首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mechano-growth factor (MGF) has emerged as an important mechanosensitive player in bone repair, but understanding of MGF function is hampered by the fact that MGF receptor and the underlying pathways remain unknown. In this study, fluorescein isothiocyanate (FITC)-labeled MGF-Ct24E (FITC-MGF) was used to determine the subcellular localization of MGF receptor in osteoblasts. After the primary osteoblasts were exposed to stretch with the strain at 10?%, and/or loaded with 50?ng/ml exogenous MGF-Ct24E, cells were incubated with the different concentrations of FITC-MGF (0.01, 0.1, and 1?mg/ml) followed by flow cytometry and laser scanning confocal microscope analysis. Our results showed that the fluorescence intensity and cell population internalizing FITC-MGF increased with the concentration of FITC-MGF. And all the cells were labeled with fluorescence at 1?mg/ml. Notably, FITC-MGF had nuclear localization when osteoblasts were exposed to stretch and/or 50?ng/ml MGF-Ct24E added, compared to the evident cytoplasmic localization in the static culture group. The nuclear localization of FITC-MGF in response to mechanical loading was found to associate with high expression of proliferating cell nuclear antigen, suggesting MGF and its receptor could serve as potential messengers that replay information in nuclei to control cell proliferation.  相似文献   

2.
Mechano-growth factor (MGF) is a stretch sensitive factor in myocytes, and it might also be produced by other mechanocytes under mechanical stimulation. In this study, both the mRNA and protein expression of MGF were detected in stretched osteoblasts. Quantitative analysis showed that a cyclic stretching stimulation caused a quick and sharp increase of MGF mRNA and protein expression from a low basal level under no stretch; the mRNA and protein levels respectively peaked in 6 and 12 h to 5 and 5.2 fold over the basal level and returned to normal by 24 h. The subcellular distribution of MGF protein was revealed by immunofluorescence analysis to be restricted to the nucleus. We concluded that cyclic stretching stimulation could induce MGF expression in osteoblasts in a pulsing fashion; and the nuclear distribution of MGF suggested that MGF might act in mechanocytes as an autocrine growth factor.  相似文献   

3.
It has been shown that the insulin-like growth factor (IGF-I) gene is spliced in response to mechanical signals producing forms of IGF-I which have different actions. In order to study how mechanical signals influence this gene splicing in developing muscle, C2C12 cells were grown in three-dimensional (3D) culture and subjected to different regimens of mechanical strain. IGF-IEa which initiates the fusion of myoblasts to form myotubes was found to be constitutively expressed in myoblasts and myotubes (held under endogenous tension) and its expression upregulated by a single ramp stretch of 1-h duration but reduced by repeated cyclical stretch. In contrast, mechano growth factor (MGF), which is involved in the proliferation of mononucleated myoblasts that are required for secondary myotube formation and to establish the muscle satellite (stem) cell pool, showed no significant constitutive expression in static cultures, but was upregulated by a single ramp stretch and by cycling loading. The latter types of force simulate those generated in myoblasts by the first contractions of myotubes. These data indicate the importance of seeking to understand the physiological signals that determine the ratios of splice variants of some growth factor/tissue factor genes in the early stages of development of skeletal muscle.  相似文献   

4.
Lack of physical activity results in muscle atrophy and bone loss, which can be counteracted by mechanical loading. Similar molecular signaling pathways are involved in the adaptation of muscle and bone mass to mechanical loading. Whether anabolic and metabolic factors regulating muscle mass, i.e., insulin-like growth factor-I isoforms (IGF-I Ea), mechano growth factor (MGF), myostatin, vascular endothelial growth factor (VEGF), or hepatocyte growth factor (HGF), are also produced by osteocytes in bone in response to mechanical loading is largely unknown. Therefore, we investigated whether mechanical loading by pulsating fluid flow (PFF) modulates the mRNA and/or protein levels of muscle anabolic and metabolic factors in MLO-Y4 osteocytes. Unloaded MLO-Y4 osteocytes expressed mRNA of VEGF, HGF, IGF-I Ea, and MGF, but not myostatin. PFF increased mRNA levels of IGF-I Ea (2.1-fold) and MGF (2.0-fold) at a peak shear stress rate of 44Pa/s, but not at 22Pa/s. PFF at 22 Pa/s increased VEGF mRNA levels (1.8- to 2.5-fold) and VEGF protein release (2.0- to 2.9-fold). Inhibition of nitric oxide production decreased (2.0-fold) PFF-induced VEGF protein release. PFF at 22 Pa/s decreased HGF mRNA levels (1.5-fold) but increased HGF protein release (2.3-fold). PFF-induced HGF protein release was nitric oxide dependent. Our data show that mechanically loaded MLO-Y4 osteocytes differentially express anabolic and metabolic factors involved in the adaptive response of muscle to mechanical loading (i.e., IGF-I Ea, MGF, VEGF, and HGF). Similarly to muscle fibers, mechanical loading enhanced expression levels of these growth factors in MLO-Y4 osteocytes. Although in MLO-Y4 osteocytes expression levels of IGF-I Ea and MGF of myostatin were very low or absent, it is known that the activity of osteoblasts and osteoclasts is strongly affected by them. The abundant expression levels of these factors in muscle cells, in combination with low expression in MLO-Y4 osteocytes, provide a possibility that growth factors expressed in muscle could affect signaling in bone cells.  相似文献   

5.
How angiogenesis is regulated by local environmental cues is still not fully understood despite its importance to many regenerative events. Although mechanics is known to influence angiogenesis, the specific cellular mechanisms influenced by mechanical loading are poorly understood. This study adopts a lattice-based modelling approach to simulate endothelial cell (EC) migration and proliferation in order to explore how mechanical stretch regulates their behaviour. The approach enables the explicit modelling of ECs and, in particular, their migration/proliferation (specifically, rate and directionality) in response to such mechanical cues. The model was first used to simulate previously reported experiments of EC migration and proliferation in an unloaded environment. Next, three potential effects (increased cell migration, increased cell proliferation and biased cellular migration) of mechanical stretch on EC behaviour were simulated using the model and the observed changes in cell population characteristics were compared to experimental findings. Combinations of these three potential drivers were also investigated. The model demonstrates that only by incorporating all three changes in cellular physiology (increased EC migration, increased EC proliferation and biased EC migration in the direction perpendicular to the applied strain) in response to dynamic loading, it is possible to successfully predict experimental findings. This provides support for the underlying model hypotheses for how mechanics regulates EC behaviour.  相似文献   

6.
Theories of mechanical adaptation of bone suggest that mechanical loading causes bone formation at discrete locations within bone microstructure experiencing the greatest mechanical stress/strain. Experimental testing of such theories requires in vivo loading experiments and high-resolution finite element models to determine the distribution of mechanical stresses. Finite element models of in vivo loading experiments typically assume idealized boundary conditions with applied load perfectly oriented on the bone, however small misalignments in load orientation during an in vivo experiment are unavoidable, and potentially confound the ability of finite element models to predict locations of bone formation at the scale of micrometers. Here we demonstrate two different three-dimensional spatial correlation methods to determine the effects of misalignment in load orientation on the locations of high mechanical stress/strain in the rodent tail loading model. We find that, in cancellous bone, the locations of tissue with high stress are maintained under reasonable misalignments in load orientation (p<0.01). In cortical bone, however, angular misalignments in the dorsal direction can alter the locations of high mechanical stress, but the locations of tissue with high stress are maintained under other misalignments (p<0.01). We conclude that, when using finite element models of the rodent tail loading model, small misalignments in loading orientation do not affect the predicted locations of high mechanical stress within cancellous bone.  相似文献   

7.
The mechanical properties of cancellous bone and the biological response of the tissue to mechanical loading are related to deformation and strain in the trabeculae during function. Due to the small size of trabeculae, their motion is difficult to measure. To avoid the need to measure trabecular motions during loading the finite element method has been used to estimate trabecular level mechanical deformation. This analytical approach has been empirically successful in that the analytical models are solvable and their results correlate with the macroscopically measured stiffness and strength of bones. The present work is a direct comparison of finite element predictions to measurements of the deformation and strain at near trabecular level. Using the method of digital volume correlation, we measured the deformation and calculated the strain at a resolution approaching the trabecular level for cancellous bone specimens loaded in uniaxial compression. Smoothed results from linearly elastic finite element models of the same mechanical tests were correlated to the empirical three-dimensional (3D) deformation in the direction of loading with a coefficient of determination as high as 97% and a slope of the prediction near one. However, real deformations in the directions perpendicular to the loading direction were not as well predicted by the analytical models. Our results show, that the finite element modeling of the internal deformation and strain in cancellous bone can be accurate in one direction but that this does not ensure accuracy for all deformations and strains.  相似文献   

8.
成骨细胞对梯度拉伸应变的响应   总被引:2,自引:0,他引:2  
采用四点弯曲加载装置对原代的大鼠颅盖骨细胞施加周期性的拉伸刺激,并设计了应变呈梯度增加的加载方式,使成骨细胞受到的拉伸应变为500-1500με,每隔2h增加500με,以考察成骨细胞对变化的力学环境的响应。结果表明,在500με下拉伸2-6h促进了成骨细胞的增殖、碱性磷酸酶活力增强和胞外钙基质沉积。对细胞施加应变呈梯度增加的拉伸刺激,则发现当应变从有利于细胞的生长分化水平(500με)变化为不利于细胞生长分化的水平(1000με,1500με)后,细胞的增殖指数、碱性磷酸酶活力和胞外钙基质分泌量都迅速降低,以适应新的力学环境。说明成骨细胞能够分辨不同的应变水平,并相应地调节自身的生理功能,从而表现出对变化的力学环境的适应。  相似文献   

9.
Mechanical stimulation is considered to be one of the major epigenetic factors regulating the metabolism, proliferation, survival and differentiation of cells in the skeletal tissues. It is generally accepted that the cytoskeleton can undergo remodeling in response to mechanical stimuli such as tensile strain or fluid flow. Mechanically induced cell deformation is one of the possible mechanotransduction pathways by which chondrocytes sense and respond to changes in their mechanical environment. Mechanical strain has a variety of effects on the structure and function of their cells in the skeletal tissues, such as chondrocytes, osteoblasts and fibroblasts. However, little is known about the effect of the quality and quantity of mechanical strain and the timing of mechanical loading on the differentiation of these cells. The present study was designed to investigate the effect of the deformation of chondrogenic cells, and cyclic compression using a newly developed culture device, by analyzing mechanobiological response to the differentiating chondrocytes. Cyclic compression between 0 and 22% strains, at 23 microHz was loaded on chondrogenic cell line ATDC5 by seeding in a mass mode on PDMS membrane, assuming direct transfer of cyclic deformation from the membrane to the cells at the same frequency. The compressive strain, induced within the membrane, was characterized based on the analysis of the finite element modeling (FEM). The results showed that the tensile strain inhibits the chondrogenic differentiation of ATDC5 cells, whereas the compressive strain enhances the chondrogenic differentiation, suggesting that the differentiation of the chondrogenic cells could be controlled by the amount and the mode of strain. In conclusion, we have developed a unique strain loading culture system to analyze the effect of various types of mechanical stimulation on various cellular activities.  相似文献   

10.
Mechanical stimulation is critical to both physiological and pathological states of living cells. Although a great deal of research has been done on biological and biochemical regulation of the behavior of bone marrow mesenchymal stem cells (MSCs), the influence of biomechanical factors on their behavior is still not fully documented. In this study, we investigated the modulation of mechanical stretch magnitude, frequency, and duration on the human marrow mesenchymal stem cells (hMSCs) proliferation by an in vitro model system using a mechanical stretch loading apparatus, and optimized the stretch regime for the proliferation of hMSCs. We applied 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl tetrasodium bromide (MTT) assay to estimate the overall proliferative effects of the stretch on hMSCs. We found that fibronectin coating increased adhesion to silicone chamber surface, however, it did not show significant effect on proliferation of hMSCs. A frequency of 1 Hz was more effective in stimulating hMSCs proliferation. At 1 Hz, 5% strain for 15, 30, 60 min, the significant increase of hMSCs proliferation was observed. Proliferation was enhanced at 1 Hz, 10% strain for 15, 30 min, while decreased for 60 min. At 1 Hz, 15% strain, 15 min stretch resulted in the decrease of proliferation, and 30 min and 60 min stretch showed an increased proliferation. Long time (12 and 24 h) strain application blocked the proliferation. These results indicate that mechanical stretch plays an important role in hMSCs growth and proliferation; an appropriate mechanical stretch regime could be a novel approach to promoting proliferation of hMSCs in vitro.  相似文献   

11.
力生长因子(mechano growth factor,MGF)是胰岛素样生长因子1(insulin-like growth factor-1,IGF-1)的选择性剪接变异体,具有力敏感性.本文综述了MGF在组织细胞中的表达、调节及其功能机制的最新研究.首先阐述了MGF在多种细胞和组织中的表达和功能,其次说明MGF表达受应力、损伤、激素、温度等多种因素的调节.综述各项研究显示,MGF不依靠IGF-1R发挥作用,而是直接激活骨骼肌卫星细胞,促肌细胞增殖,进而促骨骼肌肥大,修复受损肌肉. 通过激活Erk磷酸化促成肌细胞增殖、保护心肌细胞,上调血红素加氧酶-1(heme oxygenase-1,HO-1),激活蛋白激酶Cε(protein kinase Cε,PKCε)和NF-E2-相关因子2(NF-E2-related factor2,Nrf2 )发挥保护神经的作用.另外,MGF发挥作用还可能与Wnt/β-catenin信号有关.对MGF作用及其作用机制深入研究有助于未来MGF在临床的运用.  相似文献   

12.
Mechano-growth factor (MGF) is a product of alternative splicing of the insulin-like growth factor 1 (IGF-1) mRNA. MGF is known to stimulate myoblast proliferation and to protect neurons and cardiomyocytes from apoptosis. MGF expression is dramatically increased in response to mechanical stimuli and tissue damage. The mechanisms of induction of MGF expression are as yet imperfectly understood. There is certain evidence that some protein factors able to stimulate MGF synthesis in normal myoblasts are released from damaged muscle. This study was undertaken to explore the nature of these protein inductors of MGF expression and to investigate the mechanism of their action. We report here that myofibrillar fraction of skeletal muscle homogenate activated MGF expression in murine myoblasts and myotubes in culture. The expression of another splice form of IGF-1 gene, IGF-1Ea, was also stimulated by myofibrils. Three myofibrillar proteins able to stimulate MGF synthesis were isolated. These proteins were identified by MALDI and immunoblotting as myomesin, myosin-binding protein C, and titin. The activation of MGF expression was associated with the increase of cAMP level in the cells. Inhibitor of adenylyl cyclase dideoxyadenosine arrested stimulation of MGF synthesis by all three myofibrillar proteins.  相似文献   

13.
MGF(Mechano-growth factor)是一种IGF-1变体形式, 研究发现该因子具有应力敏感性, 并且具有促进肌肉肥大、再生以及神经损伤修复的功能。通过RT-PCR从拉伸刺激的人成骨细胞中克隆MGF cDNA序列, 并去除5'端9 bp的序列, 使N端缺少对肠激酶(Enterokinase, EK)具有抑制作用的脯氨酸, 将截短型MGF (des(1-3) MGF) cDNA序列克隆入pET32a(+)质粒, 构建重组表达质粒。重组质粒转化E. coli BL21(DE3), 在30oC培养下以可溶形式表达融合蛋白Trx/ des(1-3)MGF, 采用离子交换层析和Ni2+金属亲和层析, 获得纯度95%以上的融合蛋白。再对融合蛋白EK酶切, rpHPLC分离获得纯度达98%的des(1-3)MGF, SDS-PAGE电泳及质谱分析蛋白分子量与理论值相符。生物活性实验显示, 所制备的des(1-3)MGF比des(1-3)IGF-1更显著的促进MC3T3-E1细胞的增值和迁移。  相似文献   

14.
High-energy synchrotron X-ray scattering (>60 keV) allows noninvasive quantification of internal strains within bone. In this proof-of-principle study, wide angle X-ray scattering maps internal strain vs position in cortical bone (murine tibia, bovine femur) under compression, specifically using the response of the mineral phase of carbonated hydroxyapatite. The technique relies on the response of the carbonated hydroxyapatite unit cells and their Debye cones (from nanocrystals correctly oriented for diffraction) to applied stress. Unstressed, the Debye cones produce circular rings on the two-dimensional X-ray detector while applied stress deforms the rings to ellipses centered on the transmitted beam. Ring ellipticity is then converted to strain via standard methods. Strain is measured repeatedly, at each specimen location for each applied stress. Experimental strains from wide angle X-ray scattering and an attached strain gage show bending of the rat tibia and agree qualitatively with results of a simplified finite element model. At their greatest, the apatite-derived strains approach 2500 με on one side of the tibia and are near zero on the other. Strains maps around a hole in the femoral bone block demonstrate the effect of the stress concentrator as loading increased and agree qualitatively with the finite element model. Experimentally, residual strains of approximately 2000 με are present initially, and strain rises to approximately 4500 με at 95 MPa applied stress (about 1000 με above the strain in the surrounding material). The experimental data suggest uneven loading which is reproduced qualitatively with finite element modeling.  相似文献   

15.
Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.  相似文献   

16.
Cellular response to mechanical loading varies between the anatomic zones of the intervertebral disc. This difference may be related to differences in the structure and mechanics of both cells and extracellular matrix, which are expected to cause differences in the physical stimuli (such as pressure, stress, and strain) in the cellular micromechanical environment. In this study, a finite element model was developed that was capable of describing the cell micromechanical environment in the intervertebral disc. The model was capable of describing a number of important mechanical phenomena: flow-dependent viscoelasticity using the biphasic theory for soft tissues; finite deformation effects using a hyperelastic constitutive law for the solid phase; and material anisotropy by including a fiber-reinforced continuum law in the hyperelastic strain energy function. To construct accurate finite element meshes, the in situ geometry of IVD cells were measured experimentally using laser scanning confocal microscopy and three-dimensional reconstruction techniques. The model predicted that the cellular micromechanical environment varies dramatically between the anatomic zones, with larger cellular strains predicted in the anisotropic anulus fibrosus and transition zone compared to the isotropic nucleus pulposus. These results suggest that deformation related stimuli may dominate for anulus fibrosus and transition zone cells, while hydrostatic pressurization may dominate in the nucleus pulposus. Furthermore, the model predicted that micromechanical environment is strongly influenced by cell geometry, suggesting that the geometry of IVD cells in situ may be an adaptation to reduce cellular strains during tissue loading.  相似文献   

17.
Modelling the course of healing of a long bone subjected to loading has been the subject of several investigations. These have succeeded in predicting the differentiation of tissues in the callus in response to a static mechanical load and the diffusion of biological factors. In this paper an approach is presented which includes both mechanoregulation of tissue differentiation and the diffusion and proliferation of cell populations (mesenchymal stem cells, fibroblasts, chondrocytes, and osteoblasts). This is achieved in a three-dimensional poroelastic finite element model which, being poroelastic, can model the effect of the frequency of dynamic loading. Given the number of parameters involved in the simulation, a parameter variation study is reported, and final parameters are selected based on comparison with an in vivo experiment. The model predicts that asymmetric loading creates an asymmetric distribution of tissues in the callus, but only for high bending moments. Furthermore the frequency of loading is predicted to have an effect. In conclusion, a numerical algorithm is presented incorporating both mechanoregulation and evolution of cell populations, and it proves capable of predicting realistic difference in bone healing in a 3D fracture callus.  相似文献   

18.
The critical role that mechanical stimuli serve in mediating bone repair is recognized but incompletely understood. Further, previous attempts to understand this role have utilized application of externally applied mechanical loads to study the tissue’s response. In this project, we have therefore endeavored to capitalize on bone’s own consistently diverse loading environment to develop a novel model that would enable assessment of the influence of physiologically engendered mechanical stimuli on cortical defect repair. We used an inverse dynamics approach with finite element analysis (FEA) to first quantify normal strain distributions generated in mouse tibia during locomotion. The strain environment of the tibia, as previously reported for other long bones, was found to arise primarily due to bending and was consistent in orientation through the stance phase of gait. Based on these data, we identified three regions within a transverse cross-section of the mid-diaphysis as uniform locations of either peak tension, peak compression, or the neutral axis of bending (i.e. minimal strain magnitude). We then used FEA to quantify the altered strain environment that would be produced by a 0.6 mm diameter cylindrical cortical bone defect at each diaphyseal site and, in an in situ study confirmed our ability to accurately place defects at the desired diaphyseal locations. The resulting model will enable the exploration of cortical bone healing within the context of physiologically engendered mechanical strain.  相似文献   

19.
20.
Bone loss occurs in microgravity whereas an increase in bone mass is observed after skeletal loading. This tissue adaptation involves changes in osteoblastic proliferation and differentiation whose mechanisms remain largely unknown. In this context, we investigated the expression and the nuclear translocation of Egr-1 and NF-kappa B, in a simulated microgravity model (clinostat) and in a model of mechanical strain (Flexcell). We performed RT-PCR and immunocytochemistry analyses at baseline and up to 2 h after stimulation (a mitogenic regimen, 1% stretch, 0.05 Hz, 10 min, or clinorotation 50 rpm, 10 min) in osteoblastic ROS17/2.8 cells. Egr-1 induction as well as NF-kappa B nuclear translocation were activated by mechanical changes. PKC downregulation and COX1/2 inhibition did not alter these inductions. In contrast, ERK1/2, p38(MAPK) and src-kinases pathways were differentially involved in both models. Thus, we demonstrated that changes in the mechanical environment induced an activation of Egr-1 and NF-kappa B with specific kinetics and involved various transduction pathways including MAPKs and src-kinases. These could partially explain the later alterations of proliferation observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号