首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In plants, pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) is a regulatory enzyme that participates in glycolysis and gluconeogenesis. Arabidopsis contains two PFPα subunit genes (PFPα1 and PFPα2) and two PFPβ subunit genes (PFPβ1 and PFPβ2). The single-knockout mutants of the PFP subunit genes were isolated, and double and quadruple pfp mutants were generated by crossing the single mutants. To elucidate the role of PFP in stress tolerance, the responses of the double and quadruple pfp knockout mutants to stress conditions, including osmotic and salt stresses, were examined. The seedling growth of the pfpα1/α2 and pfpβ1/β2 double mutants and the pfpα1/α2/β1/β2 quadruple mutant was severely retarded under salt and osmotic stress conditions compared with that of the wild type. The expression of PFP subunit genes increased in response to salt and osmotic stresses. In contrast, the vegetative growth of the wild type and pfp mutants after the seedling stage was similarly affected by salt and osmotic stresses. These findings suggest that PFP plays a role in the adaptation of Arabidopsis seedlings to salt and osmotic stresses.  相似文献   

2.
The Arabidopsis gene AVP1 encodes an H+-pyrophosphatase that functions as a proton pump at the vacuolar membranes, generating a proton gradient across vacuolar membranes, which serves as the driving force for many secondary transporters on vacuolar membranes such as Na+/H+-antiporters. Overexpression of AVP1 could improve drought tolerance and salt tolerance in transgenic plants, suggesting a possible way in improving drought and salt tolerance in crops. The AVP1 was therefore introduced into peanut by Agrobacterium-mediated transformation. Analysis of AVP1-expressing peanut indicated that AVP1-overexpression in peanut could improve both drought and salt tolerance in greenhouse and growth chamber conditions, as AVP1-overexpressing peanuts produced more biomass and maintained higher photosynthetic rates under both drought and salt conditions. In the field, AVP1-overexpressing peanuts also outperformed wild-type plants by having higher photosynthetic rates and producing higher yields under low irrigation conditions.  相似文献   

3.
Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance   总被引:2,自引:0,他引:2  
Chen CC  Chen YY  Tang IC  Liang HM  Lai CC  Chiou JM  Yeh KC 《Plant physiology》2011,156(4):2225-2234
The reversible conjugation of the small ubiquitin-like modifier (SUMO) to protein substrates occurs as a posttranslational regulatory process in eukaryotic organisms. In Arabidopsis (Arabidopsis thaliana), several stress-responsive SUMO conjugations are mediated mainly by the SUMO E3 ligase SIZ1. In this study, we observed a phenotype of hypersensitivity to excess copper in the siz1-2 and siz1-3 mutants. Excess copper can stimulate the accumulation of SUMO1 conjugates in wild-type plants but not in the siz1 mutant. Copper accumulated to a higher level in the aerial parts of soil-grown plants in the siz1 mutant than in the wild type. A dramatic difference in copper distribution was also observed between siz1 and wild-type Arabidopsis treated with excess copper. As a result, the shoot-to-root ratio of copper concentration in siz1 is nearly twice as high as that in the wild type. We have found that copper-induced Sumoylation is involved in the gene regulation of metal transporters YELLOW STRIPE-LIKE 1 (YSL1) and YSL3, as the siz1 mutant is unable to down-regulate the expression of YSL1 and YSL3 under excess copper stress. The hypersensitivity to excess copper and anomalous distribution of copper observed in the siz1 mutant are greatly diminished in the siz1ysl3 double mutant and slightly in the siz1ysl1 double mutant. These data suggest that SIZ1-mediated sumoylation is involved specifically in copper homeostasis and tolerance in planta.  相似文献   

4.
5.
6.
7.
Several lines of evidence suggest that regulation of intracellular Ca(2+) levels is crucial for adaptation of plants to environmental stress. We have cloned and characterized Arabidopsis auto-inhibited Ca(2+)-ATPase, isoform 4 (ACA4), a calmodulin-regulated Ca(2+)-ATPase. Confocal laser scanning data of a green fluorescent protein-tagged version of ACA4 as well as western-blot analysis of microsomal fractions obtained from two-phase partitioning and Suc density gradient centrifugation suggest that ACA4 is localized to small vacuoles. The N terminus of ACA4 contains an auto-inhibitory domain with a binding site for calmodulin as demonstrated through calmodulin-binding studies and complementation experiments using the calcium transport yeast mutant K616. ACA4 and PMC1, the yeast vacuolar Ca(2+)-ATPase, conferred protection against osmotic stress such as high NaCl, KCl, and mannitol when expressed in the K616 strain. An N-terminally modified form of ACA4 specifically conferred increased NaCl tolerance, whereas full-length ATPase had less effect.  相似文献   

8.
9.
Light and abiotic stress both strongly modulate plant growth and development. However, the effect of light‐responsive factors on growth and abiotic stress responses in wheat (Triticum aestivum) is unknown. G–box binding factors (GBFs) are blue light‐specific components, but their function in abiotic stress responses has not been studied. Here we identified a wheat GBF1 gene that mediated both the blue light‐ and abiotic stress‐responsive signaling pathways. TaGBF1 was inducible by blue light, salt and exposure to abscisic acid (ABA). TaGBF1 interacted with a G–box light‐responsive element in vitro and promoted a blue‐light response in wheat and Aradidopsis thaliana. Both TaGBF1 over‐expression in wheat and its heterologous expression in A. thaliana heighten sensitivity to salinity and ABA, but its knockdown in wheat conferred resistance to high salinity and ABA. The expression of AtABI5, a key component of the ABA signaling pathway in A. thaliana, and its homolog Wabi5 in wheat was increased by transgenic expression of TaGBF1. The hypersensitivity to salt and ABA caused by TaGBF1 was not observed in the abi5 mutant background, showing that ABI5 is the mediator in TaGBF1‐induced abiotic stress responses. However, the hypersensitivity to salt conferred by TaGBF1 is not dependent on light. This suggests that TaGBF1 is a common component of blue light‐ and abiotic stress‐responsive signaling pathways.  相似文献   

10.
Salt cress (Thellungiella halophila), a halophyte, is a genetic model system with a small plant size, short life cycle, copious seed production, small genome size, and an efficient transformation. Its genes have a high sequence identity (90%-95% at cDNA level) to genes of its close relative, Arabidopsis. These qualities are advantageous not only in genetics but also in genomics, such as gene expression profiling using Arabidopsis cDNA microarrays. Although salt cress plants are salt tolerant and can grow in 500 mm NaCl medium, they do not have salt glands or other morphological alterations either before or after salt adaptation. This suggests that the salt tolerance in salt cress results from mechanisms that are similar to those operating in glycophytes. To elucidate the differences in the regulation of salt tolerance between salt cress and Arabidopsis, we analyzed the gene expression profiles in salt cress by using a full-length Arabidopsis cDNA microarray. In salt cress, only a few genes were induced by 250 mm NaCl stress in contrast to Arabidopsis. Notably a large number of known abiotic- and biotic-stress inducible genes, including Fe-SOD, P5CS, PDF1.2, AtNCED, P-protein, beta-glucosidase, and SOS1, were expressed in salt cress at high levels even in the absence of stress. Under normal growing conditions, salt cress accumulated Pro at much higher levels than did Arabidopsis, and this corresponded to a higher expression of AtP5CS in salt cress, a key enzyme of Pro biosynthesis. Furthermore, salt cress was more tolerant to oxidative stress than Arabidopsis. Stress tolerance of salt cress may be due to constitutive overexpression of many genes that function in stress tolerance and that are stress inducible in Arabidopsis.  相似文献   

11.
Many soluble plant vacuolar proteins are sorted away from secreted proteins into small vesicles at the trans-Golgi network by transmembrane cargo receptors. Cleavable vacuolar sorting signals include the NH(2)-terminal propeptide (NTPP) present in sweet potato sporamin (Spo) and the COOH-terminal propeptide (CTPP) present in barley lectin (BL). These two proteins have been found to be transported by different mechanisms to the vacuole. We examined the ability of the vacuolar cargo receptor AtELP to interact with the sorting signals of heterologous and endogenous plant vacuolar proteins in mediating vacuolar transport in Arabidopsis thaliana. AtELP extracted from microsomes was found to interact with the NTPPs of barley aleurain and Spo, but not with the CTPPs of BL or tobacco chitinase, in a pH-dependent and sequence-specific manner. In addition, EM studies revealed the colocalization of AtELP with NTPP-Spo at the Golgi apparatus, but not with BL-CTPP in roots of transgenic Arabidopsis plants. Further, we found that AtELP interacts in a similar manner with the NTPP of the endogenous vacuolar protein AtALEU (Arabidopsis thaliana Aleu), a protein highly homologous to barley aleurain. We hypothesize that AtELP functions as a vacuolar sorting receptor involved in the targeting of NTPP-, but not CTPP-containing proteins in Arabidopsis.  相似文献   

12.
13.
14.
15.
Zhao MG  Tian QY  Zhang WH 《Plant physiology》2007,144(1):206-217
Nitric oxide (NO) has emerged as a key molecule involved in many physiological processes in plants. To characterize roles of NO in tolerance of Arabidopsis (Arabidopsis thaliana) to salt stress, effect of NaCl on Arabidopsis wild-type and mutant (Atnoa1) plants with an impaired in vivo NO synthase (NOS) activity and a reduced endogenous NO level was investigated. Atnoa1 mutant plants displayed a greater Na+ to K+ ratio in shoots than wild-type plants due to enhanced accumulation of Na+ and reduced accumulation of K+ when exposed to NaCl. Germination of Atnoa1 seeds was more sensitive to NaCl than that of wild-type seeds, and wild-type plants exhibited higher survival rates than Atnoa1 plants when grown under salt stress. Atnoa1 plants had higher levels of hydrogen peroxide than wild-type plants under both control and salt stress, suggesting that Atnoa1 is more vulnerable to salt and oxidative stress than wild-type plants. Treatments of wild-type plants with NOS inhibitor and NO scavenger reduced endogenous NO levels and enhanced NaCl-induced increase in Na+ to K+ ratio. Exposure of wild-type plants to NaCl inhibited NOS activity and reduced quantity of NOA1 protein, leading to a decrease in endogenous NO levels measured by NO-specific fluorescent probe. Treatment of Atnoa1 plants with NO donor sodium nitroprusside attenuated the NaCl-induced increase in Na+ to K+ ratio. Therefore, these findings provide direct evidence to support that disruption of NOS-dependent NO production is associated with salt tolerance in Arabidopsis.  相似文献   

16.
17.
过表达TaLEA1和TaLEA2基因提高转基因拟南芥的耐盐性   总被引:1,自引:0,他引:1  
我国土壤盐碱化日益严重,对我国的粮食安全造成了严重威胁。耐盐基因挖掘对作物耐盐育种非常重要。LEA蛋白家族是一个多基因家族,在植物应对非生物胁迫中发挥重要作用。本课题组前期研究阐明小麦TaLEA1基因在拟南芥中过表达可以提高转基因植物的耐盐性和抗旱性。本研究系统分析了小麦TaLEA2基因表达蛋白的理化性质、基因表达模式及启动子功能区域,并在拟南芥中过表达TaLEA2基因及共表达TaLEA1和TaLEA2基因,分析TaLEA2基因的抗逆功能及2个LEA基因的抗逆效果。结果表明,TaLEA2基因的表达产物属于第3组LEA蛋白,是稳定的亲水蛋白,富含α-螺旋、β-转角等结构。TaLEA2基因在小麦根、茎、叶、花、种子等不同组织中均有表达,盐胁迫条件诱导其高表达。在拟南芥中过表达TaLEA2基因,或过表达TaLEA1和TaLEA2基因都能够提高转基因拟南芥的耐盐性和抗旱性,转基因株系的种子萌发率、根长及叶绿素含量显著高于野生型,且双基因过表达的转基因植物的抗逆能力高于单个基因过表达株系。本研究结果为LEA基因抗逆机理的研究和多基因共转提高植物抗逆性提供了重要信息。  相似文献   

18.
Mitogen-activated protein kinase (MAPK) pathways represent a crucial regulatory mechanism in plant development. The ability to activate and inactivate MAPK pathways rapidly in response to changing conditions helps plants to adapt to a changing environment. AtMKK1 is a stress response kinase that is capable of activating the MAPK proteins AtMPK3, AtMPK4 and AtMPK6. To elucidate its mode of action further, several tests were undertaken to examine the response of AtMKK1 to salt stress using a knockout (KO) mutant of AtMKK1. We found that AtMKK1 mutant plants tolerated elevated levels of salt during both germination and adulthood. Proteomic analysis indicated that the level of the α subunit of mitochrondrial H+-ATPase, mitochrondial NADH dehydrogenase and mitochrondrial formate dehydrogenase was enhanced in AtMKK1 knockout mutants upon high salinity stress. The level of formate dehydrogenase was further confirmed by immunoblotting and enzyme assay. The possible involvement of these enzymes in salt tolerance is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号