首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Silicon (Si) accumulation in shoots differs greatly with plant species, but the molecular mechanisms for this interspecific difference are unknown. Here, we isolated homologous genes of rice Si influx (SlLsi1) and efflux (SlLsi2) transporter genes in tomato (Solanum lycopersicum L.) and functionally characterized these genes. SlLsi1 showed transport activity for Si when expressed in both rice lsi1 mutant and Xenopus laevis oocytes. SlLsi1 was constitutively expressed in the roots. Immunostaining showed that SlLsi1 was localized at the plasma membrane of both root tip and basal region without polarity. Furthermore, overexpression of SlLsi1 in tomato increased Si concentration in the roots and root cell sap but did not alter the Si concentration in the shoots. By contrast, two Lsi2-like proteins did not show efflux transport activity for Si in Xenopus oocytes. However, when functional CsLsi2 from cucumber was expressed in tomato, the Si uptake was significantly increased, resulting in higher Si accumulation in the leaves and enhanced tolerance of the leaves to water deficit and high temperature. Our results suggest that the low Si accumulation in tomato is attributed to the lack of functional Si efflux transporter Lsi2 required for active Si uptake although SlLsi1 is functional.  相似文献   

3.
Silicon (Si) uptake has been extensively examined in rice (Oryza sativa), but it is poorly understood in other gramineous crops. We identified Low Silicon Rice 2 (Lsi2)-like Si efflux transporters from two important gramineous crops: maize (Zea mays) and barley (Hordeum vulgare). Both maize and barley Lsi2 expressed in Xenopus laevis oocytes showed Si efflux transport activity. Furthermore, barley Lsi2 was able to recover Si uptake in a rice mutant defective in Si efflux. Maize and barley Lsi2 were only expressed in the roots. Expression of maize and barley Lsi2 was downregulated in response to exogenously applied Si. Moreover, there was a significant positive correlation between the ability of roots to absorb Si and the expression levels of Lsi2 in eight barley cultivars, suggesting that Lsi2 is a key Si transporter in barley. Immunostaining showed that maize and barley Lsi2 localized only at the endodermis, with no polarity. Protein gel blot analysis indicated that maize and barley Lsi2 localized on the plasma membrane. The unique features of maize and barley Si influx and efflux transporters, including their cell-type specificity and the lack of polarity of their localization in Lsi2, indicate that these crops have a different Si uptake system from that in rice.  相似文献   

4.
Yamaji N  Ma JF 《Plant physiology》2007,143(3):1306-1313
Rice (Oryza sativa) is a typical silicon (Si) accumulator and requires a large amount of Si for high-yield production. Recently, a gene (Low silicon rice1 [Lsi1]) encoding a Si transporter was identified in rice roots. Here, we characterized Lsi1 in terms of spatial distribution and temporal variation using both physiological and molecular approaches. Results from a multicompartment transport box experiment showed that the major site for Si uptake was located at the basal zone (>10 mm from the root tip) of the roots rather than at the root tips (<10 mm from the root tip). Consistent with the Si uptake pattern, Lsi1 expression and distribution of the Lsi1 protein were found only in the basal zone of roots. In the basal zones of the seminal, crown, and lateral roots, the Lsi1 protein showed a polar localization at the distal side of both the exodermis and endodermis, where the Casparian bands are formed. This indicates that Lsi1 is required for the transport of Si through the cells of the exodermis and endodermis. Expression of Lsi1 displayed a distinct diurnal pattern. Furthermore, expression was transiently enhanced around the heading stage, which coincides with a high Si requirement during this growth stage. Expression was down-regulated by dehydration stress and abscisic acid, suggesting that expression of Lsi1 may be regulated by abscisic acid.  相似文献   

5.
Wu C  Ye Z  Li H  Wu S  Deng D  Zhu Y  Wong M 《Journal of experimental botany》2012,63(8):2961-2970
Hydroponic experiments were conducted to investigate the effect of radial oxygen loss (ROL) and external aeration on iron (Fe) plaque formation, and arsenic (As) accumulation and speciation in rice (Oryza sativa L.). The data showed that there were significant correlations between ROL and Fe concentrations in Fe plaque produced on different genotypes of rice. There were also significant differences in the amounts of Fe plaque formed between different genotypes in different positions of roots and under different aeration conditions (aerated, normal, and stagnant treatments). In aerated treatments, rice tended to have a higher Fe plaque formation than in a stagnant solution, with the greatest formation at the root tip decreasing with increasing distances away, in accordance with a trend of spatial ROL. Genotypes with higher rates of ROL induced higher degrees of Fe plaque formation. Plaques sequestered As on rice roots, with arsenate almost double that with arsenite, leading to decreased As accumulation in both roots and shoots. The major As species detected in roots and shoots was arsenite, ranging from 34 to 78% of the total As in the different treatments and genotypes. These results contribute to our understanding of genotypic differences in As uptake by rice and the mechanisms causing rice genotypes with higher ROL to show lower overall As accumulation.  相似文献   

6.
A transporter regulating silicon distribution in rice shoots   总被引:6,自引:0,他引:6  
Yamaji N  Mitatni N  Ma JF 《The Plant cell》2008,20(5):1381-1389
Rice (Oryza sativa) accumulates very high concentrations of silicon (Si) in the shoots, and the deposition of Si as amorphous silica helps plants to overcome biotic and abiotic stresses. Here, we describe a transporter, Lsi6, which is involved in the distribution of Si in the shoots. Lsi6 belongs to the nodulin-26 intrinsic protein III subgroup of aquaporins and is permeable to silicic acid. Lsi6 is expressed in the leaf sheath and leaf blades as well as in the root tips. Cellular localization studies revealed that Lsi6 is found in the xylem parenchyma cells of the leaf sheath and leaf blades. Moreover, Lsi6 showed polar localization at the side facing toward the vessel. Knockdown of Lsi6 did not affect the uptake of Si by the roots but resulted in disordered deposition of silica in the shoots and increased excretion of Si in the guttation fluid. These results indicate that Lsi6 is a transporter responsible for the transport of Si out of the xylem and subsequently affects the distribution of Si in the leaf.  相似文献   

7.
W.-J. Liu  Y.-G. Zhu  F.A. Smith 《Plant and Soil》2005,277(1-2):127-138
We have shown previously that phosphorus nutrition and iron plaque on the surface of rice roots influence arsenate uptake and translocation by rice in hydroponic culture. We have now investigated the role of iron (Fe) and manganese (Mn) plaque on arsenate and arsenite uptake and translocation in rice seedlings grown hydroponically. Fe and Mn plaques were clearly visible as reddish or brown coatings on the root surface after 12 h induction, and Fe plaque was much more apparent than Mn plaque. Arsenite or arsenate supply did not decrease plant dry weights significantly. There were significant differences in shoot dry weights but little difference in root dry weights between some plaque treatments. Arsenic (As) concentrations in Fe plaque when arsenate was supplied were significantly higher than those in no plaque (control) and Mn plaque treatments, and much higher than those supplied with arsenite. This showed that Fe plaque on the rice root had higher affinity to arsenate than to arsenite. In Fe plaque treatment, the results indicated that most As was sequestered in roots when arsenite was supplied and most As concentrated in Fe plaque when arsenate was supplied. Most As was accumulated in rice roots in Mn plaque and no plaque treatments for both As species.  相似文献   

8.
The concentration of essential mineral nutrients in the edible portion of plants such as grains may affect the nutritional value of these foods, while concentrations of toxic minerals in the plant are matter of food safety. Minerals taken up by the roots from soils are normally redirected at plant nodes before they are finally transported into developing seeds. However, the molecular mechanisms involved in this process have not been identified so far. Herein, we report on a transporter (Lsi6) responsible for the redirection of a plant nutrient at the node. Lsi6 is a silicon transporter in rice (Oryza sativa), and its expression in node I below the panicles is greatly enhanced when the panicle is completely emerged. Lsi6 is mainly localized at the xylem transfer cells located at the outer boundary region of the enlarged large vascular bundles in node I. Knockout of Lsi6 decreased Si accumulation in the panicles but increased Si accumulation in the flag leaf. These results suggest that Lsi6 is a transporter involved in intervascular transfer (i.e., transfer of silicon from the large vascular bundles coming from the roots to the diffuse vascular bundles connected to the panicles). These findings will be useful for selectively enhancing the accumulation of essential nutrients and reducing toxic minerals in the edible portion of cereals.  相似文献   

9.
Paddy fields are anaerobic and facilitate arsenite (As(III)) elution from the soil. Paddy-field rice accumulates arsenic (As) in its grains because silicate transporters actively assimilate As(III) during the reproductive stage. Reducing the As level in rice grains is an important challenge for agriculture. Using a forward genetic approach, we isolated a rice (Oryza sativa) mutant, low arsenic line 3 (las3), whose As levels were decreased in aerial tissues, including grains. The low-As phenotype was not observed in young plants before heading (emergence of the panicle). Genetic analyses revealed that a deficiency in alcohol dehydrogenase (ADH) 2 by mutation is responsible for the phenotype. Among the three rice ADH paralogues, ADH2 was the most efficiently produced in root tissue under anaerobic conditions. In wild-type (WT), silicon and As concentrations in aerial tissues increased with growth. However, the increase was suppressed in las3 during the reproductive stage. Accordingly, the gene expression of two silicate transporters, Lsi1 and Lsi2, was increased in WT around the time of heading, whereas the increase was suppressed in las3. These results indicate that the low-As phenotype in las3 is due to silicate transporter suppression. Measurement of intracellular pH by 31P-nuclear magnetic resonance revealed intracellular acidification of las3 roots under hypoxia, suggesting that silicate transporter suppression in las3 might arise from an intracellular pH decrease, which is known to be facilitated by a deficiency in ADH activity under anaerobic conditions. This study provides valuable insight into reducing As levels in rice grains.

Deficiency in alcohol dehydrogenase suppresses arsenite uptake via silicate transporters and reduces arsenic levels in rice grains.  相似文献   

10.

Background and aims

Rice (Oryza sativa) is a main source of human exposure to inorganic arsenic and mitigation measures are needed to decrease As accumulation in this staple crop. It has been shown that silicon decreases the accumulation of arsenite but, unexpectedly, increases the accumulation of dimethylarsinic acid (DMA) in rice grain. The aim of this study was to investigate why Si increases DMA accumulation.

Methods

Pot and incubation experiments were conducted to investigate how the addition of sparingly soluble silicate gel affected As speciation in the soil solution and the accumulation of different As species in rice tissues.

Results

Silicon addition significantly decreased the concentration of inorganic As (mainly arsenite) but increased the concentration of DMA in both the vegetative and reproductive tissues of rice. Silicon increased the concentration of DMA in the soil solution, whereas autoclaving soil decreased DMA concentration. Less DMA was adsorbed by the soil than arsenate and Si addition significantly inhibited DMA adsorption.

Conclusions

Silicon increased DMA accumulation and decreased arsenite accumulation in rice through different mechanisms. Silicic acid released from the silicate gel increased the availability of DMA for rice uptake by inhibiting DMA adsorption on the soil solid phase or by displacing adsorbed DMA. Although silicic acid also increased the concentration of inorganic As in the soil solution, this effect was much smaller than the inhibitory effect of Si on arsenite uptake by rice roots.  相似文献   

11.
Arbuscular mycorrhizal fungi (AMF) appear to be highly associated with arsenic (As) uptake in host plants because arsenate (As(V)) and phosphorus (P) share the same transporter, whereby AMF can enhance P uptake. A short-term experiment was conducted for low- (0 to 0.05 mM As) and high-affinity (0 to 2.5 mM As) uptake systems, to investigate the AMF role on As uptake mechanism in plants, which may explain As uptake kinetics in upland rice cultivar: Zhonghan 221. When concentration of As ranged from 0 to 0.05 mM, Funneliformis geosporum (Fg) significantly decreased arsenite (As(III)) and monomethylarsonicacid (MMA) uptake when (p < 0.05) compared to non-mycorrhizal (NM) treatment, since the major route for (As(III)) in rice roots—rice silicon transporter Lsi1 would be influenced by Fg inoculation at high As concentrations. Fg can also reduce As(V) uptake significantly (p < 0.05) under both uptake systems relative to NM treatment, whereas, Funneliformis mosseae (Fm) increased As(V) and MMA uptake in rice roots, with MMA uptake rate generally lower than As(III) and As(V). Using suitable AMF species inoculation with rice, As uptake and accumulation in rice grains can be reduced and the risk to human health, once consumed, can be minimized.  相似文献   

12.

Background and aims

Limited information is available on comparing the iron plaque formation capabilities and their effect on arsenic (As) uptake by different rice plant genotypes grown in As-contaminated soils. This study investigates the effect of iron plaque on As uptake in different rice genotypes grown in As-contaminated soils from the Guandu Plain of northern Taiwan.

Methods

Twenty-eight rice genotypes including 14 japonica and 14 indica genotypes were used in this study. Rice seedlings were grown in As-contaminated soils for 38 days. The iron plaque formed on the rice roots were extracted using dithionite–citrate–bicarbonate. The concentrations of As, Fe, and P in soil solutions, iron plaque, and plants were measured. The speciation of As in the root’s iron plaque was determined by As K-edge X-ray absorption near-edge structure spectroscopy (XANES).

Results

The amounts of iron plaque formation on roots were significantly different among 28 tested rice genotypes, and 75.7–92.8 % of As uptake from soils could be sequestered in iron plaque. However, there were no significant negative correlations between the amounts of Fe or As in the iron plaque and the content of As accumulated in rice plants of tested genotypes. XANES data showed that arsenate was the predominant As species in iron plaque, and there were difference in the distribution of As species among different rice genotypes.

Conclusions

The iron plaque can sequester most of As uptake from soils no matter what rice genotypes used in this study. However, the iron plaque alone did not control the extent of As accumulation in rice plants from As-contaminated soils among 28 tested rice genotypes. Low As uptake genotypes of rice selected from this study can be recommended to be grown in the As-contaminated soils.  相似文献   

13.
One of the beneficial effects of silicon (Si) is to improve nutrient imbalance including deficiency and excess of nutrients, however the molecular mechanisms underlying this effect are still poorly understood. In this study, we investigated the interaction between Si and zinc (Zn) in rice by using a mutant (lsi1) defective in Si uptake and its wild-type (WT, cv. Oochikara) at different Zn levels. High Zn inhibited the root elongation of both WT and lsi1 mutant, but Si did not alleviate this inhibition in both lines. By contrast, Si supply decreased Zn concentration in both the roots and shoots of the WT, but not in the lsi1 mutant. A short-term (24 h) labeling experiment with stable isotope 67Zn showed that Si decreased 67Zn uptake, but did not affect the root-to-shoot translocation and distribution ratio to different organs of 67Zn in the WT. Furthermore, Si accumulated in the shoots, rather than Si in the external solution, is required for suppressing Zn uptake, but this was not caused by Si-decreased transpiration. A kinetic study showed that Si did not affect Km value of root Zn uptake, but decreased Vmax value in the WT. Analysis of genes related with Zn transport showed that among ZIP family genes, the expression of only OsZIP1 implicated in Zn uptake, was down-regulated by Si in the WT, but not in the lsi1 mutant. These results indicate that Si accumulated in the shoots suppresses the Zn uptake through down-regulating the transporter gene involved in Zn uptake in rice.  相似文献   

14.
The Rice Aquaporin Lsi1 Mediates Uptake of Methylated Arsenic Species   总被引:2,自引:0,他引:2  
Pentavalent methylated arsenic (As) species such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] are used as herbicides or pesticides, and can also be synthesized by soil microorganisms or algae through As methylation. The mechanism of MMA(V) and DMA(V) uptake remains unknown. Recent studies have shown that arsenite is taken up by rice (Oryza sativa) roots through two silicon transporters, Lsi1 (the aquaporin NIP2;1) and Lsi2 (an efflux carrier). Here we investigated whether these two transporters also mediate the uptake of MMA(V) and DMA(V). MMA(V) was partly reduced to trivalent MMA(III) in rice roots, but only MMA(V) was translocated to shoots. DMA(V) was stable in plants. The rice lsi1 mutant lost about 80% and 50% of the uptake capacity for MMA(V) and DMA(V), respectively, compared with the wild-type rice, whereas Lsi2 mutation had little effect. The short-term uptake kinetics of MMA(V) can be described by a Michaelis-Menten plus linear model, with the wild type having 3.5-fold higher Vmax than the lsi1 mutant. The uptake kinetics of DMA(V) were linear with the slope being 2.8-fold higher in the wild type than the lsi1 mutant. Heterologous expression of Lsi1 in Xenopus laevis oocytes significantly increased the uptake of MMA(V) but not DMA(V), possibly because of a very limited uptake of the latter. Uptake of MMA(V) and DMA(V) by wild-type rice was increased as the pH of the medium decreased, consistent with an increasing proportion of the undissociated species. The results demonstrate that Lsi1 mediates the uptake of undissociated methylated As in rice roots.Arsenic (As) contamination affects millions of people worldwide, particularly in South Asia where As-contaminated groundwater has been extracted for drinking (Chakraborti et al., 2002; Nordstrom, 2002). Recent studies have shown that foods, especially rice (Oryza sativa), are an important source of inorganic As to populations dependent on a rice diet (Kile et al., 2007; Ohno et al., 2007; Mondal and Polya, 2008). Paddy rice is more efficient than other cereal crops in accumulating As (Williams et al., 2007). This is because anaerobic conditions in submerged paddy soils lead to mobilization of arsenite [As(III); Takahashi et al., 2004; Xu et al., 2008], which is then taken up by rice roots mainly through the highly efficient transport pathway for silicon (Si; Ma et al., 2008). The relatively high accumulation of As in rice is of concern, as it may pose a significant health risk (Zhu et al., 2008; Meharg et al., 2009).A number of As species may be present in soil depending on soil conditions and the history of As contamination. These include arsenate [As(V)], As(III), and methylated As species such as monomethylarsonic acid [MMA(V): CH3AsO(OH)2] and dimethylarsinic acid [DMA(V): (CH3)2AsO(OH)]. As(V) is the main species in aerobic soils, while As(III) dominates in anaerobic environments such as flooded paddy soils. Both MMA(V) and DMA(V) have been found in paddy soils (Takamatsu et al., 1982), which may have been derived from microbial and algal biomethylation and/or past uses of methylated As compounds. MMA(V), as sodium or calcium salt, and DMA(V), as sodium salt or free acid (also called cacodylic acid), are herbicides widely used for weed control on cotton (Gossypium hirsutum), orchards, and lawns, or as a defoliant of cotton (U.S. Environmental Protection Agency, 2006). Conversion of cotton fields for the production of paddy rice in the United States may be a reason for the high levels of methylated As reported for the U.S. rice (Meharg et al., 2009).The mechanism of As(V) uptake by plants through the phosphate transport system has been well established (for review, see Zhao et al., 2009). In contrast, As(III) is taken up into the cells by aquaglyceroporins in Escherichia coli, yeast (Saccharomyces cerevisiae), and mammalian tissues (for review, see Bhattacharjee and Rosen, 2007). Recent studies have shown that several plant aquaporin channels belonging to the Nodulin 26-like Intrinsic Protein (NIP) subfamily are permeable to As(III) when expressed heterologously in yeast (Bienert et al., 2008; Isayenkov and Maathuis, 2008; Ma et al., 2008). The rice Si transporter Lsi1 (OsNIP2;1; Ma et al., 2006) is also permeable to As(III) when expressed in yeast or Xenopus laevis oocytes (Ma et al., 2008). Furthermore, the lsi1 rice mutant lost 57% of the influx capacity for As(III) compared to the wild type in short-term assays, suggesting that Lsi1 is an important entry route for As(III) (Ma et al., 2008). In rice roots, a second Si transporter, Lsi2, functions as an efflux carrier to transport Si efflux from the exodermis and endodermis cells toward the stele for xylem loading (Ma et al., 2007). This transporter also mediates As(III) efflux; two independent lsi2 mutants had 73% to 91% lower concentrations of As(III) in the xylem sap than their wild types (Ma et al., 2008). The shared uptake pathway between Si (silicic acid) and As(III) (arsenous acid) is consistent with their physiochemical properties; both are present predominantly as undissociated neutral molecules at the normal environmental and physiological pH range (pKa = 9.2, >99% undissociated at pH ≤ 7.0), and the two molecules have similar sizes.The uptake mechanisms of methylated As species by plant roots are not known. Previous studies showed that both MMA(V) and DMA(V) can be taken up by roots and translocated to shoots in a number of plant species (Marin et al., 1992; Carbonell-Barrachina et al., 1998, 1999; Burló et al., 1999). Marin et al. (1992) found that uptake by rice followed the order of As(III) > MMA(V) > As(V) > DMA (V), although DMA(V) was more efficiently translocated from roots to shoots than other As species. Raab et al. (2007) reported large variations in the absorption and translocation efficiencies for As(V), MMA(V), and DMA(V) among the 46 plant species tested. On average, root absorption of As(V) was 2.5- and 5-times higher than MMA(V) and DMA(V), respectively. The translocation efficiency, defined as the shoot-to-root concentration ratio after 24-h exposure, was highest for DMA(V) (0.8), followed by MMA(V) (0.3) and As(V) (0.09). The concentration-dependent uptake kinetics of MMA(V) in rice roots could be described by the Michaelis-Menten equation, whereas the limited uptake of DMA(V) appeared to be linear in relation to the increasing concentration in the uptake medium (Abedin et al., 2002). Abbas and Meharg (2008) showed that DMA(V) uptake by maize (Zea mays) seedlings was enhanced by more than 10-fold by a pretreatment of phosphorus starvation; this compared with only 2-fold increase in As(V) uptake. They thought that DMA(V) might be taken up by the phosphate transporters, or that phosphorus starvation altered expression of a range of membrane transporters or even membrane permeability itself.In addition to the root uptake of methylated As species, some plants appear to be able to biomethylate As, but the pathway and enzymology remains unclear (Wu et al., 2002; Zhao et al., 2009). In microbes, As methylation follows the Challenger pathway involving repeated steps of As reduction and oxidative methylation (Bentley and Chasteen, 2002). As(V) is first reduced to As(III), which is methylated by S-adenosylmethyltransferase using S-adenosyl-l-Met as the methyl donor. The product of this reaction is pentavalent MMA(V), which is reduced by a reductase to trivalent MMA(III) with thiols (e.g. glutathione). Methylation and reduction steps continue to produce di- and trimethyl As compounds. MMA(III) and DMA(III) are intermediates in the As methylation pathway, which is not very stable (Gong et al., 2001). In rice grain, DMA(V) is the main form of methylated As, and can account for up to 80% of the total As (Zavala et al., 2008; Meharg et al., 2009). In light of the significant presence of methylated As in rice, it is important to elucidate the transport and assimilation pathways of these As species in plants.In this study, we present evidence that MMA(V) and DMA(V) are taken up by rice roots, at least partly, through the NIP aquaporin channel Lsi1, and that this process is strongly pH dependent. We also show that MMA(V) can be reduced to MMA(III) in planta.  相似文献   

15.
Silicon (Si) plays important roles in alleviating various abiotic stresses. In rice (Oryza sativa), arsenic (As) is believed to share the Si transport pathway for entry into roots, and Si has been demonstrated to decrease As concentrations. However, the physiological mechanisms through which Si might alleviate As toxicity in plants remain poorly elucidated. We combined detailed gas exchange measurements with chlorophyll fluorescence analysis to examine the effects of Si nutrition on photosynthetic performance in rice plants [a wild‐type (WT) cultivar and its lsi1 mutant defective in Si uptake] challenged with As (arsenite). As treatment impaired carbon fixation (particularly in the WT genotype) that was unrelated to photochemical or biochemical limitations but, rather, was largely associated with decreased leaf conductance at the stomata and mesophyll levels. Indeed, regardless of the genotypes, in the plants challenged with As, photosynthetic rates correlated strongly with both stomatal (r2 = 0.90) and mesophyll (r2 = 0.95) conductances, and these conductances were, in turn, linearly correlated with each other. The As‐related impairments to carbon fixation could be considerably reverted by Si in a time‐ and genotype‐dependent manner. In conclusion, we identified Si nutrition as an important target in an attempt to not only decrease As concentrations but also to ameliorate the photosynthetic performance of rice plants challenged with As.  相似文献   

16.
17.
18.
19.
The present study aimed to investigate the effects of root surface iron plaque on the uptake kinetics of arsenite and arsenate by excised roots of rice (Oryza sativa) seedlings. The results demonstrated that the presence of iron plaque enhanced arsenite and decreased arsenate uptake. Arsenite and arsenate uptake kinetics were adequately fitted by the Michaelis-Menten function in the absence of plaque, but produced poor fits to this function in the presence of plaque. Phosphate in the uptake solution did not have a significant effect on arsenite uptake irrespective of the presence of iron plaque; however phosphate had a significant effect on arsenate uptake. Without iron plaque, phosphate inhibited arsenate uptake. The presence of iron plaque diminished the effect of phosphate on arsenate uptake, possibly through a combined effect of arsenate desorption from iron plaque.  相似文献   

20.
Silicon (Si) is a nonessential, beneficial micronutrient for plants. It increases the plant stress tolerance in relation to its accumulation capacity. In this work, root Si transporter genes were characterized in 17 different plants and inferred for their Si-accumulation status. A total of 62 Si transporter genes (31 Lsi1 and 31 Lsi2) were identified in studied plants. Lsi1s were 261–324 residues protein with a MIP family domain whereas Lsi2s were 472–547 residues with a citrate transporter family domain. Lsi1s possessed characteristic sequence features that can be employed as benchmark in prediction of Si-accumulation status/capacity of the plants. Silicic acid selectivity in Lsi1s was associated with two highly conserved NPA (Asn-Pro-Ala) motifs and a Gly-Ser-Gly-Arg (GSGR) ar/R filter. Two NPA regions were present in all Lsi1 members but some Ala substituted with Ser or Val. GSGR filter was only available in the proposed high and moderate Si accumulators. In phylogeny, Lsi1s formed three clusters as low, moderate and high Si accumulators based on tree topology and availability of GSGR filter. Low-accumulators contained filters WIGR, AIGR, FAAR, WVAR and AVAR, high-accumulators only with GSGR filter, and moderate-accumulators mostly with GSGR but some with A/CSGR filters. A positive correlation was also available between sequence homology and Si-accumulation status of the tested plants. Thus, availability of GSGR selectivity filter and sequence homology degree could be used as signatures in prediction of Si-accumulation status in experimentally uncharacterized plants. Moreover, interaction partner and expression profile analyses implicated the involvement of Si transporters in plant stress tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号