首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Auxin regulation of the gibberellin pathway in pea   总被引:1,自引:0,他引:1  
O'Neill DP  Ross JJ 《Plant physiology》2002,130(4):1974-1982
  相似文献   

5.
We have examined the role of gibberellins (GAs) in plant development by expression of the pea GA 2-oxidase2 ( PsGA2ox2 ) cDNA, which encodes a GA inactivating enzyme, under the control of the MEDEA (MEA) promoter. Expression of MEA:PsGA2ox2 in Arabidopsis caused seed abortion, demonstrating that active GAs in the endosperm are essential for normal seed development. MEA:PsGA2ox2 plants had reduced ovule number per ovary and exhibited defects in phyllotaxy and leaf morphology which were partly suppressed by GA treatment. The leaf architecture and phyllotaxy defects of MEA:PsGA2ox2 plants were also restored by sly1-d which reduces DELLA protein stability to increase GA response. MEA:PsGA2ox2 seedlings had increased expression of the KNOTTED1 -like homeobox (KNOX) genes, BP , KNAT2 and KNAT6 , which are known to control plant architecture. The expression of KNOX genes is also altered in wild-type plants treated with GA. These results support the conclusion that GAs can suppress the effects of elevated KNOX gene expression, and raise the possibility that localized changes in GA levels caused by PsGA2ox2 alter the expression of KNOX genes to modify plant architecture.  相似文献   

6.
7.
Gibberellins A1/3 (GA1/3) and GA20 appeared earlier in surrounding tissues (pericarps/carpel/placenta) than in developing seeds of morning glory. The content of GA1/3 became higher in seeds than in the surrounding tissues at 9 days after anthesis (DAA), while that of GA20 stayed lower in seeds even at 12 DAA, suggesting the possibility that GA20 was translocated into seeds from the surrounding tissues and converted to GA1/3. The site of biosynthesis of GA20 in the fruits was determined by RNA-blotting and in situ hybridization of GA 20-oxidase genes (InGA20ox1, InGA20ox2). InGA20ox1 was not expressed in the surrounding tissues but in seeds, while no signal due to InGA20ox2 was detected in neither tissue. The expression of InGA20ox1 started in the seed coat near the hilum and spread in the seed coat like those of GA 3-oxidase and GA-inducible alpha-amylase genes. These observations suggest that GA biosynthesis is tissue-specifically and time-dependently regulated in the fruit of morning glory.  相似文献   

8.
In pea (Pisum sativum), normal fruit growth requires the presence of the seeds. The coordination of growth between the seed and ovary tissues involves phytohormones; however, the specific mechanisms remain speculative. This study further explores the roles of the gibberellin (GA) biosynthesis and catabolism genes during pollination and fruit development and in seed and auxin regulation of pericarp growth. Pollination and fertilization events not only increase pericarp PsGA3ox1 message levels (codes for GA 3-oxidase that converts GA20 to bioactive GA1) but also reduce pericarp PsGA2ox1 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA20 to GA29), suggesting a concerted regulation to increase levels of bioactive GA1 following these events. 4-Chloroindole-3-acetic acid (4-Cl-IAA) was found to mimic the seeds in the stimulation of PsGA3ox1 and the repression of PsGA2ox1 mRNA levels as well as the stimulation of PsGA2ox2 mRNA levels (codes for GA 2-oxidase that mainly catabolizes GA1 to GA8) in pericarp at 2 to 3 d after anthesis, while the other endogenous pea auxin, IAA, did not. This GA gene expression profile suggests that both seeds and 4-Cl-IAA can stimulate the production, as well as modulate the half-life, of bioactive GA1, leading to initial fruit set and subsequent growth and development of the ovary. Consistent with these gene expression profiles, deseeded pericarps converted [14C]GA12 to [14C]GA1 only if treated with 4-Cl-IAA. These data further support the hypothesis that 4-Cl-IAA produced in the seeds is transported to the pericarp, where it differentially regulates the expression of pericarp GA biosynthesis and catabolism genes to modulate the level of bioactive GA1 required for initial fruit set and growth.  相似文献   

9.
10.
11.
12.
The physiological basis of thermoperiodic stem elongation is as yet poorly understood. Thermoperiodic control of gibberellin (GA) metabolism has been suggested as an underlying mechanism. We have investigated the influence of different day and night temperature combinations on GA levels, and diurnal steady-state expression of genes involved in GA biosynthesis (LS, LH, NA, PSGA20ox1, and PsGA3ox1) and GA deactivation (PsGA2ox1 and PsGA2ox2), and related this to diurnal stem elongation in pea (Pisum sativum L. cv Torsdag). The plants were grown under a 12-h light period with an average temperature of 17 degrees C. A day temperature/night temperature combination of 13 degrees C/21 degrees C reduced stem elongation after 12 d by 30% as compared to 21 degrees C/13 degrees C. This was correlated with a 55% reduction of GA1. Although plant height correlated with GA1 content, there was no correlation between diurnal growth rhythms and GA1 content. NA, PsGA20ox1, and PsGA2ox2 showed diurnal rhythms of expression. PsGA2ox2 was up-regulated in 13 degrees C/21 degrees C (compared to 21 degrees C/13 degrees C), at certain time points, by up to 19-fold. Relative to PsGA2ox2, the expression of LS, LH, NA, PSGA20ox1, PsGA3ox1, and PsGA2ox1 was not or only slightly affected by the different temperature treatments. The sln mutant having a nonfunctional PsGA2ox1 gene product showed the same relative stem elongation response to temperature as the wild type. This supports the importance of PsGA2ox2 in mediating thermoperiodic stem elongation responses in pea. We present evidence for an important role of GA catabolism in thermoperiodic effect on stem elongation and conclude that PsGA2ox2 is the main mediator of this effect in pea.  相似文献   

13.
14.
The role of gibberellins (GAs) during germination and early seedling growth is examined by following the metabolism and transport of radiolabeled GAs in cotyledon, shoot, and root tissues of pea (Pisum sativum L.) using an aseptic culture system. Mature pea seeds have significant endogenous GA20 levels that fall during germination and early seedling growth, a period when the seedling develops the capacity to transport GA20 from the cotyledon to the shoot and root of the seedling. Even though cotyledons at 0–2 days after imbibition have appreciable amounts of GA20, the cotyledons retain the ability to metabolize labeled GA19 to GA20 and express significant levels of PsGA20ox2 message (which encodes a GA biosynthesis enzyme, GA 20-oxidase). The large pool of cotyledonary GA20 likely provides substrate for GA1 synthesis in the cotyledons during germination, as well as for shoots and roots during early seedling growth. The shoots and roots express GA metabolism genes (PsGA3ox genes which encode GA 3-oxidases for synthesis of bioactive GA1, and PsGA2ox genes which encode GA 2-oxidases for deactivation of GAs to GA29 and GA8), and they develop the capacity to metabolize GAs as necessary for seedling establishment. Auxins also show an interesting pattern during early seedling growth, with higher levels of 4-chloro-indole-3-acetic acid (4-Cl-IAA) in mature seeds and higher levels of indole-3-acetic acid (IAA) in young root and shoot tissues. This suggests a changing role for auxins during early seedling development.  相似文献   

15.
16.
Gibberellins and Light-Stimulated Seed Germination   总被引:3,自引:0,他引:3  
Bioactive gibberellins (GAs) promote seed germination in a number of plant species. In dicots, such as tomato and Arabidopsis, de novo GA biosynthesis after seed imbibition is essential for germination. Light is a crucial environmental cue determining seed germination in some species. The red (R) and far-red light photoreceptor phytochrome regulates GA biosynthesis in germinating lettuce and Arabidopsis seeds. This effect of light is, at least in part, targeted to mRNA abundance of GA 3-oxidase, which catalyzes the final biosynthetic step to produce bioactive GAs. The R-inducible GA 3-oxidase genes are predominantly expressed in the hypocotyl of Arabidopsis embryos. This predicted location of GA biosynthesis appears to correlate with the photosensitive site determined by using R micro-beam in lettuce seeds. The GA-deficient non-germinating mutants have been useful for studying how GA stimulates seed germination. In tomato, GA promotes the growth potential of the embryo and weakens the structures surrounding the embryo. Endo-b-mannanase, which is produced specifically in the micropylar endosperm in a GA-dependent manner, may be responsible for breaking down the endosperm cell walls to assist germination. Recently, a role for GA in overcoming the resistance imposed by the seed coat was also suggested in Arabidopsis from work with a range of seed coat mutants. Towards understanding the GA signaling pathway, GA response mutants have been isolated and characterized, some of which are affected in GA-stimulated seed germination.  相似文献   

17.
18.
Embryonic regulators LEC2 (LEAFY COTYLEDON2) and FUS3 (FUSCA3) are involved in multiple aspects of Arabidopsis (Arabidopsis thaliana) seed development, including repression of leaf traits and premature germination and activation of seed storage protein genes. In this study, we show that gibberellin (GA) hormone biosynthesis is regulated by LEC2 and FUS3 pathways. The level of bioactive GAs is increased in immature seeds of lec2 and fus3 mutants relative to wild-type level. In addition, we show that the formation of ectopic trichome cells on lec2 and fus3 embryos is a GA-dependent process as in true leaves, suggesting that the GA pathway is misactivated in embryonic mutants. We next demonstrate that the GA-biosynthesis gene AtGA3ox2, which encodes the key enzyme AtGA3ox2 that catalyzes the conversion of inactive to bioactive GAs, is ectopically activated in embryos of the two mutants. Interestingly, both beta-glucuronidase reporter gene expression and in situ hybridization indicate that FUS3 represses AtGA3ox2 expression mainly in epidermal cells of embryo axis, which is distinct from AtGA3ox2 pattern at germination. Finally, we show that the FUS3 protein physically interacts with two RY elements (CATGCATG) present in the AtGA3ox2 promoter. This work suggests that GA biosynthesis is directly controlled by embryonic regulators during Arabidopsis embryonic development.  相似文献   

19.
Gibberellin A(1) (GA(1)) levels drop significantly in wild-type pea (Pisum sativum) plants within 4 h of exposure to red, blue, or far-red light. This response is controlled by phytochrome A (phyA) (and not phyB) and a blue light receptor. GA(8) levels are increased in response to 4 h of red light, whereas the levels of GA(19), GA(20), and GA(29) do not vary substantially. Red light appears to control GA(1) levels by down-regulating the expression of Mendel's LE (PsGA3ox1) gene that controls the conversion of GA(20) to GA(1), and by up-regulating PsGA2ox2, which codes for a GA 2-oxidase that converts GA(1) to GA(8). This occurs within 0.5 to 1 h of exposure to red light. Similar responses occur in blue light. The major GA 20-oxidase gene expressed in shoots, PsGA20ox1, does not show substantial light regulation, but does show up-regulation after 4 h of red light, probably as a result of feedback regulation. Expression of PsGA3ox1 shows a similar feedback response, whereas PsGA2ox2 shows a feed-forward response. These results add to our understanding of how light reduces shoot elongation during de-etiolation.  相似文献   

20.
Gibberellins are required for embryo growth and seed development in pea   总被引:11,自引:0,他引:11  
The gibberellin (GA) biosynthesis mutants lh-1 and lh-2 have been used to examine the physiological role of GAs in pea seed development. The LH protein is required for the three-step oxidation of ent -kaurene to ent -kaurenoic acid early in the GA biosynthesis pathway. The allele-specific interaction of lh-1 and lh-2 with chemical inhibitors of these three steps suggests that LH encodes the multi-functional GA biosynthesis enzyme ent -kaurene oxidase. Unlike the lh-2 mutation which reduces seed weight and decreases seed survival by ∼50% compared with wild-type plants, the lh-1 allele has a transient effect on embryo and seed growth and only slightly increases seed abortion. These seed phenotypes parallel the effects of the two mutant alleles on GA levels in young seeds. Detailed examination of the growth of lh-1 seeds reveals homeostatic regulation of GA-promoted embryo and seed growth. Although GA-deficient seeds grow more slowly than WT seeds, decreased assimilate availability to the developing seeds is not the primary reason for the altered seed development. Instead, GAs act to promote some process(es) required for embryo and seed growth and only indirectly influence the distribution of assimilates. How GA deficiency causes seed abortion is not known but it may simply be a consequence of reduced seed or embryo growth rate. These results demonstrate that even relatively small changes in the levels of GAs in young seeds can alter seed development and suggest that the available GA-related mutants may represent only a subset of all possible mutants with reduced GA levels or GA signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号