. Analysis of the 16S rRNA, 23S rRNA and whole genome sequences as well as MLST, ANIb and TETRA values reveal that C. psittaci and C. abortus are the closest relatives of RSHA. However, the overall results strongly suggest a phylogenetic intermediate position between these two species. Therefore, we propose the introduction of a new species designated Chlamydia buteonis with RSHAT as the type strain.  相似文献   

4.

Background

Reproductive disorders associated with chlamydial infection have been reported worldwide in cattle and there are indications of potential venereal transmission.

Methods

Semen samples from 21 dairy bulls and cauda epididymidis tissue samples from 43 beef bulls were analysed for chlamydial agent by real-time polymerase chain reaction (PCR) including an internal amplification control (mimic). Additionally, presence of antibodies against Chlamydophila (Cp.) abortus among the bulls was investigated with the commercial Pourquier® ELISA Cp. abortus serum verification kit.

Results

No chlamydial agent was detected by PCR in either the semen samples or in the tissue samples. Additionally, no antibodies against Cp. abortus were detected.

Conclusions

The results suggest that Cp. abortus is very rare, or absent in Swedish bulls and thus the risk for venereal transmission of chlamydial infection through their semen is low. However, because Chlamydophila spp. infection rates seem to differ throughout the world, it is essential to clarify the relative importance of transmission of the infection through semen on cattle fertility.  相似文献   

5.
Recent evidence of the occurrence of atypical Chlamydiaceae strains in pigeons, different from the established Chlamydiaceae, requires the development of a specific and rapid detection tool to investigate their prevalence and significance. Here is described a new real-time PCR assay that allows specific detection of atypical Chlamydiaceae from pigeons. The assay has been used to assess the dissemination of these strains in field samples collected from Parisian pigeon populations in 2009. The results suggest a limited dissemination compared to the usually higher prevalence of Chlamydia psittaci that is the main species associated with avian chlamydiosis.  相似文献   

6.
Few studies have investigated the role of raptors as natural reservoirs of Chlamydiaceae spp. and the preferred anatomical sites where these bacteria can be detected in non-symptomatic wild birds. We investigated the occurrence of Chlamydiaceae in 54 non-symptomatic adult free-living birds belonging to 14 species sampled upon reception in a raptor rehabilitation centre in Spain, and ten juvenile birds from five species born and reared in the centre for subsequent release into the wild. Swabs from conjunctivae, choanae and cloacae were taken to detect Chlamydiaceae DNA by a family-specific polymerase chain reaction (PCR) and a nested genus- and species-specific PCR. Chlamydiaceae DNA was detected in adult raptors belonging to 12 species (85.7%), mainly in conjunctival (40.6%) and, to a lesser extent, choanal (17.2%) swabs, but never in cloacal samples. Neither the genus nor the species of Chlamydiaceae could be confirmed by the nested PCR assay. Our results suggest that most of the raptor species investigated, especially the Common Kestrel (Falco tinnunculus) and Eurasian Griffon Vulture (Gyps fulvus), can be natural reservoirs of Chlamydiaceae spp. in the wild. Failure to identify the organisms at genus and species level might have been due to the poor quality and low concentration of DNA in the samples or to the presence of hitherto unclassified Chlamydiaceae species.  相似文献   

7.
8.
To determine the prevalence of Chlamydophila psittaci in wild birds, cloacal swabs from 527 songbirds, 442 waterfowl, 84 feral pigeons, and 38 cormorants were examined by Chlamydiaceae-specific real-time polymerase chain reaction (PCR) and ArrayTube microarray assays for chlamydial species determination and genotyping of C. psittaci. Inconclusive cases were further characterized by conventional PCR methods targeting the chlamydial outer membrane protein A, 16S, 23S, and intergenic spacer genes followed by sequencing of the PCR product. Swabs of 19 water birds (tufted ducks and pochards), 12 pigeons, and one songbird were tested positive by the Chlamydiaceae-specific real-time PCR. While C. psittaci genotypes B (n = 5) and E (n = 1) were identified in feral pigeons (n = 9), the genotype could not be identified in the remaining three cases. Sequence data of Chlamydiaceae-positive cases (n = 23; 19 waterfowl, three pigeons, one songbird) indicated the presence of nonclassified chlamydial agents (n = 20) and C. psittaci (n = 3) by 16S rRNA PCR and sequencing. In conclusion, C. psittaci was not detected in waterfowl and songbirds, but C. psittaci proved prevalent in urban feral pigeons, where it poses a significant risk for humans.  相似文献   

9.
On Bird Island, South Georgia, a new strain of Chlamydophila abortus was detected in one Brown skua out of 37 specimens from six different seabird species. Phylogenetic analysis of the rnpB and omp1 genes indicated the strain to be more closely related to C. abortus than to 6BC, the type strain of Chlamydophila psittaci.  相似文献   

10.

Background

Chlamydia possess a unique family of autotransporter proteins known as the Polymorphic membrane proteins (Pmps). While the total number of pmp genes varies between Chlamydia species, all encode a single pmpD gene. In both Chlamydia trachomatis (C. trachomatis) and C. pneumoniae, the PmpD protein is proteolytically cleaved on the cell surface. The current study was carried out to determine the cleavage patterns of the PmpD protein in the animal pathogen C. abortus (termed Pmp18D).

Methodology/Principal Findings

Using antibodies directed against different regions of Pmp18D, proteomic techniques revealed that the mature protein was cleaved on the cell surface, resulting in a100 kDa N-terminal product and a 60 kDa carboxy-terminal protein. The N-terminal protein was further processed into 84, 76 and 73 kDa products. Clustering analysis resolved PmpD proteins into three distinct clades with C. abortus Pmp18D, being most similar to those originating from C. psittaci, C. felis and C. caviae.

Conclusions/Significance

This study indicates that C. abortus Pmp18D is proteolytically processed at the cell surface similar to the proteins of C. trachomatis and C. pneumoniae. However, patterns of cleavage are species-specific, with low sequence conservation of PmpD across the genus. The absence of conserved domains indicates that the function of the PmpD molecule in chlamydia remains to be elucidated.  相似文献   

11.

Background

Chlamydiae species are of much importance from a clinical viewpoint. Their diversity both in terms of their numbers as well as clinical involvement are presently believed to be significantly underestimated. The obligate intracellular nature of chlamydiae has also limited their genetic and biochemical studies. Thus, it is of importance to develop additional means for their identification and characterization.

Results

We have carried out analyses of available chlamydiae genomes to identify sets of unique proteins that are either specific for all Chlamydiales genomes, or different Chlamydiaceae family members, or members of the Chlamydia and Chlamydophila genera, or those unique to Protochlamydia amoebophila, but which are not found in any other bacteria. In total, 59 Chlamydiales-specific proteins, 79 Chlamydiaceae-specific proteins, 20 proteins each that are specific for both Chlamydia and Chlamydophila and 445 ORFs that are Protochlamydia-specific were identified. Additionally, 33 cases of possible gene loss or lateral gene transfer were also detected.

Conclusion

The identified chlamydiae-lineage specific proteins, many of which are highly conserved, provide novel biomarkers that should prove of much value in the diagnosis of these bacteria and in exploration of their prevalence and diversity. These conserved protein sequences (CPSs) also provide novel therapeutic targets for drugs that are specific for these bacteria. Lastly, functional studies on these chlamydiae or chlamydiae subgroup-specific proteins should lead to important insights into lineage-specific adaptations with regards to development, infectivity and pathogenicity.  相似文献   

12.
Birds are the primary hosts of Chlamydia psittaci, a bacterium that can cause avian chlamydiosis in birds and psittacosis in humans. Wild seabirds are frequently admitted to wildlife rescue centers (WRC) at European Atlantic coasts, for example, in connection with oil spills. To investigate the extent of chlamydial shedding by these birds and the resulting risk for animals in care and the medical staff, seabirds from a French WRC were sampled from May 2011 to January 2014. By use of a quantitative PCR (qPCR), 195 seabirds belonging to 4 orders, 5 families and 13 species were examined, of which 18.5% proved to be Chlamydiaceae positive. The highest prevalence of shedders was found in northern gannets (Morus bassanus) (41%), followed by European herring gulls (Larus argentatus) (14%) and common murres (Uria aalge) (7%). Molecular characterization and phylogenetic analysis of qPCR-positive northern gannet samples revealed two variants of a strain closely related to C. psittaci. In European herring gulls and in one common murre, strains showing high sequence similarity to the atypical Chlamydiaceae-like C122 previously found in gulls were detected. Our study shows that seabirds from the northeastern Atlantic Ocean carry several chlamydial organisms, including C. psittaci-related strains. The staff in WRCs should take protective measures, particularly in the case of mass admissions of seabirds.  相似文献   

13.
Chlamydia (C.) abortus is a widely spread pathogen among ruminants that can be transmitted to women during pregnancy leading to severe systemic infection with consecutive abortion. As a member of the Chlamydiaceae, C. abortus shares the characteristic feature of an obligate intracellular biphasic developmental cycle with two morphological forms including elementary bodies (EBs) and reticulate bodies (RBs). In contrast to other chlamydial species, C. abortus ultrastructure has not been investigated yet. To do so, samples were fixed by high-pressure freezing and processed by different electron microscopic methods. Freeze-substituted samples were analysed by transmission electron microscopy, scanning transmission electron microscopical tomography and immuno-electron microscopy, and freeze-fractured samples were analysed by cryo-scanning electron microscopy. Here, we present three ultrastructural features of C. abortus that have not been reported up to now. Firstly, the morphological evidence that C. abortus is equipped with the type three secretion system. Secondly, the accumulation and even coating of whole inclusion bodies by membrane complexes consisting of multiple closely adjacent membranes which seems to be a C. abortus specific feature. Thirdly, the formation of small vesicles in the periplasmic space of RBs in the second half of the developmental cycle. Concerning the time point of their formation and the fact that they harbour chlamydial components, these vesicles might be morphological correlates of an intermediate step during the process of redifferentiation of RBs into EBs. As this feature has also been shown for C. trachomatis and C. pneumoniae, it might be a common characteristic of the family of Chlamydiaceae.  相似文献   

14.
We have developed a reverse line blot (RLB) hybridization assay to detect and identify the commonest mollicutes causing cell line contamination (Mycoplasma arginini, Mycoplasma fermentans, Mycoplasma hyorhinis, Mycoplasma orale, and Acholeplasma laidlawii) and human infection (Mycoplasma pneumoniae, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma parvum, and Ureaplasma urealyticum). We developed a nested PCR assay with “universal” primers targeting the mollicute 16S-23S rRNA intergenic spacer region. Amplified biotin-labeled PCR products were hybridized to membrane-bound species-specific oligonucleotide probes. The assay correctly identified reference strains of 10 mollicute species. Cell cultures submitted for detection of mollicute contamination, clinical specimens, and clinical isolates were initially tested by PCR assay targeting a presumed mollicute-specific sequence of the 16S rRNA gene. Any that were positive were assessed by the RLB assay, with species-specific PCR assay as the reference method. Initially, 100 clinical and 88 of 92 cell culture specimens gave concordant results, including 18 in which two or more mollicute species were detected by both methods. PCR and sequencing of the 16S-23S rRNA intergenic spacer region and subsequent retesting by species-specific PCR assay of the four cell culture specimens for which results were initially discrepant confirmed the original RLB results. Sequencing of amplicons from 12 cell culture specimens that were positive in the 16S rRNA PCR assay but negative by both the RLB and species-specific PCR assays failed to identify any mollicute species. The RLB hybridization assay is sensitive and specific and able to rapidly detect and identify mollicute species from clinical and cell line specimens.  相似文献   

15.
RFLP analysis of the omp1 gene was used to characterize 51 avian Chlamydophila psittaci isolates. The analysis confirmed the predominance of genotype A in parrot C. psittaci isolates and revealed new omp1 genotypes in corvid C. psittaci isolates. The corvid isolates proved to lack an extrachromosomal plasmid. The omp1 and rRNA IGS sequences were determined for the new isolates. Phylogenetic analysis showed that isolate 1V, obtained from a crow, is intermediate in several characters between C. abortus and C. psittaci. The results were compared with data on the phylogenetic relationships of earlier chlamydium isolates.  相似文献   

16.

Background

Despite increased identification of spotted fever group rickettsioses (SFGR) in animals and arthropods, human SFGR are poorly characterized in Taiwan.

Methods

Patients with suspected Q fever, scrub typhus, murine typhus, leptospirosis, and dengue fever from April 2004 to December 2009 were retrospectively investigated for SFGR antibodies (Abs). Sera were screened for Rickettsia rickettsii Abs by indirect immunofluorescence antibody assay (IFA), and those with positive results were further examined for Abs against R. rickettsii, R. typhi, R. felis, R. conorii, and R. japonica using micro-immunofluorescence (MIF) tests. Polymerase chain reaction (PCR) for detection of SFGR DNA was applied in those indicated acute infections. Case geographic distribution was made by the geographic information system software.

Results

A total of 413 cases with paired serum, including 90 cases of Q fever, 47 cases of scrub typhus, 12 cases of murine typhus, 6 cases of leptospirosis, 3 cases of dengue fever, and 255 cases of unknown febrile diseases were investigated. Using IFA tests, a total of 49 cases with 47 (11.4%) and 4 (1.0%) cases had sera potentially positive for R. rickettsii IgG and IgM, respectively. In the 49 cases screened from IFA, MIF tests revealed that there were 5 cases of acute infections (3 possible R. felis and 2 undetermined SFGR) and 13 cases of past infections (3 possible R. felis and 10 undetermined SFGR). None of the 5 cases of acute infection had detectable SFGR DNA in the blood specimen by PCR. Possible acute infection of R. felis was identified in both one case of Q fever and scrub typhus. The geographic distribution of SFGR cases is similar with that of scrub typhus.

Conclusions

Human SFGR exist and are neglected diseases in southern Taiwan, particularly for the species closely-related to R. felis.  相似文献   

17.
Leishmania donovani is the known causative agent of both cutaneous (CL) and visceral leishmaniasis in Sri Lanka. CL is considered to be under-reported partly due to relatively poor sensitivity and specificity of microscopic diagnosis. We compared robustness of three previously described polymerase chain reaction (PCR) based methods to detectLeishmania DNA in 38 punch biopsy samples from patients presented with suspected lesions in 2010. Both, Leishmaniagenus-specific JW11/JW12 KDNA and LITSR/L5.8S internal transcribed spacer (ITS)1 PCR assays detected 92% (35/38) of the samples whereas a KDNA assay specific forL. donovani (LdF/LdR) detected only 71% (27/38) of samples. All positive samples showed a L. donovani banding pattern upon HaeIII ITS1 PCR-restriction fragment length polymorphism analysis. PCR assay specificity was evaluated in samples containing Mycobacterium tuberculosis, Mycobacterium leprae, and human DNA, and there was no cross-amplification in JW11/JW12 and LITSR/L5.8S PCR assays. The LdF/LdR PCR assay did not amplify M. leprae or human DNA although 500 bp and 700 bp bands were observed in M. tuberculosis samples. In conclusion, it was successfully shown in this study that it is possible to diagnose Sri Lankan CL with high accuracy, to genus and species identification, using Leishmania DNA PCR assays.  相似文献   

18.

Background

There is higher rate of R. felis infection among febrile patients than in healthy people in Sub-Saharan Africa, predominantly in the rainy season. Mosquitoes possess a high vectorial capacity and, because of their abundance and aggressiveness, likely play a role in rickettsial epidemiology.

Methodology/Principal Findings

Quantitative and traditional PCR assays specific for Rickettsia genes detected rickettsial DNA in 13 of 848 (1.5%) Anopheles mosquitoes collected from Côte d’Ivoire, Gabon, and Senegal. R. felis was detected in one An. gambiae molecular form S mosquito collected from Kahin, Côte d’Ivoire (1/77, 1.3%). Additionally, a new Rickettsia genotype was detected in five An. gambiae molecular form S mosquitoes collected from Côte d’Ivoire (5/77, 6.5%) and one mosquito from Libreville, Gabon (1/88, 1.1%), as well as six An. melas (6/67, 9%) mosquitoes collected from Port Gentil, Gabon. A sequence analysis of the gltA, ompB, ompA and sca4 genes indicated that this new Rickettsia sp. is closely related to R. felis. No rickettsial DNA was detected from An. funestus, An. arabiensis, or An. gambiae molecular form M mosquitoes. Additionally, a BLAST analysis of the gltA sequence from the new Rickettsia sp. resulted in a 99.71% sequence similarity to a species (JQ674485) previously detected in a blood sample of a Senegalese patient with a fever from the Bandafassi village, Kedougou region.

Conclusion

R. felis was detected for the first time in An. gambiae molecular form S, which represents the major African malaria vector. The discovery of R. felis, as well as a new Rickettsia species, in mosquitoes raises new issues with respect to African rickettsial epidemiology that need to be investigated, such as bacterial isolation, the degree of the vectorial capacity of mosquitoes, the animal reservoirs, and human pathogenicity.  相似文献   

19.
We describe a novel heterothallic species in Aspergillus section Fumigati, namely A. felis (neosartorya-morph) isolated from three host species with invasive aspergillosis including a human patient with chronic invasive pulmonary aspergillosis, domestic cats with invasive fungal rhinosinusitis and a dog with disseminated invasive aspergillosis. Disease in all host species was often refractory to aggressive antifungal therapeutic regimens. Four other human isolates previously reported as A. viridinutans were identified as A. felis on comparative sequence analysis of the partial β-tubulin and/or calmodulin genes. A. felis is a heterothallic mold with a fully functioning reproductive cycle, as confirmed by mating-type analysis, induction of teleomorphs within 7 to 10 days in vitro and ascospore germination. Phenotypic analyses show that A. felis can be distinguished from the related species A. viridinutans by its ability to grow at 45°C and from A. fumigatus by its inability to grow at 50°C. Itraconazole and voriconazole cross-resistance was common in vitro.  相似文献   

20.

Background  

Chlamydiosis and Q fever, two zoonosis, are important causes of ruminants' abortion around the world. They are caused respectively by strictly intracellular and Gram negative bacterium Chlamydophila abortus (Cp. abortus) and Coxiella burnetii (C. burnetii). Chlamydophila pecorum (Cp. pecorum) is commonly isolated from the digestive tract of clinically inconspicuous ruminants but the abortive and zoonotic impact of this bacterium is still unknown because Cp. pecorum is rarely suspected in abortion cases of small ruminants. We have developed a multiplex PCR (m-PCR) for rapid simultaneous differential detection of Cp. abortus, Cp. pecorum and C. burnetii in clinical samples taken from infected animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号